
Exploring the Connectome:

Petascale Volume Visualization of Microscopy Data Streams

Johanna Beyer,
King Abdullah University of Science and Technology

Markus Hadwiger,
King Abdullah University of Science and Technology

Ali Al-Awami,
King Abdullah University of Science and Technology

Won-Ki Jeong,
Ulsan National Institute of Science and Technology

Narayanan Kasthuri,
Harvard University

Jeff Lichtman, and
Harvard University

Hanspeter Pfister

Harvard University

Abstract

A system for interactively exploring petavoxel volumes from high-throughput electron 

microscopy data streams that supports concurrent visualization of high-resolution volumes and 

voxel segmentation data. The visualization-driven system design handles incomplete data and 

improves scalability over previous approaches. Researchers have employed the system on a 1-

teravoxel mouse cortex volume.

Reconstructing the human connectome is one of the 21st century’s major scientific 

endeavors. By deciphering the human brain’s neural circuits, comprising billions of neurons 

and their interconnections (synapses), connectomics researchers hope to improve their 

understanding of brain function as well as pathologies such as Alzheimer’s disease and 

autism. However, the mammalian connectome is immensely complex, and the huge amount 

of imaging data that must be acquired, stored, and processed presents a big challenge for 

neuroscientists. For example, the C. elegans worm’s connectome, consisting of a mere 300 

neurons and their 7,000 connections, took over a dozen years to complete.1 Only recent 

advances in high-throughput and high-resolution microscopic imaging have made it possible 

to start tackling mammals.

© 2013 IEEE

Selected CS articles and columns are also available for free at http://ComputingNow.computer.org.

NIH Public Access
Author Manuscript
IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

Published in final edited form as:

IEEE Comput Graph Appl. 2013 ; 33(4): 50–61. doi:10.1109/MCG.2013.55.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ComputingNow.computer.org


Modern microtomes and electron microscopes (EMs) can produce volumes of scanned brain 

tissue in 25- to 50-nm slices with a pixel resolution of 3 to 5 nm,2 as compared to 200 nm 

for optical microscopes. The higher resolution enables tracing of detailed neural connections 

at the resolution level of individual synapses, but it also makes processing and analyzing the 

scanned data a major bottleneck for connectomics. For example, a 1-mm3 EM volume of 

brain tissue would generate a 1-Pbyte volume of data, and scanning the data with a 

throughput of roughly 10 Mpixels per second would take several years.2 Currently, high-

throughput acquisition requires continuous data streaming over months or even years, which 

effectively implies the need for processing and visualization algorithms that can handle 

incomplete data—that is, data that hasn’t yet been completely scanned.

Reconstructing the synaptic connections between neurons often involves laborious manual 

segmentation of the scanned volume data, along with semiautomatic or fully automatic 

approaches.3 However, understanding the data requires interactive 3D visualization of the 

scanned volume, visual proofreading of the segmentation, and 3D navigation inside the 

volume—all within the context of large-scale EM data volumes. Preprocessing the data into 

a hierarchical representation— as usually happens with interactive visualization of large 

volumes—incurs an unacceptably long time between acquisition and visualization. Novel 

visualization paradigms and systems are therefore necessary to facilitate the interactive 

exploration and analysis of large-scale microscopy data streams.

We have developed a scalable end-to-end system design for the interactive 3D exploration 

and navigation of segmented high-resolution EM data.4 It offers a flexible volume-

processing and visualization framework that handles petascale (that is, petavoxel) volume 

data and can deal with incomplete data. Here, we describe the two main parts of our system

—a data-driven pipeline that’s triggered by the actual EM data acquisition, and a 

visualization- driven pipeline that’s triggered by the user interacting with the visualization. 

We explain how both pipelines and their modules scale to petavoxel volumes and, 

furthermore, illustrate the real-world use of our system for a mouse cortex volume of one 

teravoxel in size.

Previous Work in Connectomics Visualization

Our system is related to a large collection of prior work; we highlight only the most 

important connections here. Sebastian Seung gave a good introduction to connectomics 

and its recent developments, including advances in high-resolution and high-throughput 

electron microscopy (EM) imaging.1 Davi Bock and his colleagues showed how EM 

circuit reconstruction and the resulting network graph of connected neurons can help find 

a relationship between a brain area’s structure and function.2

The system we describe in the main article is based partly on previous research on 

petascale volume rendering and visualization of neuroscience datasets. Markus Hadwiger 

and his colleagues introduced a volume-rendering scheme for extremely large EM data, 

focusing on a multiresolution virtual-memory architecture and on-the-fly construction of 

volume blocks with a thorough performance and scalability analysis.3 Won-Ki Jeong and 

his colleagues described two systems for interactive exploration and analysis of EM 

images.4 They focused on manual and semiautomatic neuron tracing and on-the-fly edge 

Beyer et al. Page 2

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



detection for improved rendering of neural processes. Previously, we described a general 

system for rendering multiple volumes in addition to segmentation data, for neurosurgical 

applications.5 Although that system also employed out-of-core strategies, it could only 

handle much smaller data sizes than the system we describe in the main article.

Our visualization subsystem uses GPU volume ray casting, the most common approach 

for GPU volume rendering. A main constraint for GPU-based approaches is the limited 

GPU memory. To accommodate large volumes, Eric La Mar and his colleagues 

developed out-of-core and multiresolution volume-rendering approaches, often based on 

hierarchical octree bricking schemes.6 These approaches partition the data into subbricks 

and compute a multiresolution data hierarchy (such as an octree) during preprocessing. 

During rendering, only the active working set of these bricks (for example, all bricks in 

the view frustum) must be downloaded to the GPU, thereby alleviating GPU memory 

restrictions. However, all previous multiresolution volume renderers require building the 

multiresolution hierarchy during preprocessing, which isn’t feasible for our scenario of 

dynamically streaming image data.

A preprocessing step is also required by all previous systems that support volume data 

streaming for progressive rendering, such as the ViSUS (Visualization Streams for 

Ultimate Scalability) system.7 The GigaVoxels8 and CERA-TVR9 systems perform 

explicit octree traversal on the GPU by using the k-d restart algorithm. However, this 

requires holding the entire path from every leaf to the root in GPU memory, which can 

result in large numbers of updates per frame. Our system avoids many drawbacks of 

explicit octree traversal by using a virtual-memory approach that allows direct access to 

any requested resolution, without having to traverse the entire hierarchy of coarser 

resolution levels.3

Much research has covered volume rendering on supercomputers. 10 This is especially 

useful for in-situ visualization of large-scale simulations. Computing the visualization on 

the same machine as the data avoids the need to move large data. However, this approach 

isn’t feasible for microscopy data. Our data streams don’t originate from large-scale 

simulations, but from acquisition setups that aren’t directly connected to a 

supercomputer. Our system streams data to the GPU-based visualization, but only as the 

actual visibility requires. Researchers have applied such a display-aware approach to on-

the-fly image alignment and stitching at a resolution that matches the desired output 

resolution.11

References

1. Seung, S. Connectome: How the Brain’s Wiring Makes Us Who We Are. Houghton Mifflin 

Harcourt; 2012. 

2. Bock D, et al. Network Anatomy and In Vivo Physiology of Visual Cortical Neurons. Nature. 

2011; 471(7337):177–182. [PubMed: 21390124] 

3. Jeong WK, et al. Scalable and Interactive Segmentation and Visualization of Neural Processes in 

EM Datasets. IEEE Trans Visualization and Computer Graphics. 2009; 15(6):1505–1514.

4. Hadwiger M, et al. Interactive Volume Exploration of Petascale Microscopy Data Streams Using 

a Visualization-Driven Virtual Memory Approach. IEEE Trans Visualization and Computer 

Graphics. 2012; 18(12):2285–2294.

Beyer et al. Page 3

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



5. Engel, K. CERA-TVR: A Framework for Interactive High-Quality Teravoxel Volume 

Visualization on Standard PCs. Proc. 2011 IEEE Symp. Large-Data Analysis and Visualization; 

IEEE; 2011. p. 123-124.(LDAV 11)

(See the sidebar for related work in connectomics visualization.)

System Overview

Our system has two main parts (see Figure 1):

• The data-driven pipeline handles image acquisition, data storage, and 2D mipmap 

generation.

• The visualization-driven pipeline supports visualization and 3D block construction.

Data generation starts on the left side of Figure 1 and propagates to the right. In a wider 

sense, it includes more complex preprocessing tasks such as registration and segmentation. 

Most of our system is visualization-driven—that is, driven by the actual visibility of small 

3D blocks on screen during ray casting (see the right side of Figure 1). We operate in virtual 

volume space, which is our volume’s reference space and corresponds to the 3D tissue block 

that the EM is imaging. During ray casting, if the renderer detects that a data block is 

missing, it requests that block. The system handles the request during volume construction 

and then downloads the newly constructed block into GPU memory.

The system’s design pays special attention to modularity for integration of future changes, 

such as new data modalities or novel preprocessing algorithms.

System Environment

The system environment employs a client-server network architecture (see Figure 2). 

Generally, we allow for a flexible setup that lets each module run on a separate machine, 

connected via a high-bandwidth LAN. Optionally, we can configure the system to run all 

modules on the same machine, omitting network communication. The visualization archive 

is on a shared file system, letting multiple users access the data. Rendering occurs either on 

a separate rendering server that sends the final images to a thin client or directly on the PC 

that displays the final image. All network communication is based on TCP sockets and can 

use image compression to reduce network bandwidth.

For handling missing data, our modules are multithreaded to avoid blocking other 

computations or delaying rendering because of uncompleted data requests. The visualization 

stage runs with a rendering thread, a GUI or user input thread, and a thread for data requests 

to the volume construction module. Once the renderer has issued a data request, it continues 

rendering without waiting for the request to complete. The ray caster can deal with 

incomplete data by either substituting a data block with its lower-resolution version—if one 

is available—or skipping the block until it has been loaded.

Beyer et al. Page 4

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Data-Driven Pipeline

The goal of our data-driven pipeline is to process new data as soon as the EM has scanned it 

and to make it available for visualization. Each system module is designed to scale to 

petavoxel volumes.

Acquisition

In the acquisition pipeline (see Figure 3), we first take a tiny sample of a mouse or rat brain 

and solidify it using an epoxy resin. We then cut the solidified sample into 25- to 50-nm 

slices using Harvard’s Atlum (automatic tape-collecting lathe ultramicrotome). To enhance 

the tissue’s contrasts, we stain it with heavy metals.

Next, we image the collected microscope tapes of tissue slices, using a scanning EM with a 

resolution of 3 to 5 nm. The EM acquires image tiles of a fixed pixel resolution and stores 

the raw data together with metadata in a central acquisition archive. The metadata includes 

each tile’s magnification, position, and orientation (stored in an alignment matrix) and 

current EM settings.

Raw-Tile Processing

This module processes tiles arriving from the EM. It polls constantly for new tiles in the 

acquisition archive, processes them, and stores the data in a compressed form in the 

visualization archive.

Figure 3 depicts raw-tile processing and the visualization archive in the context of the 

acquisition pipeline. Raw-tile processing comprises construction of a 2D mipmap for each 

tile and subdivision of each mipmap level into smaller subtiles. We chose a 128 × 128 

subtile for optimized disk access and disk storage. Additionally, smaller subtiles can be 

handled more efficiently in the resampling phase of volume data construction, as we 

describe later. Subtiles can be compressed using JPEG at 2 bits per pixel (bpp) and stored in 

the visualization archive.

We store each mipmap level in a separate file. To improve disk access time, we store the 

subtiles in each file in Morton order. This approach preserves data locality and increases 

cache coherency. The visualization archive also allows external segmentation to access the 

image data and to store segmentation results and any manual data labeling.

In principle, we could use the same data archive for raw and preprocessed data. However, 

for organizational reasons, it’s often better to have two separate archives. The acquisition 

archive storing the raw microscope data is closely connected to the actual acquisition, so the 

EM operators can manage it directly in cooperation with the biologists. All further 

processing of the data for visualization (or segmentation) employs the visualization archive, 

which is managed by the visualization experts and biologists and stores the compressed 2D 

mipmaps.

Beyer et al. Page 5

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Because every new tile must undergo raw-tile processing, this module must be able to 

handle the microscope’s sustained data rate—for example, 10 Mpixels/sec. at 8 bpp. 

Currently, our raw-tile processing performs at 85 Mpixels/sec.

The 2D mipmapping lets us construct the 2D mipmap of each incoming tile right away and 

use it immediately for visualization if it’s visible on screen. In contrast, constructing a 3D 

mipmap would require either waiting for all required slices from the EM before computing a 

3D multiresolution hierarchy or recomputing the 3D hierarchy every time a new slice 

arrives.

Registration

Attached to each EM image tile is an affine alignment matrix (a transformation matrix), 

which corresponds to the movement of the EM’s platform stage. This matrix is stored only 

once for each tile and inherited by all subtiles. The alignment matrix can be iteratively 

refined by external registration to reflect tile alignment in both 2D and 3D. However, the 

registration changes no image data, and our raw-tile processing is completely independent of 

any registration. The registration changes only the alignment matrix. Tile stitching is 

performed only on demand during volume-data construction.

We can employ on-the-fly registration for dynamic EM acquisition. In many cases, the 

region of interest is much smaller than the entire slice of the original tissue sample. In such 

cases, without scanning the entire slice at the highest resolution, we can progressively scan 

the slice at different magnification levels by narrowing the EM’s field of view—like 

zooming in on a specific region. Figure 4 shows three tiles—a low-magnification image for 

the entire view and two higher-magnification images for the region of interest—aligned into 

a single coordinate system.

In this scenario, we acquire each tile at a different image scale and spatial location. To align 

such images, we use a fixed-size reference grid—for example, one at the screen resolution—

and register two images on the grid. Because the images’ resolutions differ from the grid, we 

subsample or supersample each image according to the magnification level.

In our implementation, the lower-level image IL is the background (reference) image. We 

rigidly transform the higher-level image IH (for example, by rotation, translation, and 

scaling) to minimize the image difference energy:

where T is the rigid alignment transformation, xi is the ith pixel index on the grid, and I(xi) is 

the pixel value of I at xi. To minimize E, we use a gradient descent that iteratively updates 

the transformation parameters, such as a translation vector, a rotation angle, or a zoom 

factor, along the negative gradient direction.

The registration can be semiautomatic if desired. As a tile enters the system from the EM, 

users can interactively navigate a 2D slice view to refine the registration if a misalignment is 

Beyer et al. Page 6

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



visible. The registration is implemented on the GPU, and its running time is independent of 

the tile size because the computation occurs on the grid. We’ve observed about 3 ms per 

single run of registration on a 256 × 256 grid on an Nvidia Fermi GPU (GTX 580).

Visualization-Driven Pipeline

To explain the visualization-driven pipeline’s modules, we focus first on our volume-data 

construction method. Next, we introduce our GPU-based volume ray-casting framework4 

and then describe how we extended the system to segmentation data and neuronal-

connectivity data based on synapses. Figure 5 shows renderings of our volume visualization 

system.

Visualization-Driven Volume-Data Construction

Volume construction is driven entirely by the visualization module (see Figure 1). Data is 

constructed and loaded into GPU memory only if the ray caster has requested it. Volume 

construction is therefore independent of the data size. The ray caster issues a 3D block 

construction request (at a certain position and resolution level) only if the block is visible on 

screen and the data request can’t be fulfilled from one of the caches in the visualization 

module.

Our multiresolution ray casting requires construction of only the data for the requested 

resolution level. It uses no other resolution levels, unlike octree approaches.

Figure 6 depicts volume construction. Once the ray caster requests a block (the bottom left 

of Figure 6), the system constructs the block at the requested resolution and transmits it to 

the visualization module. Block construction has two main parts. First, the system 

determines the 2D subtiles that intersect the 3D target block and fetches them at the 

requested resolution from the visualization archive. To efficiently retrieve the correct 

subtiles, we implemented a compact index structure that’s based on the Morton order of the 

subtiles and fits easily into main memory.

Second, the system stitches and resamples the 2D subtiles directly into the 3D target grid. 

Stitching is determined by each tile’s alignment matrix. We implemented fast stitching and 

resampling to any target resolution on the GPU, using texture mapping and fragment 

shaders. Because of the large slice distance and resulting anisotropy of our EM data (for 

example, an aspect ratio of 1:10), we can simplify 3D block construction. To do this, we 

allow a 3D target block to be resampled by simply stitching the image subtiles in 2D, 

without performing 3D filtering. Then, we store the result in the correct 3D location. For 

reconstruction filtering, we can use either GPU bilinear filtering or higher-order filters 

implemented in the fragment shader. If the EM hasn’t yet scanned the requested data, we 

report the block as empty and skip block construction.

Our volume construction’s modular design lets it also serve as a basis for additional 

computations such as automatic segmentation or data analysis. The only requirement is that 

the computations employ 2D or 3D blocks at a certain location with a certain resolution.

Beyer et al. Page 7

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Volume Rendering

Our volume rendering differs from that of previous systems in three ways. First, our ray 

caster doesn’t create and traverse a tree structure, such as an octree or k-d tree. Instead, it 

employs a multilevel, multiresolution virtual-memory architecture that scales well to 

extremely large volumes. This design is more efficient for deep-resolution hierarchies 

because it requires no tree traversal and no need to maintain a tree structure.

Second, our volume rendering reduces latency by allowing each sample to be fetched 

directly from any resolution level and enabling switching between resolutions without 

constructing intermediate lower resolutions.

Finally, it supports arbitrary downsampling ratios between resolution levels, which enables 

better accommodation of anisotropic voxel data.

The virtual-memory architecture—We operate in the virtual-volume reference space 

and start by subdividing the volume into small 3D blocks. We use 323 blocks and add a 

single voxel boundary for correct interpolation between neighboring blocks. Only the 

working set of these currently required (visible) blocks resides in GPU memory, in a large 

3D cache texture that’s updated dynamically.

To access a sample in the original volume, we must translate the sample’s position to a 

coordinate in cache texture space, which takes place on the fly using page-table lookups. 

The original volume therefore becomes a virtual volume that’s accessed via a page table; 

only the smaller cache texture and the page table must be stored on the GPU. If a block 

doesn’t reside in the cache texture, it’s flagged as unmapped (missing) in the page table.

However, one indirection layer (page table) is insufficient for very large volumes. Our 

system can therefore virtualize not only the original volume but also page tables. We refer to 

the top-level page table in the resulting hierarchy as the page directory. Currently, we use 

two indirection layers, which already enables scalability to several hundred teravoxels.4 This 

contrasts with octree approaches, which require traversing many more levels.

For multiresolution rendering, we conceptually have a separate hierarchy of page tables for 

each data resolution level. However, because the blocks of different resolution levels have 

the same voxel size (for example, 323), we can map blocks of any resolution level into the 

same 3D cache texture. The only structure that directly reflects the data’s multiresolution 

nature is the multiresolution page directory.

Ray casting virtual multiresolution volumes—Ray casting marches along the ray 

from sample to sample, performing hierarchical address translation for each one to map the 

virtual-volume position to the corresponding position in the 3D cache texture (see Figure 7). 

A sample’s position on the ray is given by a normalized coordinate in virtual volume space. 

At each sample point, we compute the desired level of detail (LOD) for accessing the 

corresponding data resolution level. We estimate the LOD by computing the size of the 

current voxel’s projected screen space. We use the sample’s position and LOD for the 

address translation lookup in the corresponding level of the multiresolution page directory.

Beyer et al. Page 8

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Many successive samples along a ray will map to the same page directory and page table 

entries. So, we can significantly reduce the texture lookup overhead by exploiting spatial 

coherence and reducing the number of required texture fetches. The closer a page table entry 

is to the hierarchy’s root (the page directory), the less frequently it must be fetched. For 

example, with 323 blocks, the page table is accessed only every 32 voxels for an axis-

aligned ray, and the page directory is accessed only every 1,024 voxels.

During ray casting, the system detects missing data whenever a page directory or page table 

entry is accessed that doesn’t point to data but is flagged as unmapped. This generates a 

request for the missing 3D block of visible data. This request propagates backward in the 

pipeline. If none of the system’s caches (in GPU or CPU memory or in the volume 

construction module) can meet it, the request triggers the visualization-driven construction 

of volume data from 2D image tiles. To ensure interactive frame rates, we limit how many 

blocks can be downloaded to the GPU each frame. Furthermore, to decide which blocks are 

no longer needed and can be swapped out of the cache and discarded, we employ an LRU 

(least recently used) scheme and track block usage in the ray caster.

For further optimization, we implemented empty-space skipping on the granularity level of 

page table entries. If a data block is reported empty, it’s not downloaded to the GPU, and its 

page table entry is flagged as empty. Our system performs empty-space skipping by culling 

against the current transfer function.

Segmented Data and Synapse Identification

Segmentation is crucial in connectomics research. Scientists use it to partition data into 

neuronal structures such as axons and dendrites, to trace structures connected by synapses, 

and to determine their spatial relationships. (An axon is a long, narrow, tubular structure that 

conducts electrical impulses away from a neuron’s cell body. These impulses pass over a 

synapse to a dendrite, a treelike extension of another neuron.) To this end, our system 

supports the visualization of sparse segmentations (in which only selected structures are 

traced), dense segmentations (in which all structures are traced), and labeled synapses.

Visualizing segmented data—A detailed description of our system’s segmentation 

modules and tools is outside this article’s scope, and we treat the segmentation algorithms as 

black boxes. However, we assume that the segmentation runs on image data from the 

visualization archive and that the same archive stores the final segmentation results.

We store segmentation data as image data slices (like the original EM data), in which each 

pixel contains the ID of the labeled object it belongs to. To allow for a large number of 

distinct objects, we store these IDs as 24-bit data, which lets us store over 16 million objects. 

Once the segmentation data arrives at the visualization archive, we compute 2D mipmaps 

for each slice, just as we described earlier for the EM data. The main difference is that we 

must use a different downsampling filter because the segmentation data comprises object 

IDs that must not be interpolated. The straightforward choice for downsampling is nearest-

neighbor filtering, but we could use more elaborate downsampling algorithms, such as a 

rank filter.

Beyer et al. Page 9

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8 shows the main steps of our visualization scheme for segmented data. For highest 

possible generality, we handle the segmentation volume as an additional data volume and 

perform multivolume rendering. This lets us easily extend our system to include additional 

data volumes, such as functional brain data. To handle two volumes, we run two instances of 

the volume construction module and two instances of the virtual-memory architecture. We 

allocate separate cache textures for the EM and segmentation data because they’re usually of 

different types—that is, 8-bit intensity values for EM data and 24-bit integer IDs for 

segmentation data.

Eventually, the ray caster samples and renders the original data simultaneously with the 

segmentation data. Our system supports different rendering modes, using the current 

sample’s object ID to assign and modify certain properties, such as color and opacity. The 

ray caster then blends these properties with the original EM data.

Synapse labeling—The system can render labeled synapses that are stored in tabular 

format in the visualization archive. Each table entry defines a single synapse consisting of its 

virtual volume position, a text label, the IDs of the two objects it connects (one axon and one 

dendrite), and some additional meta-information.

During rendering we can display all loaded synapses, their labels, and their connections. 

Additionally, users can add synapses to the data, which the system then stores in the 

visualization archive. Synapses are rendered as small geometric shapes, located at the 

position specified in the synapse table. To simplify navigation in the volume, users can 

select individual synapses, which are then automatically centered in the current view. The 

right image in Figure 9 shows a volume rendering of segmented axons, with a close-up of a 

labeled synapse.

Results on a Mouse Cortex

Our collaborating neuroscientists are working on the segmentation and analysis of a mouse 

cortex EM dataset with a resolution of 21,924 × 25,790 × 1,850 voxels, which is roughly 1 

Tvoxel. Over several months, the scientists have segmented several hundred structures 

(mostly axons) by manually tracing them from slice to slice.

In our dataset, we have segmented 329 axons and 4 dendrites, and each dendrite makes 

many synapses. Most segmented axons are oriented along the z direction, spanning 490 

dataset slices on average. Approximately a dozen axons span the entire 1,850 slices; the 

smallest axons span only two slices.

In our dataset, a segmented axon consists of over 6.2 million voxels on average, with a 

minimum of 12 voxels and a maximum of 37.5 million voxels. The segmented axons 

constitute less than 0.2 percent of the dataset. We have detailed information on 263 

synapses, including their location, label, and IDs of the axon and dendrite that each synapse 

connects. Each segmented dendrite is connected to 53 labeled synapses on average, with a 

minimum of one synapse and a maximum of 101 synapses. Axons, on the other hand, 

average only two labeled synapses, with a minimum of one and a maximum of seven.

Beyer et al. Page 10

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figures 5 and 9 show different renderings of this dataset, including the segmented axons and 

labeled synapses.

Performance

We tested our system on three 12-core dual-CPU 3-GHz machines, each with 48 Gbytes of 

CPU RAM and an Nvidia Quadro 6000 GPU with 6 Gbytes of GPU RAM. We implemented 

the system in C++, the ray caster in GLSL (OpenGL Shading Language), and the tile 

processing in CUDA (Compute Unified Device Architecture) and OpenMP.

Currently, the three machines run, respectively, the raw tile processing, the volume 

construction, and the visualization module, including the user interface. This setup lets us 

exploit parallelism between the different modules and maximize the available cache sizes. 

All network communication uses TCP/IP and Windows Sockets 2 over a 1-Gbyte network.

Table 1 shows the timing results for raw-tile processing and 3D-block construction 

(registration, stitching, and resampling), as well as the frame rates for ray-casting the 1-

Tvoxel dataset, including segmented volume rendering. We used two transfer functions to 

measure ray casting. The first was a linear ramp; the second was a more transparent transfer 

function that lets us see farther inside the volume (see the middle image of Figure 9).

The raw-tile processing clearly meets the requirement of 10 Mpixels/sec., given by the 

microscope’s current data acquisition rate. Volume rendering, based on our multiresolution 

virtual-memory architecture, achieves interactive frame rates for concurrent rendering of 

both the original and the segmentation volume.

Scalability

Our system achieves its scalability primarily in its volume representation (including 

multivolumes), volume traversal, and ray casting.

Volume representation—Our virtual multiresolution volume representation is extremely 

scalable because of the small number of levels needed for the page table hierarchy. Two or 

three levels are sufficient for extremely large volumes, resulting in easily manageable page 

directory sizes.4 Our current implementation uses two levels (with 323 voxel blocks), which, 

for example, allows rendering a 4-Tvoxel volume with a page directory of only 32 × 32 × 4. 

This makes it easy to accommodate multiple volumes and handle multiple page directories 

as well as their corresponding page-table hierarchy. A page-table hierarchy with three levels 

and page directory sizes under 643 could represent even a dataset of several hundred 

petavoxels.4

Volume traversal—In our system, volume traversal is extremely efficient. To access an 

arbitrary resolution level, we only have to traverse the very compact page-table hierarchy 

(that is, two or three levels), effectively resulting in an (1) traversal time for accessing any 

resolution level. In contrast, octree-based schemes must traverse the tree from the root to the 

requested resolution level, which is logarithmic in the number of octree voxels. These 

differences show up clearly in practice, especially in a typical neuroscience use case 

Beyer et al. Page 11

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



involving the inspection of data in high resolution. We illustrated this in a more detailed 

scalability analysis.4

Ray casting—For rendering segmented and multiple volumes, we have a separate page-

table hierarchy for every volume. This lets us store sparse segmentation data in a cache 

smaller than one for dense EM data. To reduce the number of textures and texture fetches, 

multiple volumes can share page directory and page-table lookups. However, this requires 

all cache textures to have the same size and layout, which can lead to inefficient cache 

usage.

Our system assumes that the current working set (that is, all visible data of the desired 

resolution) fits into the block cache in GPU memory. If that isn’t so, the system can lower 

the requested resolution. Another option would be to perform multiple rendering passes on a 

single GPU5 or perform parallel rendering on multiple GPUs.

Latency

Our system’s main objective is to enable exploration of petascale EM volumes in 3D at 

interactive frame rates. Its design lets us completely decouple the frame rate from the time to 

construct missing data and download it into the GPU cache textures. So, our rendering 

system never stalls because of waiting for new data.

Naturally, this approach incurs a latency until all visible data have arrived at the requested 

resolution and a complete image is on screen. This is similar to the latency in Google Maps, 

but with 3D data blocks instead of 2D map tiles. The overall latency varies significantly. It 

ultimately depends on the number of new 3D blocks that must be constructed for a new 

frame in addition to already cached data. However, in typical scenarios, that number is often 

small, leading to low latencies.

Our system’s major design choices are the visualizaton- driven volume data construction 

and the multiresolution virtual memory scheme. This makes our approach scalable and 

allows handling multiple petavoxel volumes concurrently. In future work, we plan to 

develop intuitive 3D navigation metaphors for large-scale volume data. We also want to 

extend our system to support distributed volume rendering, especially for multiple volumes 

that are too large to handle efficiently with a single GPU and out-of-core memory.

Acknowledgments

The National Research Foundation of Korea (grant 2012R1A1A1039929), the Intel Science and Technology Center 

for Visual Computing, Google, and Nvidia partially supported this project.

References

1. Seung, S. Connectome: How the Brain’s Wiring Makes Us Who We Are. Houghton Mifflin 

Harcourt; 2012. 

2. Bock D, et al. Network Anatomy and In Vivo Physiology of Visual Cortical Neurons. Nature. 2011; 

471(7337):177–182. [PubMed: 21390124] 

Beyer et al. Page 12

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Hadwiger M, et al. Interactive Volume Exploration of Petascale Microscopy Data Streams Using a 

Visualization-Driven Virtual Memory Approach. IEEE Trans Visualization and Computer 

Graphics. 2012; 18(12):2285–2294.

4. Jeong WK, et al. Ssecrett and Neurotrace: Interactive Visualization and Analysis Tools for Large-

Scale Neuroscience Datasets. IEEE Computer Graphics and Applications. 2010; 30(3):58–70. 

[PubMed: 20650718] 

5. Beyer J, et al. High-Quality Multimodal Volume Rendering for Preoperative Planning of 

Neurosurgical Interventions. IEEE Trans Visualization and Computer Graphics. 2007; 13(6):1696–

1703.

6. LaMar, E.; Hamann, B.; Joy, K. Multiresolution Techniques for Interactive Texture-Based Volume 

Visualization. Proc. 10th IEEE Visualization Conf; IEEE CS; 1999. p. 355-362.(VIS 99)

7. Summa B, et al. Interactive Editing of Massive Imagery Made Simple: Turning Atlanta into 

Atlantis. ACM Trans Graphics. 2011; 30(2):article 7.

8. Crassin, C., et al. GigaVoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. 

Proc. 2009 Symp. Interactive 3D Graphics and Games; ACM; 2009. p. 15-22.(I3D 09)

9. Engel, K. CERA-TVR: A Framework for Interactive High-Quality Teravoxel Volume Visualization 

on Standard PCs. Proc. 2011 IEEE Symp. Large-Data Analysis and Visualization; IEEE; 2011. p. 

123-124.(LDAC 11)

10. Childs, H.; Duchaineau, M.; Ma, K-L. A Scalable, Hybrid Scheme for Volume Rendering Massive 

Datasets. Proc. Eurographics Symp. Parallel Graphics and Visualization; Eurographics Assoc; 

2006. p. 153-162.

11. Jeong WK, et al. Interactive Histology of Large-Scale Biomedical Image Stacks. IEEE Trans 

Visualization and Computer Graphics. 2010; 16(6):1386–1395.

Biographies

Johanna Beyer is a postdoctoral fellow at the Geometric Modeling and Scientific 

Visualization Center at King Abdullah University of Science and Technology. Her research 

interests include large-data visualization, parallel visualization, and GPU-based volume 

rendering for neuroscience and neurobiology. Beyer received a PhD in computer science 

from the Vienna University of Technology. Contact her at johanna.m.beyer@gmail.com.

Markus Hadwiger is an assistant professor of computer science at King Abdullah 

University of Science and Technology. His research interests are petascale visual 

computing, scientific visualization, volume rendering, and general GPU techniques. 

Hadwiger received a PhD in computer science from the Vienna University of Technology. 

He’s a coauthor of Real-Time Volume Graphics (AK Peters, 2006). Contact him at 

markus.hadwiger@kaust.edu.sa.

Ali Al-Awami is a PhD student in computer science at King Abdullah University of Science 

and Technology (KAUST). His research interests are scientific visualization and data 

navigation and exploration. Al-Awami received an MS in computer science from KAUST. 

Contact him at ali.awami@kaust.edu.sa.

Won-Ki Jeong is an assistant professor at the Ulsan National Institute of Science and 

Technology. His research interests include image processing, scientific visualization, and 

general-purpose GPU computing in biomedical image analysis. Jeong received a PhD in 

computer science from the University of Utah. He’s a member of ACM. Contact him at 

wkjeong@unist.ac.kr.

Beyer et al. Page 13

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Narayanan Kasthuri is a postdoctoral fellow in Harvard University’s Lichtman Lab. His 

research interests include connectomics and neural development. Kasthuri received a D.Phil. 

in neurophysiology from Oxford University. Contact him at bobby.kasthuri@gmail.com.

Jeff W. Lichtman is the Jeremy R. Knowles Professor of Molecular and Cellular Biology 

and the Ramon Y. Cajal Professor of Arts and Sciences at Harvard University. His research 

interests include developmental neurobiology, where he developed methods for in vivo 

imaging of synapses, labeling of nerve cells with different colors, and high-resolution 

mapping of neural connections. Lichtman received an MD and a PhD in neurophysiology 

from Washington University in St. Louis. Contact him at jeff@mcb.harvard.edu.

Hanspeter Pfister is the An Wang Professor of Computer Science in Harvard University’s 

School of Engineering and Applied Sciences. His research interests are at the intersection of 

visualization, computer graphics, and computer vision. Pfister received a PhD in computer 

science from Stony Brook University. He’s a senior member of the IEEE Computer Society 

and member of ACM, ACM Siggraph, and Eurographics. Contact him at 

pfister@seas.harvard.edu.

Beyer et al. Page 14

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 

System overview. Petascale volumes are acquired as a stream of image tiles from the 

electron microscope (EM). Each raw image tile is processed individually in the input stream. 

Everything else is visualization-driven. Ray casting operates in virtual volume space, 

detecting missing blocks for visible volume blocks that aren’t in GPU memory. Then the 

system constructs the missing blocks in 3D by stitching and resampling the corresponding 

tiles from the 2D input stream.

Beyer et al. Page 15

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 

The system environment. A configurable client-server setup supports the use of separate 

machines for our system’s different modules.

Beyer et al. Page 16

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 

The acquisition pipeline. We cut tissue samples into ultrathin slices using Harvard’s 

automatic tape-collecting lathe ultramicrotome (Atlum) and image them using an EM. We 

then store the acquired image tiles in a data archive. After 2D mipmap generation, the data 

can be used for different applications, such as visualization, segmentation, and fine-grained 

registration.

Beyer et al. Page 17

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 

On-the-fly registration of three EM image tiles at different scales. A low-magnification 

image for the entire view and two higher-magnification images for the region of interest are 

aligned into a single coordinate system.

Beyer et al. Page 18

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 

Our system supports visualization of large-scale EM volumes, their segmentation 

information, and synaptic connections. (a) A screenshot of our application showing an 

unsegmented axon. (b) Segmented axons. (c) A combined rendering of EM data with 

segmented axons.

Beyer et al. Page 19

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 

Visualization-driven volume construction. The system stitches and resamples only the 

visible 3D blocks in the virtual multiresolution volume, computing the result at the 

requested resolution.

Beyer et al. Page 20

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. 

Ray casting occurs in a virtual multiresolution volume, in which a hierarchy of page tables 

represents each resolution. Ray casting accesses the actual volume data by performing on-

the-fly address translation to access blocks in virtual memory. If a data block is missing, the 

ray caster generates a request for that block and propagates the request to the visualization-

driven volume construction.

Beyer et al. Page 21

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8. 

Multivolume visualization. All input data is stored in the visualization archive. Data requests 

construct 3D blocks for all requested volumes in a unified coordinate system (the virtual 

volume). During ray casting, multiple volumes can be sampled and combined into the final 

rendering.

Beyer et al. Page 22

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 9. 

Volume-rendering segmentation data and synapse labeling. The left and middle images 

show different zoom factors and transfer functions for volume-rendering segmentation data. 

The transparent transfer function in the middle image lets users visually follow otherwise 

occluded structures. The right image shows a labeled synapse in 3D and slice views. Users 

can automatically navigate to and zoom in on a synapse by selecting it in the 3D view. The 

view parameters and clipping planes adjust automatically.

Beyer et al. Page 23

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Beyer et al. Page 24

Table 1

Our system’s performance. We measure volume rendering for a 1,024 × 768 pixel viewport.

Module Performance

Raw-tile processing 85 Mpixels/sec. for 8-bit pixel data

Registration 20 Mpixels/sec. output

Stitching and resampling 30–65 Mpixels/sec. output

Volume rendering of EM data* 75 fps for transfer function 1
12 fps for transfer function 2

Volume rendering of segmented data* 70 fps for transfer function 1
9 fps for transfer function 2

*
Transfer function 1 was a linear ramp for color and opacity; transfer function 2 was a more transparent transfer function.

IEEE Comput Graph Appl. Author manuscript; available in PMC 2015 January 16.


