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Exploring the consequences of a recalibration of causal conditions when 

assessing sufficiency with fuzzy set QCA 

 

Introduction 

Charles Ragin’s method Qualitative Comparative Analysis (QCA) (Ragin, 1987, 2000, 2008) 

focuses on the sufficiency and necessity of conditions or configurations of conditions for 

obtaining some outcome. Its use is increasing in the social sciences but some of its 

characteristics, especially those of its fuzzy set variant, are still not well-understood by users. 

One such feature concerns the paradoxical results that can arise when fuzzy sets are 

employed, something we have explored elsewhere (Cooper & Glaesser, 2011). In this paper, 

we focus on another important element of all QCA-based work, the process of allocating 

degrees of membership in the sets that enter the analysis
1
. We also employ an analytic 

approach that differs from the procedure embedded in the fsQCA software (Ragin & Davey, 

2009), one we have used elsewhere for a different purpose (Cooper & Glaesser, 2010, 

Cooper, Glaesser, Gomm & Hammersley, 2012). We write on the assumption that users of 

methods, especially those embodied in easy to use software, always benefit from having an 

in-depth understanding of the procedures that underlie the results they obtain. Without such 

understanding, users are less likely, in our view, to produce valid conclusions because there is 

a danger that they do not apply the methods correctly or appropriately which can lead to 

flawed results. 

                                                           
1
 Skaaning (2011) also explores how this process of set calibration affects QCA results, but while he varies the 

fuzzy values of several conditions and the outcome, we will focus on the effect of changing just one value, 

holding the others constant. Thiem’s (2010) work is also concerned with calibration. He explores the use of 

different membership functions to allocate fuzzy values, and what effect different membership functions have 

on coverage. 
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QCA is based on Boolean algebra. It analyses the relationships between sets of cases. It was 

originally developed for use with crisp sets, that is, with those where a case is simply either in 

or out of a set (Ragin, 1987). However, this only allows for dichotomous factors
2
 and Ragin 

therefore developed QCA further to allow the analysis of fuzzy sets, that is, those where 

cases can have partial membership in a set. Fuzzy membership scores run from 0 (completely 

out of the set) to 1 (fully in the set), with 0.5 being the crossover point at which a case is as 

much in as out of the set. Allocation of set membership is straightforward for many crisp sets 

such as “female” or “university graduate” (assuming that there is no ambiguity over which 

HE institutions are regarded as universities), but it is less clear for some other conditions. The 

case of adulthood is frequently used to illustrate this problem. A 30 year old is clearly a full 

member of the set of adults, and a 10 year old clearly is not. But what about an 18 year old? 

We might allocate a fuzzy membership score of, say, 0.8, based on our knowledge of what 

adulthood means and what 18 year olds are like. However, if we were to apply a purely legal 

definition of adulthood, then 18 year olds would be full members of the set of adults in most 

countries. 

This process of allocating membership scores is known as calibration (Ragin, 2008, chapter 

4)
3
. Set membership scores form the basis of the analysis of consistency with sufficiency and 

necessity in QCA. It is clear therefore that we have to pay careful attention to how sets are 

calibrated. Various procedures are possible. One is, as in the adulthood example, to use some 

external definition of the set which is being calibrated. This would mean that the age of 18 (or 

                                                           
2
 Though dummy factors can be used to avoid this restriction. This is possible within conventional cs/QCA. 

Multi-value QCA, which was developed by Lasse Cronqvist, is another technique which allows for variables 

with at least three categories (e.g., Cronqvist, 2009). 

3
 Since we wrote this paper, a new book has appeared which addresses some of the points discussed here, such 

as calibration (Schneider & Wagemann, 2012). 
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whatever the legal definition in the country under study is) acts as a threshold or cut-off point 

for full membership. Another is to use some distributional criterion. For example, having 

scored in the top 20% on some test can be calibrated as full membership of the set highly 

able, the bottom 20% would be fully out of the set, and the median or the mean could be used 

as the crossover point, i.e. the point where a case is as much in as out of the set. Obviously, 

the outcome of calibration would then depend on the particular sample being used, and it 

could result in having different calibrations based on different samples. But there can be good 

substantive grounds for using a distributional measure. For example, under the old British 

selective secondary school system, around 20% of children per cohort were allocated places 

at the selective grammar schools, based on their performance on a set of tests at age eleven 

which included a cognitive ability test. So it might make sense for some purposes, for 

example in studies of the degree to which educational selection is meritocratic, to define high 

ability as the top 20% of the performers on some test.  It is also worth noting that we 

implicitly use distributional criteria when thinking about set membership. For example, any 

calibration of the set of tall people will be a function of the distribution of actual heights in a 

particular population. In this sense, the calibration of many sets is inherently distributional, 

whether based on a specific sample or on criteria based on knowledge of distributions in the 

world
4
. This is particularly so for sets whose members’ properties have “positional” 

characteristics (Hirsch, 1976).   

 

                                                           
4
 Ragin (2008, p.80) points out that a sample-inherent measure such as the sample mean is not usually used to 

calibrate sets. We agree that properties of some sample should not be used in all cases to calibrate a set. Our 

argument is that such properties can sometimes give an indication of what values of some raw variable may be 

used as anchors, but this should only be applied on substantive and theoretical grounds. 
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Using first an abstract illustration and then an empirical example, this paper explores how 

two possible ways of calibrating a condition affect the degree of reported consistency with 

sufficiency of this condition with an outcome. We should note that one reason for employing 

different ways of calibrating the same raw values can be the wish to capture different 

concepts. For example, for both the sets “likely to have learning difficulties” and “highly 

intelligent” the raw variable “IQ” can be used as the basis for calibration, but the allocation of 

membership values to cases would look different. Ragin (2008, p. 33) describes a similar 

situation where GNP per capita may be used as an index variable to calibrate different sets, 

e.g., the sets of “wealthy countries” and “middle income countries”. 

 

We assume some knowledge of QCA throughout the paper, but by way of a reminder to the 

reader we will briefly explain the concepts we are using as we proceed. 

 

Calibration and consistency with sufficiency: an abstract illustration 

One definition of consistency with sufficiency in the fuzzy set context is that the membership 

value of the condition set has to be less than or equal to membership of the outcome set, i.e.,  

x <= y, where x is the membership score for some condition and y is the membership score 

for some outcome (Ragin, 2000). Figure 1 illustrates diagrammatically a relationship of 

perfect consistency with sufficiency for multiple cases. We have added the y = x line to 

facilitate our discussion of calibration. All the cases are in the upper left triangle, i.e., on or 

above the y = x line – the region of consistency with sufficiency. 

 

[Insert Figure 1 about here.] 
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Typically, we find relationships that are less than perfect, giving us some cases below the y = 

x line, i.e. in the lower right triangle. Such situations, where some but not most cases fail the 

criterion for sufficiency, are usually described with the term quasi-sufficiency (Ragin, 2000). 

We have constructed an invented dataset to demonstrate how a change in calibration can shift 

more cases into the region of consistency with sufficiency
5
. Figure 2 plots the values on some 

condition x against some outcome y. The original calibration is shown as diamonds, the new 

one as triangles. Because the condition values on the new measure (x2) are lower than those 

on the original calibration (x1), these are shifted to the left on the scatterplot, so that more 

cases now fall into the region above the y = x line, i.e. the area where the criterion for 

consistency with sufficiency, x <= y, is being met. For an example, consider the outcome 

“educational achievement” and the condition “cognitive ability”.  IQ might be calibrated 

initially to produce the set X1, “high ability”, but, subsequently, higher levels of IQ might be 

required for any particular fuzzy set membership value for the set X2, “very high ability”. It 

is easy to see that “very high ability” will be more consistent with sufficiency for the outcome 

than “high ability”. However, in practice, either of these calibrations might be labelled by a 

researcher “high ability” – a potential source of confusion. 

 

[Insert Figure 2 about here.] 

 

The simplest measure of the degree of consistency with sufficiency is the proportion of cases 

with non-zero membership in x which satisfy the criterion, x <= y. The problem with this 

measure, however, is that cases that only narrowly miss the criterion count as much against 

                                                           
5
 We will use an example using empirical data later on in the paper. The reason for choosing an invented dataset 

initially is that this enables us to bring out the issue under discussion more clearly by illustrating a point in the 

abstract before moving on to more complex “real” data. 
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consistency as cases which miss it by a large margin. So a case with values of (0.9, 0.8) for X 

and Y violates the consistency criterion as much as one with values of (0.9, 0.2). Ragin 

(2006) explains and employs an alternative measure which takes account of near misses. It is 

calculated using the following formula, where min (Xi, Yi) is the minimum for each case of 

the values of X and Y. This is the measure of consistency we use in the remainder of this 

paper. 

 

∑(min Xi, i)

∑Xi
     (Equation 1) 

 

QCA uses the measure of coverage to indicate how relevant or important a (set of) 

condition(s) is with regard to predicting an outcome. The formula to calculate coverage is 

given by equation 2
6
: 

 

∑(min Xi, i)

∑ i
    (Equation 2) 

 

Calibration and consistency with sufficiency: an empirical example 

We now wish to illustrate the effect of alternative calibrations on consistency using real data. 

As noted, there can be good substantive and/or theoretical reasons for calibrating the same 

raw variable in different ways. In our example, we use cognitive ability as measured through 

an intelligence test as our condition. As noted in the introduction, the raw test scores here 

                                                           
6
 There are some problems specific to fuzzy set QCA, one of which is that paradoxical results can arise 

concerning consistency and coverage. For a discussion of these paradoxes and how they might be alleviated, see 

again Cooper & Glaesser (2011). 
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could form the basis of a variety of sets, such as “highly intelligent” as well as “likely to have 

learning difficulties”. 

 

Data and measures 

Our example is set within the substantive area of sociology of education. We use data from 

Durham University’s Centre for Evaluation and Monitoring (CEM). CEM conducts large 

scale educational monitoring studies whose main purpose is providing feedback to schools on 

pupils’ performance, including value added analyses. In addition to performance indicators, 

background data are collected (for an overview of CEM’s work see Tymms & Coe, 2003). 

Here, we use a combined dataset, comprising Yellis (Year 11 Information System)  and Alis 

(Advanced Level Information System) data from 2005. All our cases therefore are Sixth form 

students, with n = 3188. During Year 11, pupils take a cognitive ability test (the Yellis test), 

provide background information and fill out an attitudinal questionnaire. The school later 

adds GCSE and A level exam results
7
. The Yellis test is designed to measure developed 

abilities which can predict GCSE performance. 

 

To explore the effects of different calibrations on the results of tests for nearness to 

sufficiency, we analyse how cognitive ability combines with the factors parental education, 

gender and type of secondary school to predict A level performance. Using Ragin’s direct 

method (Chapter 5 in Ragin, 2008)
8
, we have calibrated the raw Yellis test scores in two 

                                                           
7
 GCSE stands for General Certificate of Secondary Education, the examination taken at the end of compulsory 

schooling in England, usually at the age of 16. A levels are the English qualification usually required for 

university entrance, obtained at the age of 18. 

8
 Nothing much hinges on our choice of calibration method, given that this is a methodological paper rather than 

a substantive one. Ragin’s direct method is one that is well suited to calibrating continuous data and is 

commonly applied, which is why we have chosen to use it here. 
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different ways, thus allocating cases to two fuzzy sets on the basis of their cognitive ability. 

The first, original, calibration uses the whole cohort, setting the cross-over point (i.e., a fuzzy 

value of 0.5) at the median for that group (“HIGH_ABILITY_1”), the second, new, 

calibration uses the more select group of A level pupils and their median as the cross-over 

point (“HIGH_ABILITY_2”). In the first case, we are effectively setting the reference 

population for constructing the set “high ability" as all secondary pupils; in the second the 

reference population comprises A level pupils. Given that test results are higher, on average, 

among the group of A level pupils compared to the whole cohort, the fuzzy values here are 

lower than those derived from the group as a whole. This is because we have, in effect, used a 

stricter criterion for various degrees of membership in the set “high cognitive ability”. If we 

take fuzzy subsethood between two sets X2 and X1 as being defined by cases’ membership 

values in X2 being lower or equal to those in X1 (Ragin, 2000), then HIGH_ABILITY_2 is a 

fuzzy subset of HIGH_ABILITY_1. 

 

The other measures we use are parental education (“EDU_P) , gender (“MALE”, coded 

MALE = 1 for boys and MALE = 0 for girls) and type of secondary school 

(“SCHOOL_SELECTIVE”, coded SCHOOL_SELECTIVE = 1 for academically selective 

schools and SCHOOL_SELECTIVE = 0 for non-selective schools). EDU_P is a fuzzy 

measure based on educational attainment of both parents
9
, the other two, MALE and 

                                                           
9
 This measure is based on parental education in five levels. We have converted each parent’s level of 

qualification into fuzzy values (with “little or no formal education” = fuzzy value 0, “left school at the minimum 

school leaving age” = 0.33, “O levels or similar” = 0.66, “A levels, FE college or similar” = 0.83, “degree” = 1) 

and then, analogously to set theoretic intersection, we have used the minimum to define combined parental 

education. The latter is clearly a contestable decision, but it is of no consequence for the core argument in this 

methodological paper. 
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SCHOOL_SELECTIVE are crisp. The outcome measure is the average A level result 

(“ALEVEL_AV”)
10

, fuzzyfied using expert calibration. 

 

Consistency: one condition 

It is straightforward to calculate consistency with sufficiency for the two calibrations of the 

condition “high ability” with outcome “A level performance”. For each case, its contribution 

to the sum in the numerator in the formula shown in Equation 1 is ruled by the lower of the 

two values, X and Y, simply because it is the minimum of these two values. Given that values 

for X are lower with the new calibration, this means that for more cases than before the 

values for the numerator and denominator will now be the same. In general, the value for any 

single case given by Equation 1 will be either higher or the same as we move from the initial 

to a stricter revised calibration of X. If HIGH_ABILITY_1 was already lower than or equal 

to the outcome, e.g. for a case like 0.8, 0.9, then Equation 1 would return the value 1 for both 

this calibration and any stricter calibration like HIGH_ABILITY_2 that reduced membership 

in HIGH_ABILITY. If, for example, the 0.8 became 0.7, Equation 1 would still return 1 for 

the single case 0.7, 0.9. For cases where X is higher than Y, for example for a case like 0.8, 

0.6, then a reduction in the membership in X, produced through a stricter calibration, would 

increase the value returned by Equation 1. If 0.8, 0.6 became 0.7, 0.6, then the value would 

increase from 0.6/0.8 (=0.75) to 0.6/0.7 (=0.86). 

 

                                                           
10

 To obtain this fuzzy measure, we first calculated the mean result of all A levels obtained, with a grade A = 5, 

a grade B = 4 etc. We then turned this average into six fuzzy values as follows: 

A level average 0 0.1 to 1.49 1.5 to 2.4 2.5 to 3.4 3.5 to 4.4 4.5 to 5 

fuzzy value 0 0.17  0.33  0.66  0.83  1 
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The results of Equation 1 will therefore be higher for the new stricter calibration. Using the 

formula in Equation 1, we obtain a consistency value of 0.857 for the original calibration and 

of 0.910 for the new calibration. Of course, given that HIGH_ABILITY_2 is a fuzzy subset 

of HIGH_ABILITY_1, we expect to get at least the same overall consistency with 

sufficiency. If one condition set is a subset of the outcome set (the criterion for quasi-

sufficiency), then another set that is a subset of the first will also be a subset of the outcome 

set. This is a straightforward consequence of the way subsethood is defined, but its 

implications for consistency and coverage, as calibrations are varied, need to be fully 

understood by researchers using QCA. 

 

The discussion above was based on the relationship of one just condition set (calibrated in 

two different ways) with some outcome. However, one of the strengths of QCA is that it can 

examine conditions in conjunction with other factors and not in isolation, taking account of 

the conjunctural context in which conditions have their effects (Ragin, 1987, 2000, 2008). 

We therefore now turn to exploring how the analysis of the quasi-sufficiency of the 

configurations of factors is affected by this change in calibration. 

 

Consistency: Truth table analysis 

Initially, we explore how consistency with sufficiency changes using these two different 

measures of cognitive ability alongside the other conditions by examining and solving truth 

tables containing the conditions under study. In fuzzy set QCA, truth tables are constructed 

by allocating cases to rows according to whether they have values above or below 0.5 in the 

relevant configurations. We present two truth tables, each with the same conditions and the 

same outcome, but the first one using the original calibration of the cognitive ability test and 

the second using the new calibration. In these tables, the column headed “number” gives the 
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frequency of cases with a membership over 0.5 in each configuration. We will term such 

cases “good cases” for the configuration, since they are more in than out of the underlying 

set. ALEVEL_AV is the outcome “A level performance”. 

 

[Insert Table 1 and Table 2 about here.] 

 

Following re-calibration, there are fewer members of the set HIGH_ABILITY_2 with values 

over 0.5 than of the set HIGH_ABILITY_1 and therefore we have different numbers of good 

cases in the different rows. For example, in Table 1, there are 616 good cases with the 

configuration HIGH_ABILITY_1*male* SCHOOL_SELECTIVE * EDU_P, but in Table 2 

just 502 good cases showing the combination 

HIGH_ABILITY_2*male*SCHOOL_SELECTIVE* EDU_P. The order of the truth table 

rows has changed, too, reflecting the ways that the change in calibration affects the value 

returned by the minimum operator that is used to create membership values of the cases in 

each row
11

, and hence consistency values. 

 

QCA solves truth tables for quasi-sufficiency. The first step is to order the rows from high to 

low consistency with sufficiency, as we have already here. Then a threshold, usually around 

0.8, is chosen for quasi-sufficiency. Rows, i.e. configurations, with a consistency score above 

the chosen threshold go forward into a minimised solution. The minimisation procedure is 

simple to understand, though can be hard to implement manually when there are more than a 

few conditions (Ragin, 2008). Basically the process repeatedly collapses pairs of rows that 

pass the threshold but only differ in having a single condition either present or absent. In 

                                                           
11

 The degree of membership in a configuration is calculated by taking the minimum of the memberships in the 

individual conditions (Ragin, 2000). 
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Table 1, for example, the first row, 0010, and the third row, 0011, differ only in having 

EDU_P either absent or present. Since both configurations have a high consistency score, and 

therefore can be considered to be quasi-sufficient for the outcome, we can say that 001- is 

quasi-sufficient for the outcome, where the dash indicates that the presence or absence of the 

fourth condition is logically irrelevant.  

 

We can now examine initially the two overall solutions we obtain using a cut-off threshold 

that is suitable for both tables. For this purpose, 0.88 is suitable, since, in both tables, it marks 

a relatively large jump in consistency between the ordered rows. The 1s and 0s in the 

outcome column reflect our choice of threshold. The two solutions for quasi-sufficiency are: 

 

For Table 1, using HIGH_ABILITY_1: 

 

     raw  unique                

     coverage coverage consistency   

     --------- --------- --------- 

SCHOOL_SELECTIVE  0.360  0.084  0.873  

HIGH_ABILITY_1*male  0.558  0.282  0.898  

solution coverage: 0.642  

solution consistency: 0.863 

 

 

For Table 2, using HIGH_ABILITY_2: 

 

     raw  unique                

     coverage coverage consistency   

     --------- --------- --------- 

SCHOOL_SELECTIVE  0.360  0.095  0.873  

HIGH_ABILITY_2   0.676  0.411  0.910 

solution coverage: 0.771 

solution consistency: 0.875 
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It is easy to see that in the first solution high ability has to be conjoined with being female to 

be quasi-sufficient, but in the second it is quasi-sufficient on its own. However, it is not 

straightforward to interpret the differences between these two solutions arising from the 

recalibration of HIGH_ABILITY. Were we to employ just one calibration of 

HIGH_ABILITY but to vary the threshold for consistency, we would expect there to be a 

trade-off between consistency and coverage figures, with one rising as the other falls (Ragin, 

2003). However, moving between these two calibrations with the threshold held constant, we 

obtain a rise in both overall consistency and coverage. The small rise in consistency results 

from the more selective definition of HIGH_ABILITY. The rise in coverage results from the 

fact that there are different configurations in these two solutions
12

. Ten rows enter into the 

first solution, while twelve rows enter the second solution. This produces the increase in 

explanatory coverage.  

 

There are other ways to compare the effect of the recalibration. One is to compare the change 

in consistency figures for particular configurations. However, the fact that configurations 

may not contain exactly the same number of non-zero cases when using the original and the 

new calibration means that a direct comparison of consistency figures for truth table rows is 

likely to be misleading
13

. Furthermore, were we to use just good cases, rather than all non-

                                                           
12

 We should note that moving from a less strictly calibrated to a more strictly calibrated measure of ability, 

while it will, for any single case, raise consistency with sufficiency scores, will also lower coverage scores.  

Consider an invented illustrative case, moving from 0.8, 0.7 to 0.5, 0.7. Consistency rises from 0.875 to 1. 

Coverage, however, falls from 1 to 0.714. Substantively, in this simple example, where coverage for sufficiency 

equates with consistency with necessity, we could say that while high ability is necessary for the outcome, very 

high ability is not. The situation may be different, as we have seen, for overall solutions.  

13
 In our particular example, these differences in the number of non-zero membership cases are very small, but 

in other cases they may be large.  
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zero cases in the calculation of consistency, as we suggest in Cooper and Glaesser (2011), 

then we would be comparing rows with quite different numbers of good cases. For example, 

we can compare the configurations HIGH_ABILITY_1*male* SCHOOL_SELECTIVE * 

EDU_P and HIGH_ABILITY_2*male* SCHOOL_SELECTIVE * EDU_P. However, as 

noted above, the former comprises 616 good cases and the latter, 502.  It is also the case that, 

if we were to set a minimum number of good cases for a row to be entered into the 

minimisation process, in order to base any conclusions on an adequate number of cases, then, 

as a result of the recalibration, different rows would be omitted from Tables 1 and 2. Using a 

cut-off of ten, for example, would omit row 0110 from Table 1 but row 1110 from Table 2
14

. 

We need therefore a mode of comparison that allows us to hold the context for comparing 

configurations across the two calibrations constant. To achieve this, we will therefore 

undertake a different form of comparison, one that takes account of the constellation of 

factors while keeping the focus on the effects of the change in calibration of the ability 

measure, but within particular configurationally defined sets of cases. We will draw on an 

approach that we have developed for another purpose in a previous methodological paper 

(Cooper & Glaesser, 2010; expanded in Cooper et al., 2012). 

 

Consistency: Within configurations 

This approach moves us away from truth table analysis. Instead, we calculate the 

consistencies for the two measures of high ability within configurations defined by the other 

factors of interest. Gender and type of school (non-selective vs. selective) are already 

dichotomous, and for this analysis we have changed the fuzzy measure for parental education 

to one with four categories, which results in 2 x 2 x 4 = 16 configurations. As expected, 

within each configuration consistency is higher for the newly calibrated measure, 

                                                           
14

 The use of counterfactual analysis (Ragin, 2008) would further complicate things here.  
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“HIGH_ABILIT _2”. We can see in Table 3 that, if we were to take 0.8 as the cut-off for 

quasi-sufficiency, two of the sets of cases fall well below it when HIGH_ABILITY_1 is used 

(with one other type of case just below this level), but all types of case, bar one (which nearly 

reaches it), surpass this level when HIGH_ABILITY_2 is employed. On the newly calibrated 

measure, even the lowest consistency value – that for boys in non-selective schools who do 

not have highly educated parents – reaches nearly 0.8. If we were to employ a stricter cut-off 

for quasi-sufficiency, say 0.9, we would produce a different account of the role of “high 

ability” dependent on which of these two calibrations we chose to use. 

 

[Insert Table 3 about here.] 

 

These results are summarised in Figure 3 which shows the consistencies for the 

16 configurations both for the original and newly calibrated measures, grouped by gender. 

 

[Insert Figure 3 about here.] 

 

For those groups who showed fairly high consistency on the original measure, the difference 

between this and consistency of the new measure is rather small. This points to ceiling effects 

operating here: for students in selective schools in particular, consistency is so high on the 

original measure already that re-calibration hardly affects this
15

. We can move to a 

substantive interpretation more easily if we agree to a relabeling of HIGH_ABILITY_1 and 

                                                           
15

 Consider X1. If a case has high consistency on this measure this will be because X1 is lower than or equal to 

the outcome or very near to being so. Take the case of X1 being lower than or equal to the outcome. Equation 1 

will return a value of 1 for such cases.  If we move to using X2, then each case X2 will be lower or equal to X1 

on the condition membership score, but there is no scope for this to improve the value returned by Equation 1, 

since it is already 1.  
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HIGH_ABILITY_2 as, respectively, highly able and very highly able. We can then say that 

for students in such schools, being in the set of the “highly able” is a quasi-sufficient 

condition for high achievement. Being “very highly able” does not have any additional 

benefits for the outcome measure we are using
16

, given the favourable circumstances they 

find themselves in
17

. For most other types of students, only being a member of the set “very 

highly able” is quasi-sufficient for high achievement. This illustrates once more the 

importance of configurational context: the effect of conditions such as cognitive ability has to 

be analysed against the background of specific other factors, since their effect at least partly 

depends on this context. 

 

Conclusion 

As well as providing an insight into the effects of changing calibration on the consistency of a 

condition, assessing consistency within configurations can be useful as a complement to 

“standard” truth table based QCA, especially for researchers who are interested in the 

relationship of two particular factors and who want to explore the way the relationship 

changes as the configurational context is changed. In a previous paper, we used this approach 

to explore the degree to which measured ability, within configurations defined by parental 

class, grandparental class and gender, was quasi-necessary and/or quasi-sufficient for certain 

levels of educational achievement. We were able to show, for a cohort of British cases born 

in 1958, that high ability tended to be necessary but not sufficient for cases from lower class 

origins, and sufficient but not necessary for those from higher class origins (Cooper & 

                                                           
16

 Clearly, this outcome could also be recalibrated for some purposes.  

17
 All such conclusions are only as good as the model specified (Steel, 2011). It is possible that these findings 

would be different were we to be able to include measures of ambition, motivation, etc.  
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Glaesser, 2010; Cooper et al., 2012). We also showed that conventional correlational 

procedures failed to model this causal complexity. 

 

Similarly, in this paper, our approach has been useful in exploring, set theoretically, the 

consequences of different levels of ability for different types of cases, with these here being 

configurationally defined in terms of gender, parental education and type of schooling. While 

a lower level of ability is quasi-sufficient for high achievement for the most socially 

advantaged types of case, only a higher level of ability can be considered to be quasi-

sufficient for the less advantaged. This provides an example of the benefits of applying 

distributional criteria to calibration, as discussed in the introduction: given higher cognitive 

ability, on average, in the group of A level students, we were able to use this group as our 

reference sample to calibrate the set “very highly able”, having used the whole group as the 

reference sample to calibrate the set “highly able”. This threw additional light on the way 

ability interacted with other factors in our dataset. 

 

In the present paper, we have shown how markedly calibration can affect analytic results. 

This emphasises the need for us to take a very careful and considered approach when 

calibrating raw variables, bearing in mind the danger of arranging the calibration of the data 

to suit some desired result
18

. A theory might make a claim about “high ability”, but we have 

to be able to judge whether some empirical test is using the term in quite the same way as the 

                                                           
18

 We have noted that stricter calibrations of a condition produce lower fuzzy values and that this leads to 

higher consistency. However, lower fuzzy values mean that there are fewer “good” cases, or instances of a 

condition, all else being equal. A lack of enough good cases can make it difficult to justify claims about 

relations of sufficiency and necessity (Ragin, 2006, p. 295). This must also be borne in mind. 
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theory
19

. Once a factor has been calibrated in a particular way, and given a verbal label, it is 

easy to forget the dependence of the solution on calibration decisions. A similar argument 

applies, of course, to the operationalisation of concepts within conventional approaches such 

as regression analysis. As increasing numbers of social scientists begin to use QCA, it is 

important that they focus as much attention on the role and effects of calibration as they 

would on such operationalisation decisions. 

We have focused here on fuzzy set QCA. Given that crisp set QCA is, in some senses, a 

special case of fuzzy set QCA, we would expect a similar phenomenon to occur
20

. If a 

criterion for set membership of a crisp condition set was made stricter, this set would be 

smaller and therefore, given no changes to the outcome set, the condition set would be likely 

to come closer to being a perfect subset of the outcome set and consistency with sufficiency 

would be higher. 

  

                                                           
19

 Alongside this possible confusion of meaning, there is, as we have just mentioned, also a potential problem 

akin to curve-fitting, where calibrations might be modified purely to raise observed consistency levels. It is also 

the case that a shift to stricter calibration of a fuzzy condition will reduce the number of good cases, i.e. those 

with membership over 0.5, in some configurations in any truth table (while increasing it in others). Furthermore, 

if Ragin’s truth table algorithm is used, which includes all cases with non-zero membership in a configuration in 

tests for sufficiency, this recalibration would tend to push more cases into the paradoxical region for the 

measurement of consistency (see Cooper & Glaesser, 2011, for more detail). 

20
 As far as we are aware, multi-value QCA (Cronqvist, 2009) currently does not allow for less than perfect 

subset relations. Therefore, no consistency measure exists and our argument does not apply. However, in 

principle a parallel argument could be made.  
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Figure 1: Relationship of perfect consistency 
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Figure 2: Two ways of calibrating some condition, consistency with an outcome 
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Figure 3: Consistency within groups, original and new calibration 
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Table 1: Truth table, original calibration of cognitive ability 

 

HIGH_ABILITY_1 MALE 

SCHOOL_ 

SELECTIVE EDU_P number ALEVEL_AV consistency 

0 0 1 0 15 1 0.993 

1 1 1 0 12 1 0.993 

0 0 1 1 48 1 0.985 

1 0 1 0 104 1 0.983 

1 0 1 1 616 1 0.974 

0 1 1 0 6 1 0.955 

0 1 1 1 16 1 0.945 

1 1 1 1 83 1 0.941 

1 0 0 1 517 1 0.908 

1 0 0 0 259 1 0.904 

1 1 0 1 510 0 0.844 

0 0 0 1 246 0 0.840 

1 1 0 0 243 0 0.839 

0 1 0 0 122 0 0.830 

0 0 0 0 212 0 0.823 

0 1 0 1 179 0 0.806 

 

 

  



 

 

Table 2: Truth table, new calibration of cognitive ability 

 

HIGH_ABILITY_2 MALE 

SCHOOL_ 

SELECTIVE EDU_P number ALEVEL_AV consistency 

1 1 1 0 7 1 0.993 

1 0 1 0 77 1 0.988 

0 0 1 0 42 1 0.986 

1 0 1 1 502 1 0.983 

0 0 1 1 162 1 0.976 

1 1 1 1 62 1 0.961 

0 1 1 0 11 1 0.960 

1 0 0 1 317 1 0.948 

1 0 0 0 133 1 0.945 

0 1 1 1 37 1 0.908 

1 1 0 1 355 1 0.891 

1 1 0 0 141 1 0.883 

0 0 0 1 446 0 0.824 

0 0 0 0 338 0 0.806 

0 1 0 0 224 0 0.801 

0 1 0 1 334 0 0.777 

 
  



 

 

Table 3: Consistency within configurations 

Gender School type Parental education n Consistency 

original calibration 

Consistency 

new calibration 

male non-

selective 

O level is highest 

parental qualification 

413 0.721 0.796 

female non-

selective 

O level is highest 

parental qualification 

523 0.808 0.892 

male non-

selective 

A level is highest 

parental qualification 

226 0.794 0.870 

female non-

selective 

A level is highest 

parental qualification 

274 0.857 0.918 

male non-

selective 

one but not the other 

parent has a degree 

249 0.766 0.833 

female non-

selective 

one but not the other 

parent has a degree 

254 0.881 0.930 

male non-

selective 

both parents have 

degrees 

166 0.845 0.896 

female non-

selective 

both parents have 

degrees 

183 0.906 0.948 

      

male selective O level is highest 

parental qualification 

18 0.929 0.946 

female selective O level is highest 

parental qualification 

127 0.925 0.944 

male selective A level is highest 

parental qualification 

17 0.936 0.984 

female selective A level is highest 

parental qualification 

116 0.958 0.975 

male selective one but not the other 

parent has a degree 

36 0.933 0.961 

female selective one but not the other 

parent has a degree 

224 0.943 0.963 

male selective both parents have 

degrees 

46 0.922 0.943 

female selective both parents have 

degrees 

316 0.966 0.978 

 

 

 


