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ABSTRACT

Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming
process in different environments. Binarity is also a key ingredient in stellar population studies, and is a prerequisite for calibrating
the binary evolution channels. In this paper we present an overview of several commonly used methods of pairing individual stars into
binary systems, which we refer to as pairing functions. These pairing functions are frequently used by observers and computational
astronomers, either for their mathematical convenience or because they roughly describe the expected outcome of the star forming
process. We discuss the consequences of each pairing function for interpreting observations and numerical simulations. The binary
fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample.
The mass ratio distribution and binary fraction derived from a binarity survey among a mass-limited sample of targets is thus not
representative of the population as a whole. Neither theory nor observations indicate that random pairing of binary components from
the mass distribution, the simplest pairing function, is realistic. It is more likely that companion stars are formed in a disc around a
star or that a pre-binary core fragments into two binary components. The results of our analysis are important for (i) the interpretation
of the observed mass ratio distribution and binary fraction for a sample of stars; (ii) a range of possible initial condition algorithms
for star cluster simulations; and (iii) how to distinguish between the different star formation scenarios.

Key words. stars: binaries: general – stars: formation – methods: N-body simulations –
Galaxy: open clusters and associations: general

1. Introduction

Observations and simulations suggest that most stars form in
binary systems (e.g. Duquennoy & Mayor 1991; Mason et al.
1998; Goodwin & Kroupa 2005; Kobulnicky & Fryer 2007;
Kouwenhoven et al. 2005, 2007b; Goodwin et al. 2007), and that
a substantial fraction are part of a triple or higher-order system
(e.g. Tokovinin & Smekhov 2002; Correia et al. 2006; Tokovinin
et al. 2006; Hu et al. 2008). Multiplicity is thus a fundamental
property of the star forming process. Detailed knowledge of a
young binary population can be employed to study the outcome
of star formation, consequently the star formation process itself.

Surveys indicate that the properties of the binary population
are a function of the spectral type of the primary star. Practically
all O-type stars (Mason et al. 1998) and B/A-type stars (Shatsky
& Tokovinin 2002; Kobulnicky & Fryer 2007; Kouwenhoven
et al. 2007b) are found in binary or multiple systems. Abt
& Levy (1976) report a multiplicity fraction of 55% among
F3−G2 stars, and in their CORAVEL spectroscopic study of
F7−G9 stars, Duquennoy & Mayor (1991) find a binary fraction
of ∼60%. The binary fraction among M-type stars is 30−40%
(Fischer & Marcy 1992; Leinert et al. 1997; Reid & Gizis 1997).
For late M-type stars and brown dwarfs the binary fraction de-
creases to 10−30% (e.g., Gizis et al. 2003; Close et al. 2003;
Bouy et al. 2003; Burgasser et al. 2003; Siegler et al. 2005;
Ahmic et al. 2007; Maxted et al. 2008; Joergens 2008).

In this paper we discuss in detail several methods of pair-
ing individual stars into binary stars. We refer to the latter algo-
rithms as “pairing functions”. Several of these have a physical
motivation, others are discussed because of their mathematical
simplicity. All these pairing functions have in common that they
are frequently used in the literature. The main goal of this paper
is to explain the consequences of adopting a particular pairing
function when doing a numerical simulation, or when interpret-
ing observations. A good understanding of the consequences of
each pairing algorithm for the binary population is important for

– The interpretation of observations. Are the measured prop-
erties (e.g. mass ratio distribution and binary fraction) for a
certain sample representative of the population as a whole?
What is the role of selection effects, and how can the differ-
ent pairing functions be distinguished?

– Initial conditions for simulations. In N-body simulations,
such as STARLAB (e.g., Portegies Zwart et al. 2001) and
NBODY6 (e.g., Aarseth 1999), a mass ratio distribution in-
dependent of primary mass is often adopted. What are the
consequences of this approach?

– Star formation. Which pairing functions are expected from
the different star forming scenarios? What numerical sim-
ulations of clustered star formation (e.g., Bate et al. 2003;
Bate 2008) predict? Do we expect random pairing from the
initial mass function? Which observations are necessary to
be able to distinguish between these scenarios?
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This paper is organised as follows. In Sect. 2 we introduce the
terminology used and discuss our assumptions. In Sect. 3 we dis-
cuss the mass distribution, and in Sect. 4 the mass ratio distribu-
tion. We briefly describe the origin of the pairing between binary
stars in Sect. 5. The major part of this paper is Sect. 6, where we
discuss the different binary populations resulting from the choice
of the mass distribution and pairing function. The specific dif-
ferences are discussed in detail in Sect. 7, and the dependence
on the generating properties in Sect. 8. Observational complica-
tions and a strategy to recover the pairing function are described
in Sect. 9. Finally, we summarise our results in Sect. 10.

2. Method and terminology

We study the differences in the various methods of pairing indi-
vidual stars into binary systems by analysing numerically simu-
lated binary populations. For each binary system, we refer to the
most massive component M1 as the primary star, and the least
massive component M2 as the companion star. Our adopted def-
inition is purely based on the current mass of the components,
i.e., irrespective of their relative luminosity or initial mass. We
define the mass ratio as q ≡ M2/M1, so that 0 < q ≤ 1. The
total mass is denoted MT = M1 + M2 for a binary system, and
MT = MS for a single star with mass MS. In several cases, we
construct binary systems from star forming cores of mass M with
star forming efficiency ǫ, so that the total mass of the resulting
objects is MT = ǫMC.

In our simulations each star is given a mass. A subset of the
stars is assigned a companion, the other stars remain single stars.
The companion is given a mass according to a pairing algorithm.
We refer to the algorithm that is used to combine individual stars
into binary systems as the pairing function. The pairing function
of a binary population may for example be random pairing of
both companions from the mass distribution. In the particular
case of random pairing, primary and companion are swapped, if
necessary, so that the primary is the most massive star.

Depending on which pairing function is used, the mass of the
primary star, and in several cases the companion star, is drawn
from a mass distribution fM(M). We refer to fM(M) as the gen-
erating mass distribution. We denote the resulting mass distri-
butions for primary stars, companion stars, systems, and single
stars with fM1 (M), fM2 (M), fMT (M), and fMS (M), respectively.
Note that the distributions over primary and companion mass
in a stellar grouping are never independent, fM1 ,M2(M1,M2) �
fM1 (M1) fM2 (M2), as by definition M1 ≥ M2. The resulting mass
distribution for all single and primary stars is denoted with
fM1,S (M), and the mass distribution for all individual objects (i.e.,
singles, primaries and companions), is denoted with fall(M). The
distribution fall(M) that is present immediately after star forma-
tion is called the initial mass function (IMF). Note that fall(M)
is unequal to the generating mass distribution fM(M), except in
the random pairing case (see Sect. 6.1).

For several pairing functions we generate companions by
drawing the mass ratio for a binary from a (generating) mass
ratio distribution fq(q) Depending on the additional constraints
specific for each pairing function, the resulting overall mass ra-
tio distribution fq,all(q) may or may not be equal to fq(q). The
resulting mass ratio distribution may or may not be a function
of primary spectral type. We refer to the specific mass ratio dis-
tribution for all binaries with a primary of spectral type A or B,
for example, with fq,AB(q). Throughout this paper we will mostly
use the expression fq;M1 (q) for the specific mass ratio distribution
for an ensemble of binaries with a limited primary mass range.

A common expression to quantify the multiplicity of a stellar
population is the multiplicity fraction B (which is often referred
to as the binary fraction), defined as

B = B + T + . . .

S + B + T + . . .
(1)

where S is the number of single stars, B the number of binaries,
and T the number of triple systems (e.g., Reipurth & Zinnecker
1993). Throughout this paper we consider only single and bi-
nary stars, and do not consider higher-order systems, so that
B = B/(S + B). The number of systems is given by N = S + B
and the total number of (individual) stars is S + 2B = N(B + 1).

Each pairing algorithm is provided with a (generating) bi-
nary fraction B, which describes the fraction of stars that is
assigned a preliminary companion star. For most pairing func-
tions this preliminary companion is accepted as such, so that the
overall binary fraction Ball equal to the generating value B. For
several pairing functions, however, additional constraints are set
to the properties of the companion. For example, when a pair-
ing function generates a Jupiter-mass companion around a solar-
mass star, the “primary” is usually considered to be a “single”
star. For such pairing functions, the resulting overall binary frac-
tion Ball is lower than B. We denote the specific binary fraction
for the set of all single stars of spectral type A/B and binary sys-
tems with primary spectral type A/B as BAB.

During our analysis we make several assumptions for rea-
sons of clarity; our models are simplifications of reality. Our re-
sults are not limited by these assumptions, and the models can
easily be extended. Our main goal is to illustrate the implications
of adopting a particular pairing function.

We assume that no triples or higher-order systems are
present. Although observations have shown that a significant
fraction (>∼15%) of the stars are part of a multiple system
(Tokovinin & Smekhov 2002; Correia et al. 2006; Tokovinin
et al. 2006; Eggleton & Tokovinin 2008; Hu et al. 2008), the
properties of higher-order systems are not well understood.
Observational selection effects complicate the derivation of the
properties of these systems significantly. Higher-order systems
are often ignored in N-body simulations due to computational
complications (e.g., van den Berk et al. 2007). A full understand-
ing of star formation, however, ultimately requires a full knowl-
edge of the formation and evolution of higher-order systems.

In our models the generating binary fraction for the popu-
lation can be described with a single value B. For most pairing
functions this results in a specific binary fraction BM1 (M1) that
is independent of primary mass M1. However, in Sect. 6 we de-
scribe several cases where, as a result of the pairing properties,
the binary fraction is a function of primary mass, even though
this dependency is not included explicitly.

Selection effects play a major role in the interpretation of
binary star observations. A detailed description of the selection
effects, such as in Kouwenhoven et al. (2007b), is necessary to
derive the pairing function, the mass ratio distribution and the
binary fraction from observations. A major bias is generally in-
troduced by studying the binary population in a certain primary
mass range; we describe this effect in detail for the different pair-
ing functions. Throughout most of this paper we ignore the other
selection effects.

3. The mass distribution

The mass distribution fM(M) defines the spectrum of masses
in a stellar population, and is usually expressed as a single-
component power law (Salpeter 1955), a multi-component



M. B. N. Kouwenhoven et al.: Exploring the consequences of pairing algorithms for binary stars 981

    

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n

0.01 0.10 1.00 10.00
Mass (Msun)

10-4

10-3

10-2

10-1

100

P
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n

Fig. 1. The cumulative mass distributions (top) and mass distributions
(bottom) derived by Kroupa (Eq. (2); solid curve) and Salpeter (Eq. (3);
dashed curve). The masses at which the slope of the Kroupa mass dis-
tribution changes are indicated with the vertical dotted lines.

Table 1. The distribution of stars over main-sequence spectral type for
the Kroupa and Salpeter mass distributions (BD = brown dwarfs).

SpT Mass range Kroupa Salpeter
(M⊙) FN (%) FM (%) FN (%) FM (%)

B 3.0−20 1.45 24.76 0.10 8.66
A 1.5−3.0 2.28 13.05 0.18 5.31
F 1.0−1.5 2.72 9.15 0.22 3.86
G 0.8−1.0 2.22 5.52 0.18 2.30
K 0.5−0.8 7.45 12.92 0.61 5.45
M 0.08−0.5 51.48 30.28 14.09 32.07
BD 0.02−0.08 32.41 4.33 84.61 42.34
All 0.02−20 100.00 100.00 100.00 100.00

power law (e.g., Kroupa 2001) or a Gaussian distribution (e.g.,
Chabrier 2003). In our analysis we consider two mass distribu-
tions: the Kroupa mass distribution and the Salpeter mass dis-
tribution. The main difference between these is the presence or
absence of a turnover in the low-mass regime. The mass distri-
bution derived by Kroupa (2001) is given by

fKroupa(M) ∝

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M−0.3 for 0.01 ≤ M/ M⊙ < 0.08
M−1.3 for 0.08 ≤ M/ M⊙ < 0.5
M−2.3 for 0.5 ≤ M/ M⊙ < ∞

. (2)

The classical Salpeter mass distribution (Salpeter 1955) is
given by

fSalpeter(M) ∝ M−2.35 M >∼ 1 M⊙. (3)

The Salpeter mass distribution is derived for intermediate-mass
stars in the Galactic field. Although it is known that the Salpeter
mass distribution is incorrect for masses below ∼1 M⊙, we use
this mass distribution for comparison, to illustrate the effect of
the slope of the mass distribution for low-mass stars. Note that,
although, Eq. (2) introduces a turnover in Fig. 1, which is loga-
rithmically plotted, there is no real turnover in the mass distribu-
tion (see also Appendix A.1.3).

Table 1 lists the fraction of stars of a given spectral type
for the Kroupa and Salpeter mass distributions for stars in the
mass range 0.02 M⊙ ≤ M ≤ 20 M⊙. For both distributions we
list the fraction FN of objects and the fraction FM of the total

mass in each mass range. The corresponding probability dis-

tributions fM(M) and cumulative distributions
∫ M

0
fM(M′)dM′

are shown in Fig. 1. Most young stellar populations in our
Galaxy are described accurately with the Kroupa mass distri-
bution (Bonnell et al. 2007).

In our simulations we draw objects from the mass distri-
bution in the range 0.02 M⊙ ≤ M ≤ 20 M⊙, i.e., stellar
and substellar-mass objects. Objects less massive than Mmin =

0.02 M⊙ are considered to be planets, and form in a different
way than stars or brown dwarfs (see, e.g., Pollack et al. 1996;
Kouwenhoven et al. 2007a). The absolute maximum stellar mass
is of order Mmax,abs ≈ 150 M⊙ (Zinnecker & Yorke 2007, and
references therein). The most massive star in a cluster may well
depend on the total mass of the star cluster (Reddish 1978;
Vanbeveren 1982; Weidner & Kroupa 2006). Stars more massive
than 20 M⊙, however, are extremely rare, are very short-lived,
and possibly even form by a different mechanism than most other
stars (e.g., Zinnecker & Yorke 2007).

The mass distribution of Kroupa (2001) is for all stars in
a population, including single stars, primaries and companions.
We note that choosing primaries from an IMF and then choosing
secondaries from a mass ratio distribution (Sect. 6.3) will not re-
cover the original IMF. Thus the primary mass distribution func-
tion cannot be exactly the same as the desired IMF (see Sect. 7.1;
Mal’Kov & Zinnecker 2001; Goodwin et al. 2008). Technically,
the mass distribution should therefore not be used to generate,
for example, a primary mass distribution. For simplicity, how-
ever, we adopt the Kroupa mass distribution as the generating
mass distribution for each pairing function. Ideally, one should
iteratively determine the generating mass distribution by com-
paring the outcome of the pairing process with the Kroupa mass
distribution. As this is computationally a very expensive exer-
cise, we skip the iteration, and simply adopt the Kroupa mass
distribution as the generating mass distribution. For a proper
analysis of real observations, one should keep this issue in mind.

4. The mass ratio distribution

The mass ratio distribution describes the distribution over mass
ratio q = M2/M1 for a population of binary systems. The mass
ratio distribution for binary systems has been studied thoroughly
over the last decades (see, e.g., Zinnecker 1984; Hogeveen
1992a; Mazeh et al. 2003; Halbwachs et al. 2003). In this pa-
per we distinguish between three different types of mass ratio
distributions. The generating mass ratio distribution is an input
distribution that is used by most pairing function algorithms to
generate binaries, although some pairing functions (e.g., random
pairing) do not require a generating mass ratio distribution. Note
that the mass ratio distribution is not the same as the pairing
function; the mass ratio distribution is a property of several (not
all) pairing functions; see Sect. 6 for details. The overall mass
ratio distribution is the mass ratio distribution resulting from the
pairing mechanism, for all binaries in the population. The spe-
cific mass ratio distribution is that for a sample of stars with pri-
maries in a given mass range. The latter is measured in observa-
tions, as a binarity survey is in most cases focused on a particular
set of targets with given spectral types.

The (specific) mass ratio distribution is usually obtained by a
fit to the observed mass ratio distribution of the sample. The ob-
served distribution is often described with a simple power-law:

fγq
(q) ∝ qγq for q0 < q ≤ 1, (4)

where the exponent γq is fitted (e.g. Hogeveen 1992b;
Shatsky & Tokovinin 2002; Kobulnicky & Fryer 2007;
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Kouwenhoven et al. 2007b). Distributions with γq = 0 are flat,
while those with γq < 0 and γq > 0 are falling and rising with
increasing q, respectively. Usually the adopted minimum value
for the fit q0 is the value of q below which the observations be-
come incomplete due to selection effects. For distributions with
γq ≤ −1, a minimum value q0 > 0 is necessary such that fq(q)
can be normalised. Sometimes the necessity of q0 > 0 is avoided
by fitting a mass ratio distribution of the form

fΓq
(q) ∝ (1 + q)Γq for 0 < q ≤ 1 (5)

to the data (e.g. Kuiper 1935; van Rensbergen et al. 2006). This
distribution is more commonly used to describe the mass ratio
distribution of high-mass spectroscopic binaries, while the dis-
tribution in Eq. (4) is often used for visual binaries. As Eqs. (4)
and (5) show a similar behaviour (both are either falling, flat, or
rising), we will only consider the distribution of Eq. (4).

Alternatively, to allow for a mass ratio distribution with a
peak in the range 0 < q ≤ 1, we also consider the Gaussian mass
ratio distribution:

fGauss(q) ∝ exp

{

−
(q − µq)2

2σq

}

for 0 < q ≤ 1, (6)

where µq and σq are free parameters, corresponding to the mean
and standard deviation of a Gaussian distribution without the im-
posed limits on q. Models with µq < 0 and µq > 1 show a distri-
bution fGauss(q) with an exclusively negative and positive slope,
respectively. In the case where µq ≪ 0 and µq ≫ 1, the distri-
bution may be approximated by a power-law (Eq. (4)). Models
with σq ≫ 0.5 can be approximated with a flat mass ratio dis-
tribution. Note that the values of µq and σq do not necessarily
reflect physical properties. A value µq ≪ 0, for example, merely
means that the mass ratio distribution in the interval 0 < q ≤ 1
can be described by Eq. (6) in this interval. A Gaussian mass
ratio distributions was reported by, Duquennoy & Mayor (1991)
for solar-type stars in the solar neighbourhood, who find, based
on the work on the initial mass function by Kroupa et al. (1990),
µq = 0.23 and σq = 0.42.

For our default model we adopt a (generating) mass ratio
distribution of the form fq(q) = 1 with 0 < q ≤ 1, the flat mass
ratio distribution.

5. The origin of the pairing function

We define the pairing function as the algorithm which is used to
pair individual stars into binary systems. A well-known pairing
function is random pairing from the mass distribution. Others
include, for example, a fixed mass ratio distribution. The pair-
ing of binary components in a stellar population results from the
combined effect of star formation, stellar evolution, binary evo-
lution, and dynamical interactions. By studying the pairing of
binary stars, the contributions of the latter three effects can be
evaluated, and an estimate for the primordial binary population
can be obtained. This primordial pairing function allows us to
constrain the process of star formation.

It is worth considering what pairing we might expect from
the actual star formation process, as opposed to the various the-
oretical constructs we describe in this paper.

Often random pairing has been used to construct binary
systems for various models. Random pairing has the obvious
advantage that the chosen IMF is, by design, automatically re-
covered. However, there is no good theoretical reason to sup-
pose that the star formation process would produce a randomly

paired distribution. Furthermore, random pairing is ruled out ob-
servationally. The observed mass ratio distribution among inter-
mediate mass stars (Shatsky & Tokovinin 2002; Kouwenhoven
et al. 2005, 2007a,b) and brown dwarfs (Kraus et al. 2008) in the
nearby OB association Scorpius-Centaurus have indicated that
the binary components are not randomly paired from the mass
distribution. The same result is found for the Cygnus OB2 asso-
ciation (Kobulnicky & Fryer 2007), and for F5-K5 stars in the
solar neighbourhood (Metchev & Hillenbrand 2008). Random
pairing is further excluded by the high prevalence of massive
binaries with a mass ratio close to unity, often referred to as
the “twin peak” in the mass ratio distribution (Lucy & Ricco
1979; Tokovinin 2000; García & Mermilliod 2001; Pinsonneault
& Stanek 2006; Lucy 2006; Söderhjelm 2007, see also Sect. 9.1).

Simulations have shown that it is impossible to form signifi-
cant numbers of binary systems from an initially single star dis-
tribution (Kroupa 1995a), therefore stars in binary systems must
have predominantly formed in binary systems. Observations of
pre-main sequence stars also suggest that they have a higher mul-
tiplicity than field stars (at least for>1 M⊙), suggesting that most
stars form in binary (or higher-order) systems (e.g., Goodwin &
Kroupa 2005). It is supposed that a primordial population with
a multiplicity of almost 100% evolves into a field-like binary
population through (a) the decay of higher-order multiple sys-
tems (e.g., Goodwin & Kroupa 2005), and (b) the dynamical de-
struction of binaries in binary-binary encounters in clusters (e.g.,
Kroupa 1995a,c). Thus, the currently observed binary population
is a complex mixture of primordial binaries (i.e. in the same dy-
namical state as when they formed), and dynamically evolved
binaries (which may have different characteristics, or even com-
panions to their initial state).

Simulations of binary star formation have comprehensively
failed to produce systems that match observations, even when
the dynamical evolution of the initial states is accounted for (see
Goodwin et al. 2007, and references therein). However, hydro-
dynamic simulations of star formation suggest that companions
usually form by the fragmentation of massive, disc-like circum-
stellar accretion regions around young stars (see Goodwin et al.
2007, and references therein).

In such a scenario for companion formation it would be ex-
pected that the secondary should have a roughly similar (i.e.
within a factor of three or four) mass to the primary, especially at
small separations. A massive enough region to fragment is only
present during the earliest (e.g. class 0/I) phases of star forma-
tion before the star(s) have accreted the majority of their natal
core. Thus, the secondary will be present whilst a large reser-
voir of gas is also present around it. In the case of a star that
will eventually grow to be (for example) 5 M⊙ the secondary
will form whilst the primary is only O(1 M⊙) and several so-
lar masses of gas are present in the circumstellar environment.
A secondary will presumably form with an initial mass close
to the opacity limit for fragmentation, ∼10−2 M⊙. However, it
is difficult to imagine a scenario in which the secondary fails
to accrete at least some of the circumstellar material, especially
as the secondary will form with angular momentum similar to
that of the accretion region, and so will be more able to accrete
material (see Goodwin et al. 2007, and references therein; also
Delgado Donate & Clarke 2005). Therefore, the secondary mass
is expected to be a reasonably high fraction of the primary mass.
In particular, it should be difficult for a companion to a B-star to
remain at brown dwarf or M-star mass due to the large amount
of material available for accretion. In particular, we would ex-
pect a rough correlation between separation and mass ratio, with
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closer companions being generally more massive as is observed
(e.g. Mazeh et al. 1992, for field G-dwarfs).

In addition, dynamical evolution in clusters will act to de-
stroy the most weakly bound systems (i.e. the widest and lowest-
mass companions), further biasing the mass ratio distributions
away from small-q.

We would therefore argue that random pairing over the full
mass range is the last type of pairing that would be expected
from the star formation process (see, however, Sect. 6.1.1).

6. Analysis of frequently used pairing functions

There are many ways to obtain a population of binary systems
from a mass distribution fM(M). We analyse the most frequently
used algorithms in the sections below. In general, the masses of
the members of a stellar grouping are drawn from the mass dis-
tribution. A fraction of the stars is assigned a companion star
(either from the mass distribution, or using a mass ratio distri-
bution), or the mass is split into a primary and companion star.
Four commonly used mechanisms are the following:

– Random pairing (RP). The masses of both binary compo-
nents are randomly drawn from the mass distribution fM(M).
For each system, the most massive component is labelled
“primary star”, the other component “companion star” (see
Sect. 6.1).

– Primary-constrained random pairing (PCRP). The primary
mass M1 is drawn from the mass distribution fM(M), and
the companion mass M2 is chosen from the same mass dis-
tribution, with the additional constraint that M2 ≤ M1 (see
Sect. 6.2).

– Primary-constrained pairing (PCP). The primary mass is
drawn from the mass distribution fM(M). The companion
mass is then determined by a mass ratio that is drawn from a
distribution fq(q), with 0 < q ≤ 1 (see below).

– Split-core pairing (SCP). The total mass of the binary is
drawn from the mass distribution fM(M). The mass ratio
of the binary is then determined by a mass ratio distribu-
tion which is drawn from fq(q) with 0 < q ≤ 1. Finally,
the primary mass M1 = M(1 + q)−1 and companion mass
M2 = M(1 + q−1)−1 are determined (see below).

In the case of PCP and SCP there is another complication, which
occurs if M2 = qM1 < M2,min. In this case, the mass ratio dis-
tribution generates a companion mass smaller than the permit-
ted value M2,min, for example the deuterium-burning limit, while
such objects are usually not considered as companions in a bi-
nary system. There are three straightforward choices on how to
handle such companions:

– Accept all companions (PCP-I/SCP-I). All companions are
accepted, regardless of their mass. The resulting mass ratio
distribution obtained with this method is equal to the gener-
ating mass ratio distribution (see Sects. 6.3.1 and 6.4.1).

– Reject low-mass companions (PCP-II/SCP-II). If
M2,min/M1,max < qmin, a fraction of the companions
has M2 < M2,min. All companions with M2 < M2,min are
rejected, and the corresponding “primaries” are classified as
single stars (see Sects. 6.3.2, 6.4.2, and below).

– Redraw low-mass companions (PCP-III/SCP-III). For all bi-
naries with a companion mass M2 < M2,min the mass ratio is
redrawn from fq(q). This procedure is repeated until M2 ≥
M2,min. This method is equivalent to drawing a mass ratio
from the distribution fq(q) with limits M2,min/M1 ≤ q ≤ 1
(see Sects. 6.3.3, 6.4.3, and below).

It is possible in pairing function SCP-II that the resulting single
star mass is smaller than Mmin, and for SCP-III the splitting up
is not possible if the binary system mass is smaller than 2Mmin.
In these cases there are three possibilities of dealing with this
problem:

– Accept all singles/primaries (SCP-IIa/SCP-IIIa). If a pairing
mechanism produces a single or primary star less massive
than M2,min, it is accepted, and included in the model.

– Reject low-mass singles/primaries (SCP-IIb/SCP-IIIb). If a
pairing mechanism produces a single or primary star less
massive than M2,min, it is rejected and removed from the
model.

– Do not split-up low-mass cores (SCP-IIc/SCP-IIIc). Cores
with a mass MT < 2Mmin are not split up; these become
single stars of mass MS = MT.

For reasons of simplicity and clarity, we use a generating mass
distribution with a minimum value of 2Mmin for the SCP pairing
functions, and adopt a minimum mass Mmin for the companions.
Implicitly, we therefore only consider the variants SCP-IIb and
SCP-IIIb in this paper. From hereon, we use “SCP-II” and “SCP-
III” to refer to SCP-IIb and SCP-IIIb, respectively.

The above-mentioned pairing functions (RP, PCRP, and the
three variations of PCP and SCP) are described in detail in
the subsections below, while their differences are discussed in
Sect. 7. Unless stated otherwise, we have adopted a Kroupa gen-
erating mass distribution, a flat generating mass ratio distribution
(where applicable), and a generating binary fraction B of 100%
(see Sect. 8 for a discussion of these assumptions). The main
differences between the (renormalised) resulting mass ratio dis-
tributions are show in Fig. 2, where the top panel represents the
overall mass ratio distribution. The middle and bottom panels
represent the specific mass ratio distributions fq;M1 (q) (the sub-
script M1 indicates a restricted primary mass range) for binaries
with high-mass primaries and low-mass primaries, respectively.
Note that the derived mass ratio distribution for a sample of stars
does not only depend strongly on the pairing function, but also
on the targeted sample of stars. For the same reason, the (renor-
malised) companion mass distribution, shown in Fig. 3, depends
strongly on the primary mass range. A two-dimensional version
of Fig. 2 is shown in Fig. 4. In the sections below we discuss in
detail the pairing functions and the above-mentioned figures.

Note that the choices made in this paper do not imply that
stellar populations indeed have these properties. It is not known
how binary stars are formed, so that no robust predictions of
their properties can be made. Different binary formation mech-
anisms may produce different mass ratio distributions, possibly
varying with primary mass, period, or eccentricity (e.g. Heggie
1975; Krumholz & Thompson 2007; Zinnecker & Yorke 2007).
In addition, dynamical evolution after the formation process may
alter the binary fraction and the mass and mass ratio distribu-
tions (e.g., Hills 1975; Heggie 1975), possibly as a function of
environment (see, e.g., Kroupa et al. 1999; Preibisch et al. 2003;
Duchêne et al. 2004; Köhler et al. 2006; Reipurth et al. 2007;
Gaburov et al. 2008, and Sect. 9.2). Other pairing functions sug-
gested in literature include random pairing over a restricted mass
range (Kroupa 1995a,c,b; Kroupa et al. 2003; Thies & Kroupa
2007, see also Sect. 6.1.1), “special pairing” (Weidner et al.
2008), ordered pairing (Oh et al, in prep.), pairing resulting from
the dissolution of small-N clusters (Clarke 1996b), “two-step”
pairing (Durisen et al. 2001), binary formation from ring frag-
mentation (Hubber & Whitworth 2005), and numerous others.
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Fig. 2. The (renormalised) mass ratio distributions resulting from the different pairing functions. From top to bottom, the panels show the overall
mass ratio distribution (i.e., for all binaries), the mass ratio distribution for binaries with 1.5 M⊙ ≤ M1 ≤ 20 M⊙, and for binaries with 0.02 M⊙ ≤
M1 ≤ 0.08 M⊙. The models consist of N = S + B = 5 × 105 particles and all have a generating binary fraction of B = 100%. For each model
we adopt a Kroupa generating mass distribution in the mass range 0.02−20 M⊙, and, when applicable, a flat generating mass ratio distribution
fq(q) = 1 (0 < q ≤ 1). This figure illustrates that each pairing function results in a different overall or specific mass ratio distribution (see also
Figs. 8 and 7).
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Fig. 3. The (renormalised) companion mass distributions resulting from the different pairing functions, for the models shown in Fig. 2. The
curves indicate the distribution for all binaries (dashed curves), for binaries with 1.5 M⊙ ≤ M1 ≤ 20 M⊙ (dotted curves) and for binaries with
0.02 M⊙ ≤ M1 ≤ 0.08 M⊙ (solid curves).

6.1. Pairing function RP (random pairing)

In the case of random pairing (RP), the primary and companion
mass are both independently drawn from fM(M), and swapped,
if necessary, so that the most massive star is the primary. As a re-
sult of this swapping, neither the resulting primary mass distribu-
tion fM1 (M1), nor the companion mass distribution fM2 (M2), nor
the system mass distribution fMT (MT) is equal to the generating
mass distribution fM(M); see, e.g., Warner (1961); Tout (1991);
Mal’Kov & Zinnecker (2001). On the other hand, the mass distri-
bution of all stars fall(M), i.e., all singles, primaries and compan-
ions, is equal to fM(M). Mal’Kov & Zinnecker (2001) derived
general expressions for the distribution over primary star mass
M1, companion star mass M2, and system mass MT = M1 + M2,
respectively:

fM1 (M1) = 2 fM(M1)
∫ M1

c
fM(M) dM (7)

fM2 (M2) = 2 fM(M2)
∫ d

M2

fM(M) dM (8)

fMT (MT) = 2
∫ MT−c

c
fM(M) fM(MT − M) dM. (9)

Below we calculate the mass ratio distributions resulting from
random pairing. Let the generating mass distribution f be de-
fined on the interval [c, d]. For random pairing we draw two stars
with masses x and y from f , and swap, if necessary, so that the
primary is the most massive star. The resulting mass ratio dis-
tribution is bounded by 0 < c/d ≤ q ≤ 1. To derive the overall

mass ratio distribution we follow the appendix of Piskunov &
Mal’Kov (1991) and derive fq(q) from its cumulative distribu-
tion function Fq(q) = P(y/x ≤ q):

Fq(q) =
�

S

frp(x, y)dxdy =
∫ d

c/q

∫ qx

c
2 f (x) f (y)dydx, (10)

where the factor 2 accounts for the fact that the pairs of masses
are swapped in order to ensure that y ≤ x. The integration do-
main is shown in the left-hand panel of Fig. 5. The probability
density fq for q (i.e., the overall mass ratio distribution) is then
given by the derivative of Eq. (10).

For observational reasons, surveys for binarity are often re-
stricted to a certain range of primary spectral types. To derive the
effects of the selection on primary mass, the derivation of fq(q)
again proceeds via the cumulative distribution function, which is
now given by:

Fq(q) = P(y/x ≤ q|x1 ≤ x ≤ x2) ∝
�

S ′

frp(x, y)dxdy, (11)

where the primary mass range is restricted to the range [x1, x2].
The integration domain S ′ is as shown in Fig. 5. The inte-
gration limits now depend on whether q is larger or smaller
than c/x1. For q ≤ c/x1 the integration domain S ′ is given by
c/q ≤ x ≤ x2 ∧ c ≤ y ≤ qx (middle panel in Fig. 5), while
for q > c/x1 S ′ is defined by x1 ≤ x ≤ x2 ∧ c ≤ y ≤ qx (right
panel in Fig. 5). The minimum possible value of q is c/x2, so that
F(q) = 0 for q < c/x2. The general expression for the cumulative

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=3
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Fig. 5. The integration domains for pairing functions RP and PCRP. Left: the integration domain in the (x, y) plane (where x and y are the primary
and companion mass, respectively) for the determination of the cumulative distribution of q = y/x. The lower and upper limits on the generating
mass distribution are given by c and d, which implies that c/d ≤ q ≤ 1. The integration domain S is given by: c/q ≤ x ≤ d ∧ c ≤ y ≤ qx.
Middle and right: same, for the case that the primary mass x is restricted by x1 < x < x2. If q ≤ c/x1 the integration domain S ′ is given by
c/q ≤ x ≤ x2 ∧ c ≤ y ≤ qx (middle panel), while for q > c/x1, the domain S ′ is defined by x1 ≤ x ≤ x2 ∧ c ≤ y ≤ qx (right panel).

mass ratio distribution for a sample of binaries with a restricted
primary mass range is given in Appendix A.1. The dependence
of the mass ratio distribution on the primary mass range for RP
is shown in Fig. 6 for the Kroupa (top) and Salpeter (bottom)
generating mass distributions. Note that each mass ratio distri-
bution is renormalised such that its maximum is unity. Note the
differences between the overall mass ratio distributions fq,all(q)
in the left-hand panels of Fig. 6. The Salpeter mass distribution
results in a peak in the overall mass ratio distribution at q ≈ 1.
The Kroupa mass distribution, on the other hand, is on average
much shallower, and therefore produces a peak at small q (cf. the
solid lines in the top panels of Fig. A.1).

In the special case where the mass distribution is of the form
fM(M) ∝ M−α with α � 1, the overall mass ratio distribution is
given by

fq(q) =
γ

(1 − (c/d)γ)2

(

qα−2 − (c/d)2γq−α
)

, (12)

where γ = α−1. Realistic mass distributions cover a broad range
of masses, i.e., c ≪ d, for which the expression simplifies to:

fq(q) ≈
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(α − 1)qα−2 α > 1

(1 − α)q−α α < 1
. (13)

(Piskunov & Mal’Kov 1991). For distributions with α ≈ 1, the
above expression is not a good approximation, and Eq. (12)
should be used. In the case of a power-law mass ratio distri-
bution with c ≪ d, the overall mass ratio distribution result-
ing from random pairing can thus be described by a simple
power-law. Note that Eq. (13) does not depend on c or d; see
also the bottom-left panel in Fig. 6. For a Salpeter mass dis-
tribution (α = 2.35), for example, the resulting overall mass
ratio distribution is fq,all(q) ∝ q0.35. The general expression
for fq when the primary mass range is restricted to the range
[x1, x2] is given in Appendix A.1. For a sample of binaries with a

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=5
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narrow primary mass range (x1 ≈ x2), fq(q) is proportional to
q−α for c/x1 ≤ q ≤ 1 and zero otherwise:

fq;M1 (q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 q < c/x1

γ

1−(c/x1)γ q−α c/x1 ≤ q ≤ 1
. (14)

Random pairing from a mass distribution that is approximately
a single power-law (e.g. the Kroupa IMF) thus generally results
in a three-segment mass ratio distribution, which is zero for q <∼
c/x2 and exhibits a peak at q ≈ c/x1 (Eq. (A.15)). As already
noted by Zinnecker (1984), a sample of binaries with high-mass
primaries thus shows a peak in fq(q) at small q, while a sample
with low-mass primaries peaks at large q.

For pairing function RP the overall binary fraction Ball is
equal to the generating binary fraction B. The specific binary
fraction BM1 (M1), however, depends on the surveyed primary
mass range: the larger the primary mass, the higher the spe-
cific binary fraction (unless B = 100%). This can be under-
stood as follows. For random pairing, the mass of the primary
stars is drawn from the mass distribution. A fraction B of the
primaries is assigned a companion, and primary and companion
are swapped, if necessary, so that the primary is the most massive

star. This swapping leads to an increased number of binaries with
a high-mass primary, and a decreased number of binaries with a
low-mass primary, and hence a mass-dependent binary fraction.
The relation between specific binary fraction and primary mass
for random pairing is given by

BM1 (M1) =

(

B−1 − 1
2FM(M1)

+ 1

)−1

, (15)

where FM(M1) is the cumulative mass distribution evaluated at
mass M1 (see Appendix A.1.2). Figure 7 shows the binary frac-
tion as a function of primary mass for several binary fractions,
for the Salpeter mass distribution. Clearly, we haveBM1 (M1) ≡ 1
whenB = 100%,BM1 (M1) ≡ 0 whenB = 0%, andBM1 (Mmin) =
0. Systems with M1 > 〈M〉 have BM1 (M1) ≥ B, while systems
with M1 < 〈M〉 have BM1 (M1) ≤ B (see Appendix A.1.2 for
a full derivation). The magnitude of this difference depends on
the shape of the mass distribution and the generating binary frac-
tion. Note that the variation of binary fraction with primary mass
is purely a result of the choice of pairing function; no explicit
variation of binary fraction with primary mass is included in the
simulations.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=7
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6.1.1. Restricted random pairing (RRP)

Restricted random pairing (RRP) is very similar to random pair-
ing (RP) as described in Sect. 6.1, with the difference that the
binary components are now drawn from a limited mass range.
All properties derived in Sect. 6.1 are thus applicable to the re-
sulting binary sub-population resulting from RRP. However, the
nature of RRP implies the presence of one or more other sub-
populations that have a formed via another process. The other
sub-populations could have alternative pairing function, such as
RRP with different lower and upper mass limits, or a completely
different pairing function.

Kroupa (1995a,c,b) finds that observations of binary sys-
tems are consistent with the population being born with pairing
function RRP in the stellar mass range, prior to the effects of
pre-main sequence eigenevolution. Further motivated by the dif-
ference between the observed mass ratio distribution and semi-
major axis distribution of binary systems with a stellar primary
and those with a brown dwarf binary (e.g., Bouy et al. 2003;
Burgasser et al. 2003; Martín et al. 2003; Close et al. 2003), this
implies that the brown dwarf population has formed with a dif-
ferent process (Kroupa et al. 2003; Thies & Kroupa 2007, 2008).
Their proposed model with stellar and substellar sub-populations
is further supported by the existence of the brown dwarf desert
among solar-type stars (see Sect. 9.1).

6.2. Pairing function PCRP (primary-constrained random
pairing)

For primary-constrained random pairing (PCRP), each primary
mass M1 is drawn from the mass distribution fM(M) with limits
c ≤ M ≤ d. The companion mass M2 is also drawn from the
same mass distribution, but with the additional constraint that
M2 ≤ M1. The limits on the resulting mass ratio distribution are
equivalent to those of random pairing 0 ≤ c/d ≤ q ≤ 1. Writing
the primary mass distribution as f (x) and the re-normalised com-
panion mass distribution as f ′(y), the expression for the joint
probability distribution is fpcrp(x, y) = fx(x) f ′y(y), which is nor-
malised to unity due to the re-normalisation of fy(y). To derive
the overall mass distribution fq one can proceed as for the RP
case (see Sect. 6.1). The integration domain S is again as shown
in Fig. 5, and

F(q) = P(y/x ≤ q) =
∫ d

c/q

∫ qx

c
f (x) f ′(y)dydx. (16)

Note that the normalisation constant for f ′(y) depends on x. The
expression for the sample with a restricted primary mass range
[x1, x2] now becomes:

Fq(q) ∝

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 q < c/x2
∫ x2

c/q

∫ qx

c
f (x) f ′(y)dydx c/x2 ≤ q < c/x1

∫ x2

x1

∫ qx

c
f (x) f ′(y)dydx c/x1 ≤ q ≤ 1

, (17)

where the integration domain S ′ is as in Fig. 5. The expression
for the resulting fq,all(q) in the case of a single power-law gener-
ating mass distribution is given in Appendix A.2. For PCRP the
distribution fq,all(q) contains a term that diverges for q ↑ 1, which
can be seen in Fig. 2 (see also Eq. (A.22) in Appendix A.2).

For a sample with primary masses restricted to the range
[x1, x2], Eq. (17) has to be worked out. We will not explic-
itly show the results here. Most importantly, fq(q) is zero for
q < c/x2, and exhibits a peak at q ≈ c/x1. The distribution
for a sample of binaries with high-mass primaries thus peaks

at small q, and the distribution for low-mass binaries peaks at
large q. If the primary mass range is narrow (x1 ≈ x2), fq(q) can
be approximated with Eq. (14). For a sample of stars with a very
narrow primary mass range, the mass ratio distributions result-
ing from PCRP and RP thus give the same results. Differences
between the two pairing functions become larger for realistic pri-
mary mass ranges.

For pairing function PCRP, the companion mass distribu-
tion fM2 (M2) for a set of primaries of identical mass is equal
to the generating mass distribution fM(M) in the mass range
Mmin ≤ M2 ≤ M1. The companion mass distribution can thus
in principle be used to derive the properties of the generating
mass distribution. For example, in a set of binaries with a pri-
mary mass of 1 M⊙, those with mass ratio q < 0.08 have brown
dwarf companions. If the observations are of good enough qual-
ity to study the mass ratio distribution below q = 0.08, and it is
known a priori that the pairing function is PCRP, the mass ra-
tio distribution can be used to constrain the slope of the mass
distribution in the brown dwarf regime.

The pairing algorithms RP and PCRP appear similar, but
their difference is for example seen in the primary mass dis-
tribution. For RP there is a larger number of binary systems
with high-mass primaries, which can be understood as follows.
Suppose a primary mass M1 of 5 M⊙ is drawn from the mass dis-
tribution. For PCRP, the companion mass M2 is always smaller
than the primary mass, while for RP the companion mass can
take any value permitted by the mass distribution (i.e. also
M2 > M1, after which the components are switched). Another
difference is that, unlike RP, for PCRP the binary fraction is in-
dependent of primary spectral type: Ball = BM1 (M1) = B. For
realistic mass distributions (e.g., Salpeter- or Kroupa-like), the
overall mass ratio distribution fq,all(q) of PCRP is peaked to-
wards large values of q, while that of RP is peaked towards small
values of q. The pairing functions RP and PCRP can be excluded
if more than a 1−2% of the intermediate-mass stars are “twins”
(q ≥ 0.8).

6.3. Pairing function PCP (primary-constrained pairing)

In models with primary-constrained pairing (PCP), each binary
system is generated by drawing a primary mass M1 from fM(M)
in the range c ≤ M ≤ d, and a mass ratio q from the generating
distribution hq(q). The companion mass is then calculated from
M2 = qM1. Due to the nature of this pairing mechanism it is
possible that the resulting companion is of very low mass, for
example a planetary mass if a very small mass ratio is drawn.
Below we describe three variants of pairing function PCP, each
of which handles very low mass companions in a different way:
accepting all companions (PCP-I), rejecting the very low-mass
companions (PCP-II), and redrawing the mass ratio if the com-
panion mass is of very low mass (PCP-III).

6.3.1. Pairing function PCP-I

PCP-I is the simplest variant of PCP: the primary mass is drawn
from fM(M) and the mass ratio from hq(q), and no further con-
straints are set. As a result, the specific mass ratio distribution
fq;M1 (q) and overall mass ratio distribution fq,all(q) are equal to
the generating mass ratio distribution hq(q). Additionally, the
specific binary fractionBM1 (M1) and overall binary fraction Ball
are equal to the generating binary fraction B.

The companion mass for PCP-I can be arbitrarily small:
M2,min = 0. Several companions may thus have masses
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significantly lower than the deuterium burning limit (∼0.02 M⊙).
Even planetary companions are considered as companion “stars”
for the pairing function PCP-I. However, if we do include plan-
ets, we make the implicit assumption that the star formation pro-
cess is scalable down to planetary masses. This assumption is in
contradiction with the theories that suggest that stars and brown
dwarfs form by fragmentation (Goodwin et al. 2007; Whitworth
et al. 2007), while planets form by core-accretion (see, e.g.,
Pollack et al. 1996). This is an important point to keep in mind
when using PCP-I, i.e., when adopting a mass ratio distribution
that is fully independent of primary spectral type.

6.3.2. Pairing function PCP-II

For PCP-II, companions with M2 < c, are rejected, and the cor-
responding primary stars are classified as single stars. There are
two reasons why one may want to consider using PCP-II. First,
one may wish to use this prescription if a minimum compan-
ion mass is expected from theory, for example the Jeans mass
or the opacity limit for fragmentation (e.g., Hoyle 1953; Rees
1976; Low & Lynden-Bell 1976; Silk 1977a,b, 1995; Tohline
1982; Larson 1969, 1992, 2005; Masunaga & Inutsuka 2000).
The second, more observational approach may be to “ignore”
the low-mass companions. Although this seems somewhat arti-
ficial, this method is often used in practice. Planets are usually
not considered as companions (the Sun is a “single star”), which
implies a limit c = 0.01−0.02 M⊙.

Due to the rejection of low-mass companions the overall
mass ratio distribution is zero for 0 < q < c/d. In the range
c/d ≤ q ≤ 1, the expression for the overall mass ratio distribu-
tion is given by:

fq,all(q) = k

∫ d

c/q

fpcp(M1, q)dM1 = k

∫ d

c/q

hq(q) fM1 (M1)dM1, (18)

where hq(q) is the generating mass ratio distribution and k is

a normalisation constant which ensures that
∫ 1

0
fq,all(q)dq = 1.

The distribution fq,all(q) has a larger average mass ratio than the
generating mass ratio distribution hq(q) as a result of rejecting
the low-mass companions. For a a sample with a restricted pri-
mary mass range, c ≤ x1 ≤ M1 ≤ x2 ≤ d, the expression for
the specific mass ratio distribution is given in Appendix A.3,
by Eq. (A.29). The specific mass ratio distribution is given by
a three-segment powerlaw, with slope changes at q = c/x2 and
q = c/x1. Note that for q > c/x1, the distribution fq;M1 (q) is equal
to the generating mass ratio distribution. For a sample of high-
mass primaries, where c/x1 ≤ 1, we thus have fq;M1 (q) ≈ hq(q).
For a sample of low-mass primaries, c/x2 ≤ q < c/x1 for most
of the mass ratio range, and the corresponding term dominates.
For these binaries, fq;M1 (q) differs significantly from hq(q).

The specific binary fraction for a sample of systems with
primary mass M1 is given by

BM1 (M1) = B
∫ 1

qmin(M1)
hq(q) dq < B. (19)

Note thatBM1 (M1) is independent of fM(M) for PCP-II. Figure 7
shows the specific binary fraction BM1 (M1) as a function of B
and fq(q). The specific binary fraction depends on the shape of
the mass ratio distribution, and is independent of the mass dis-
tribution. The overall binary fraction Ball after rejection of the
low-mass companion is lower than the generating binary frac-
tion B (see Eq. (A.32) in Appendix A.3.2). The binaries with
high-mass primaries are hardly affected by the rejection algo-
rithm. For these binaries the specific mass ratio distribution and

specific binary fraction are practically equal to those for PCP-I:
the specific binary fraction is equal to B, and the specific mass
ratio distribution is equal to hq(q). For the very low-mass pri-
maries, however, a high fraction of the companions is rejected,
and therefore the specific binary fraction is low. The remaining
companions of these stars have a mass comparable to that of
their primary, and the resulting mass ratio distribution for the
lowest-mass binaries is peaked to unity (see Fig. 2).

As an example, consider a stellar population with B =
100% and a generating mass ratio distribution fq(q) = 1 and
M2,min = 0.02 M⊙, systems with B-type primaries and systems
with M-type primaries have a resulting specific binary fraction
of 99% and 87%, respectively. If we also do not consider brown
dwarfs as companions (so M2,min = 0.08 M⊙), then the specific
binary fractions are 96% and 51%, respectively.

6.3.3. Pairing function PCP-III

For PCP-III the primary mass is drawn from fM(M) in the range
c ≤ M1 ≤ d, and the mass ratio is drawn from hq(q). If the
resulting companion star mass is smaller than c, the mass ratio
is redrawn from hq(q) until a companion with mass M2 ≥ c is
obtained. This is equivalent to renormalising hq(q) in the range
qmin(M1) ≤ q ≤ 1, where qmin(M1) = c/M1. This effectively
results in a mass-dependent generating mass ratio distribution
h′q(q). The expression for the resulting overall mass ratio distri-
bution fq,all(q) are then:

fq,all(q) =
∫ d

c/q

fpcp(M1, q)dM1 =

∫ d

c/q

h′q(q) fM1 (M1)dM1. (20)

The specific mass ratio distribution for the restricted primary
mass range [x1, x2] is given in Appendix A.3. A sample of bi-
naries with high-mass primaries has c/x1 ≪ 1. For high-mass
binaries h′q(q) ≈ hq(q), and therefore fq;M1 (q) ≈ hq(q). For the
very low-mass primaries, however, a high fraction of the com-
panions is redrawn. Consequently, all binaries with a low-mass
primary have a mass ratio close to unity. The resulting mass ratio
distribution for the lowest-mass binaries is thus peaked to unity
(see Fig. 2).

As a result of the redrawing of the companions for pairing
function PCP-III, the resulting overall binary fractionBall equals
the generating binary fraction B, and the specific binary fraction
BM1 (M1) equals B for any primary mass range.

6.4. Pairing function SCP (split-core pairing)

For split-core pairing (SCP) one assumes that the system “core”
mass MC is drawn from a core mass distribution fMC (MC) with
2ǫc ≤ MC ≤ 2ǫd, where ǫ is the star forming efficiency. Split-
core pairing is frequently inferred from observations of dense
cores in star forming regions, assuming that a fraction of the
cores fragment into binaries (see, e.g., Goodwin et al. 2008;
Swift & Williams 2008). As a core collapses, it forms one or
two stars with a total mass MT = ǫMC. The resulting minimum
and maximum primary masses are thus c and 2d, respectively.
The star forming efficiency may be a function of various param-
eters, for example the mass of the core. For simplicity in our
analysis, however, we keep the star forming efficiency fixed to
ǫ = 1 for all values of MC. The total mass of each binary is thus
MT = MC. Note that “random fragmentation” (random splitup of
a clump into two stellar components) is very different from ran-
dom pairing of two components from the IMF (see, e.g., Figs. 2
and 3).
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For pairing function SCP, the binary total mass is thus
drawn from a distribution fMC (MC). Note that, although we adopt
fMC (MC) = fKroupa(M) in this paper, there is no obvious prereq-
uisite that fMC (MC) should be a standard IMF. The binary is split
up according to a mass ratio that is drawn from a generating mass
ratio distribution hq(q). Given the core mass MC = M1 +M2 and
the mass ratio q, the primary and companion mass are given by

M1 =
MC

q + 1
and M2 =

MC

q−1 + 1
, (21)

respectively. As a result of this procedure, it may happen that a
companion mass smaller than the minimum mass c is drawn.
Similar to pairing function PCP (Sect. 6.3), there are three
ways to address this issue: accepting the low-mass companions
(SCP-I), rejecting the low-mass companions (SCP-II), and re-
drawing the mass ratio if the companion mass is too low (SCP-
III). We discuss these three variants of SCP in the sections below.

6.4.1. Pairing function SCP-I

For pairing function SCP-I, all binary components resulting
from the split-up mechanism are accepted, irrespective of their
mass. Stars with substellar and planetary companions are thus
also considered as “binary stars”. Due to the nature of this pair-
ing process, the overall mass ratio distribution is equal to the
generating mass ratio distribution. The specific mass ratio distri-
bution, however, is a function of spectral type. A full derivation
of the specific mass ratio distribution is given in Appendix A.4;
see also Clarke (1996a). In most cases the primary mass range is
contained within the range [2c, d], which corresponds to “case 7”
in Appendix A.4. Consider the special case of a single power-
law mass distribution fMC (MC) ∝ M−αC (α � 1) and a uni-
form mass ratio distribution hq(q) = 1. Under these assump-
tions, the expression for the specific mass ratio distribution is
fq;M1 (q) ∝ (1 + q)1−α for 0 < q ≤ 1, if either the primary mass
range is contained within the range [2c, d] (case 7), or if x1 = x2.
Note that this expression is identical to that in Eq. (5). The high-
est mass binaries thus have on average a small mass ratio, and
the lowest mass binaries have on average a large mass ratio. Note
that these trends are present, even though the generating mass
ratio distribution produces mass ratios in the range 0 < q ≤ 1,
irrespective of the core mass MT.

Pairing function SCP-I naturally results in a mass-dependent
binary fraction:

BM1 (M1) =
B fM1 (M1)

B fM1 (M1) + (1 − B) fMC (M1)
, (22)

where fM1 (M1) is the primary mass distribution, fMC (M1) the
generating (core) mass distribution evaluated at mass M1, and B
the generating binary fraction; see Appendix A.4.2 for the
derivation. The mass-dependence of the binary fraction for
SCP-I is illustrated in the middle panel of Fig. 7. In general,
B = 100% for c ≤ M1 < 2c, as fMC = 0 in this mass range.
For 2c < M1 < d the specific binary fraction is more or less
independent of M1, while beyond M1 = d, it decreases down to
zero at M1 = 2d. The latter dependence is due to the fact that the
cores are more massive than the primary stars they potentially
form. As a result, the high-mass targets are dominated by cores
that have not split up. The overall binary fraction Ball is always
equal to B.

6.4.2. Pairing function SCP-II

For SCP-II the companion is rejected if M2 < c, and the primary
star becomes single. The resulting primary mass range is then
c ≤ M1 ≤ 2d − c, and the companion mass is in the range c ≤
M2 ≤ d. The full derivation for the overall and specific mass
ratio distributions is given in Appendix A.4. In most realistic
cases the primary mass range [x1, x2] is fully enclosed in the
mass range 2c < M1 < d (“case 1”). Unlike SCP-I, the resulting
overall mass ratio distribution is unequal to the generating mass
ratio distribution, but contains more large-q binaries instead.

The specific binary fraction BM1 (M1) resulting from SCP-II
varies with primary mass M1:

BM1 (M1) =
B100(M1)B fM1 (M1)

B fM1 (M1) + (1 − B) fMC (M1)
, (23)

where fM1 is the primary mass distribution, fMC is the generating
(core) mass distribution, and B is the generating binary fraction.
The quantity B100(M1) represents the value of BM1 (M1) for a
population with B = 100%. The full derivation of Eq. (23) is
given in Appendix A.4.2.

Figure 7 shows the specific binary fraction B(M1) as a func-
tion of B and hq(q). The specific binary fraction decreases with
decreasing primary mass, as, on average, more low-mass com-
panions are rejected among lower-mass primaries. The majority
of the newly formed single stars (due to rejection of low-mass
companions) is thus of most low mass. For the very lowest-
mass stars, however, the binary fraction increases to unity, as
B100(M1) ≈ 1 and fMC = 0 for M1 ≈ c. The specific binary frac-
tion then rises again to a maximum around M1 = d, and then
rapidly drops to zero at M1 = 2d − c. As a result of the rejection
of low-mass companions, the overall binary fraction is always
lower than B.

6.4.3. Pairing function SCP-III

For SCP-III the mass ratio is redrawn when a companion with
mass M2 < c is produced by the splitting algorithm (similar to
PCP-III). This effectively corresponds to a (mass-specific) re-
normalised mass ratio distribution h′q(q) in the range c/(MC −
c) ≤ q ≤ 1. The resulting overall mass ratio distribution for
SCP-III is given by:

fq,all(q) = k

∫ 2d

c(1+1/q)
h′q(q) fMC (MC)dMC, (24)

where the lower integration limit is set by the condition M2 ≥ c
and k is again a normalisation constant. The expressions for the
specific distribution fq;M1 (q) for a restricted primary mass range
are identical to those for the SCP-II case (see Appendix A.4),
except that h′q(q) replaces hq(q) everywhere. As a result of the
renormalisation of the mass ratio distribution, the mass ratio
distribution is a function of spectral type. The specific mass
ratio distribution for the lowest-mass cores is strongly peaked
to q = 1.

The overall binary fraction Ball equals B for SCP-III. The
specific binary fraction is given by Eq. (22). Note however, that
the primary mass distribution fM1 (M1) resulting from SCP-III is
different from that of SCP-III; see Appendix A.4.2 for details.

7. Differences between pairing functions

As discussed in the previous sections, each pairing function
results in different properties of the binary population. In this
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Fig. 8. The mass distributions resulting from the different pairing functions, for the models shown in Fig. 2. From top to bottom, the panels show
the primary mass distribution fM1 , companion mass distribution fM2 , the system mass distribution fMT , the mass distribution of the primaries and
single stars combined fM1,S (i.e., the targets in an observational binarity study), the single star mass distribution fMS , and the distribution of all
stellar masses fMall . Each distribution is normalised so that its maximum is unity. The vertical axis has a linear scale (rather than a logarithmic
scale; cf. Fig. 1) so that the differences are clearly shown. Each column corresponds to a different pairing function, which is indicated at the top.

section we provide an overview of the major differences and
similarities. In general, each of the properties described below
depends on the choice of the pairing function, a generating mass
distribution fM(M), a generating mass ratio distribution fq(q),
and a generating binary fraction B. Our example models have a
Kroupa generating mass distribution with 0.02 ≤ M ≤ 20 M⊙, a
flat generating mass ratio distribution (if applicable), and a gen-
erating binary fraction of 100%. The resulting mass distributions
and mass ratio distributions for the different pairing functions are
shown in Figs. 2 and 8, respectively.

7.1. The mass distributions

For pairing functions PCP-I, PCP-III and PCRP the primary
mass distribution is identical to fM(M). For pairing function
PCP-II, fM1 (M) is very similar to fM(M), but it contains less
primaries of low mass due to rejection of very low-mass com-
panions (which mostly occurs among low-mass primaries). The
latter “primaries” are considered as single stars after removal
of their companions. For pairing function RP the primary mass
distribution is more massive than fM(M) due to swapping of

the components that are drawn from fM(M). Pairing functions
SCP-I, SCP-II and SCP-III result in smaller average primary
masses than fM(M) due to the core splitting.

For all pairing functions the companion mass distribution
fM2 (M) is shifted to lower masses with respect to the generat-
ing mass distribution fM(M). Pairing functions PCP-III, PCRP
and SCP-III result in a large number of low mass companions;
the companion mass distribution is sharply peaked at M2 ≈ c;
see Figs. 3 and 8. For a Kroupa generating mass distribution,
the other pairing functions show a peak in the companion mass
distribution around M2 ≈ 0.05 M⊙. Pairing functions PCP-I and
SCP-I may result in arbitrarily small companion masses, but all
other pairing functions have M2,min = c. All pairing functions
have M2,max = d. For each pairing function described in this pa-
per, the companion mass distribution depends strongly on the se-
lected primary mass range (see Fig. 3), but is independent of B.

We define the binary system mass distribution fMT (M) as the
distribution of masses MT = M1 + M2 of all binary systems in a
population. For pairing function SCP-I the system mass distribu-
tion equals the generating mass distribution: fMT (M) = fM(M).
For all other pairing functions the expression for the system mass

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=8
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distribution is different from fM(M), fM1 (M) and fM2 (M). For
random pairing, for example, the system mass distribution can
be described as a convolution (Eq. (9)).

Pairing functions with B < 100% result in a population of
single stars. For PCP-II and SCP-II, even those with B = 100%
result in single stars. In our analysis we distinguish between the
single mass distribution fMS (M) and the primary/single mass dis-
tribution fM1,S (M). The latter distribution includes both single
stars and primaries and is important for observers. Target lists
for binarity surveys are often defined by fM1,S (M) for a certain
mass range, as in practice it is often unknown whether a sur-
veyed star has a companion star. For most pairing functions the
single mass distribution fMS (M) is equal to the generating mass
distribution fM(M), and the fraction of single stars among the
systems is given by 1−B, where B is the generating binary frac-
tion. For PCP-II and SCP-II additional single stars are created
due to the rejection of very low-mass companions. The gener-
ated single stars are mostly of low mass. Only for pairing func-
tions PCP-I, PCP-II, PCP-III and PCRP, the primary/single star
mass distribution fM1,S (M) is equal to the generating mass dis-
tribution fM(M). The primary/single star mass distribution is bi-
ased to higher masses for RP, and to lower masses for SCP-I,
SCP-II and SCP-III.

The bottom row of Fig. 8 shows the mass distribution fall(M)
of all stars, including primaries, companions, and single stars.
This mass distribution, which includes all stars in the population,
is referred to as the mass function of a stellar population. For a
zero-age population, fall(M) is an initial mass function (IMF),
e.g., the Kroupa IMF (Eq. (2)). Only for pairing function RP is
the individual star mass distribution fall(M) equal to the gener-
ating mass distribution fM(M); the other pairing functions result
in a distribution fall(M) which is biased to lower values with re-
spect to fM(M).

7.2. The mass ratio distributions

The resulting overall mass ratio distribution fq,all(q) depends on
the pairing function. The top panels in Fig. 2 show the signif-
icant difference between the overall mass ratio distribution for
the different pairing functions. The overall mass ratio distribu-
tion fq,all(q) is equal to the generating mass ratio distribution
fq(q) for pairing functions PCP-I and SCP-I. For pairing func-
tions PCP-II, PCP-III, SCP-II and SCP-III the overall mass ratio
distribution is biased to larger values of q with respect to fq(q).
For these pairing functions binaries with very low companion
masses, and thus often very low mass ratios, are either rejected
or redrawn, resulting in systematically larger values of q. The
overall mass ratio distribution of pairing functions RP and PCRP
are purely a result of the mass distribution fM(M) and depend
strongly on its lower and upper limits.

Only for pairing function PCP-I is the mass ratio distribution
independent of spectral type, and thus equal to the overall and
generating mass ratio distributions. For all other pairing func-
tions the specific mass ratio distribution is a function of the pri-
mary mass. The middle and bottom panels in Fig. 2 show for
each pairing function the specific mass ratio distribution for tar-
get samples of different spectral types. For each of these pairing
functions, high-mass binaries have on average a lower mass ratio
than low-mass binaries. The lowest-mass binaries have a mass
ratio distribution peaked to q = 1.

Figures 2 and 6 illustrate the strong dependence of the spe-
cific mass ratio distribution on the targeted sample in the survey.
Figure 4 shows a generalised version of these figures. Each panel
shows the two-dimensional distribution f (q,M1) for the different

Table 2. The mass ratio distribution resulting from different pairing
functions, for different samples, as compared to the generating mass
ratio distribution hq(q).

Pairing fq,all(q) fq(q)M1≈Mmax fq(q)M1≈Mmin

RP − ↓ ↑
PCRP − ↓ ↑
PCP-I = = =

PCP-II ↓ ≈ ↑
PCP-III ↑ ≈ ↑
SCP-I = ↓ ↑
SCP-II ↑ ↓ ↑
SCP-III ↑ ↓ ↑

pairing functions. Care should thus be taken when extrapolating
the results to the population as a whole. The interpretation of the
observations is further complicated by the instrument bias and
observational errors, an effect we will discuss in Sect. 9.

An overview of the mass ratio distribution changes is pre-
sented in Table 2. The columns show the pairing function, the
overall mass ratio distribution, the specific mass ratio distribu-
tion for high-mass stars, the specific mass ratio distribution for
low-mass stars. The symbols the table indicate whether the mass
ratio distribution is equal to (=), almost equal to (≈), or biased
to low mass ratios (↓) or large mass ratios (↑), with respect to
hq(q). As the distribution hq(q) is undefined for RP and PCRP,
the properties of fq;M1 (q) with respect to fq,all(q) are indicated.

7.3. The binary fractions

The overall binary fraction Ball is equal to the generating bi-
nary fraction B for most pairing functions. Only for PCP-II and
SCP-II the overall binary fraction is lower than B because of the
rejection of low-mass companions.

Table 3 provides an overview of the changes in the bi-
nary fraction as a function of spectral type and primary mass
range. The columns show the pairing function, the overall bi-
nary fraction Ball, the specific binary fraction for high-mass
stars BM1≈Mmax and for low-mass stars BM1≈Mmin . The last column
shows whether the resulting binary fraction is equal to B for any
primary mass range.

Most pairing functions result in a mass-dependent binary
fraction. If the generating binary fraction is lower than 100%,
all pairing functions except PCP-I, PCP-III and PCRP result in a
specific binary fraction that depends on primary mass (see, e.g.,
Fig. 7). On the other hand, if B = 100%, only pairing functions
PCP-II and SCP-II result in a varyingBM1 (M1), due to the rejec-
tion of low-mass companions.

For a sample of binaries with high-mass primaries,BM1 (M1)
is approximately equal to B for pairing functions PCP-I, PCP-
II, PCP-III and PCRP. For RP, the specific binary fraction for
high-mass binaries is higher than B (unless B = 100%), while
for SCP-I, SCP-II and SCP-III the binary fraction for high-mass
stars is lower than B (unless B = 100). For low-mass bina-
ries, BM1 (M1) is equal to B for pairing functions PCP-I, PCP-
III, and PCRP. For RP, the specific binary fraction for low-mass
stars is only equal to the generating binary fraction if the lat-
ter is B = 0% or B = 100%, and lower in the other cases. For
PCP-II the specific binary fraction for low-mass stars is lower
than B. For SCP-I and SCP-III the binary fraction for low-mass
stars is higher than B. For SCP-II the specific binary fraction for
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Table 3. The specific binary fraction BM1 (M1) as compared to the gen-
erating binary fraction B, for different the pairing functions.

Pairing Ball BM1≈Mmax BM1≈Mmin BM1 (M1) = B?

RP = > < no, unless B = 100%
PCRP = = = yes

PCP-I = = = yes
PCP-II < ≈ < no
PCP-III = = = yes

SCP-I = <,≈, > <,≈, > no, unless B = 100%
SCP-II < <,≈, > <,≈, > no
SCP-III = <,≈, > <,≈, > no, unless B = 100%

low-mass stars may be higher or lower than B, depending on the
properties of fM(M) and fq(q) and the value of B.

8. Dependence on generating properties

In this section we discuss how the properties of a binary pop-
ulation depend on the attributes for the pairing functions: the
generating mass distribution fM(M), the generating mass ratio
distribution fq(q), and the generating binary fraction B. For the
most important properties of a population (with respect to bina-
rity), we list in Table 4 whether or not they depend on fM(M),
fq(q), or B, for each of the eight pairing functions described in
this paper. Note that the system mass distribution fMT includes
both single stars and binary systems. The specific mass ratio dis-
tribution fq;M1 (q) and specific binary fractionBM1 (M1) in Table 4
only refer to samples where all binaries have identical primary
mass M1. For a sample with a finite primary mass, range, the re-
sults for the specific mass ratio distribution and specific binary
fraction are mostly identical to those of fq,all(q) and Ball, respec-
tively. Table 4 also illustrates which properties of the population
can be used to recover fM(M), fq(q), and B. For example, for
RP, the specific binary fraction BM1 (M1) provides information
on the generating mass distribution (e.g., the IMF).

The generating mass distribution. For obvious reasons, all
mass distributions listed in Table 4 depend on fM(M). The mass
ratio distributions for RP and PCRP are defined by, and depend
strongly on the properties of fM(M) and B. For PCP-I/II/III,
fq;M1 (q) does not depend on fM(M), as both M1 and q are drawn
independently from their generating distributions. Obtaining the
overall mass ratio distribution fq,all(q) requires integration over
the primary mass distribution; as for PCP-II and PCP-III fq;M1 (q)
varies with M1, so does fq,all(q). The overall binary fraction
Ball is independent of fM(M), except for PCP-II and SCP-II,
for which low-mass companions are rejected. The specific bi-
nary fraction BM1 (M1), does not depend on fM(M) for PCRP
and PCP-I/II/III due to the independent drawing of M1 and M2
(or q), while it does vary with fM(M) for SCP-I/II/III as M1 and q
are not drawn independently, and for RP as M1 and M2 are not
drawn independently (due to the swapping of the components;
see Sect. 6.1).

The generating mass ratio distribution. The generating mass
ratio distribution fq(q) is undefined for RP and PCRP. For the
other pairing functions, the dependence of fq;M1 (q) and fq,all(q)
on fq(q) is obvious. As companion masses are derived from q,
the distributions fM2 and fMall depend on the choice of fq(q).
Note that that for SCP-II, all parameters vary with fq(q), and
for PCP-II most parameters (except the primary/single mass dis-
tribution) vary with fq(q). The properties of the single stars
do not depend on fq(q), except for PCP-II and SCP-II, where

additional single stars are created due to the rejection of low-
mass companions.

The generating binary fraction. The dependence of Ball and
BM1 (M1) on the generating binary fraction B is trivial. The dis-
tributions that do not involve single stars, such as fM1 , fM2 ,
fq,all(q) and fq;M1 (q), by definition never depend on the choice
of B. The mass distribution of all stars fMall (the “IMF”) depends
on the choice of B for all pairing functions, except for RP.

9. Interpretation of observations

Binarity and multiplicity provide important information about
the outcome of the star forming process in different environ-
ments (Blaauw 1961, 1991). In this paper we explore this issue
by making the assumption that binary stars are formed through
a simple “pairing function”. In reality the distribution of stars
in fM1 ,M2 (M1,M2) is the result of complex physics involving the
collapse of a molecular cloud into stars and stellar systems with
discs (which can themselves fragment), followed by dynamical
evolution of the protocluster (see Sect. 5). The resulting “pair-
ing function” may thus not be describable in terms of the simple
probability distributions given in this paper (Sect. 6). However,
even if we proceed from our assumption that the pairing of bi-
nary stars involves the random selection of a primary mass fol-
lowed by the secondary (RP, PCRP, PCP-I/II/III) or the random
splitting of cores (SCP-I/II/III), the interpretation of the obser-
vations is not trivial:

– there is a large space of possible models for the formation
and evolution of a binary population. In this paper we de-
scribe eight pairing mechanisms. For each pairing function
there are a large number of possibilities for the generating
mass distributions fM(M), mass ratio distributions fq(q), and
binary fractions B. In addition, we have no a priori restric-
tion on the plausible formation mechanisms (see, however,
Sect. 5);

– the observations of a binary population are generally limited.
The surveys are incomplete, and are affected by selection ef-
fects and observational biases, and often only a limited set of
binary population parameters is measured.

When the inverse problem of obtaining the binary formation
mechanism from the data is so poorly constrained, it is not possi-
ble to find the “best model” for binary formation from a fit to the
data. The only thing one can realistically do is to exclude models
that are not capable of reproducing the data and accept that all
other models offer plausible binary formation prescriptions.

9.1. Constraints from observations

Below we list several properties that have been identified for var-
ious binary populations over the last decades. These provide im-
portant information on the primordial pairing function, and the
formation and evolution of binary populations.

The observed mass-dependent binary fraction. The observed
binary fraction is known to increase with increasing primary
spectral type; see, e.g., Sterzik & Durisen (2004); Köhler et al.
(2006); Lada (2006); Bouy et al. (2006) for an overview. For
early-type (O/B/A) stars the binary fraction approaches 100%
(e.g., Abt et al. 1990; Mason et al. 1998; Shatsky & Tokovinin
2002; Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007b).
The binary fraction decreases to 50−60% for F/G-type stars
(Abt & Levy 1976; Duquennoy & Mayor 1991). For M-type
stars the binary fraction is 30−40% (Fischer & Marcy 1992;
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Table 4. Do the properties of a population resulting from a certain pairing function depend on its generating properties? The three generating
properties fM(M), fq(q) and B are listed in the top row. For each of the ten quantities listed in the left-most column, we list whether or not they
depend on the choice of fM(M), fq(q) and B. We indicate dependence and independence with the symbols

√
and ×, respectively. The results for

fq;M1 (q) and BM1 (M1) are valid only for a population of binaries with identical primary mass M1. The distribution over total system mass fMT

includes both binary systems and single stars.
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fM1

√ √ √ √ √ √ √ √
– – × √ × √ √ √ × × × × × × × ×

fM2

√ √ √ √ √ √ √ √
– –

√ √ √ √ √ √ × × × × × × × ×
fMT

√ √ √ √ √ √ √ √
– –

√ √ √ × √ × √ √ √ √ √ × √ ×
fM1,S

√ √ √ √ √ √ √ √
– – × × × √ √ √ √ × × × × √ √ √

fMS

√ √ √ √ √ √ √ √
– – × √ × × √ × × × × √ × × √ ×

fMall (“IMF”)
√ √ √ √ √ √ √ √

– –
√ √ √ √ √ √ × √ √ √ √ √ √ √

fq,all(q)
√ √ × √ √ × √ √

– –
√ √ √ √ √ √ × × × × × × × ×

fq;M1 (q)
√ √ × × × √ √ √

– –
√ √ √ √ √ √ × × × × × × × ×

Ball × × × √ × × √ × – – × √ × × √ × √ √ √ √ √ √ √ √

BM1 (M1)
√ × × × × √ √ √

– – × √ × √ √ √ √ √ √ √ √ √ √ √

Leinert et al. 1997; Reid & Gizis 1997), and for late M-type
stars and brown dwarfs the binary fraction decreases to 10−20%
(Gizis et al. 2003; Close et al. 2003; Bouy et al. 2003; Burgasser
et al. 2003; Siegler et al. 2005; Maxted et al. 2008; Joergens
2008). Note that this correlation between mass and binary frac-
tion is also predicted by the hydrodynamical/sink particle sim-
ulations of Bate (2008). Assuming that this observational trend
is not induced by selection effects, is inconsistent with pairing
functions PCP-I, PCP-III and SCP-I, for which the binary frac-
tion is independent of primary mass. Furthermore, observations
have ruled out pairing functions RP and PCRP in various stel-
lar groupings (see Sect. 5). Pairing functions PCP-II, SCP-II
and SCP-III remain options to describe the binary population, as
for these pairing functions the binary fraction increases with in-
creasing stellar mass, and the average mass ratio decreases with
increasing mass. However, in this paper we merely describe sim-
plistic (but frequently used) pairing functions. A deeper analysis,
including a study of more complicated pairing functions, com-
bined with further observations, is necessary for a full descrip-
tion of the pairing function in the different stellar populations.

Twin binaries. Observationally, there is a high prevalence of
massive binaries with a mass ratio close to unity, often referred to
as the “twin peak” in the mass ratio distribution (Lucy & Ricco
1979; Tokovinin 2000; Pinsonneault & Stanek 2006; Lucy 2006;
Söderhjelm 2007). High-mass twin binaries are extremely rare
for RP and PCRP. For pairing functions PCP and SCP, high-
mass twin binaries only occur frequently when this is explicitly
put into the generating mass ratio distribution. A high prevalence
of low-mass twin binaries, on the other hand, naturally results
from all pairing functions except for PCP-I. In general, peaks in
the mass ratio distribution can occur for any mass ratio (see, e.g.,
Fig. 6). The location of the peak depends on the pairing function
and the primary mass range, and, if applicable, the mass ratio
distribution. In general, the peaks occur at low-q for a sample
of high-mass binaries, and at large-q for a sample of low-mass
stars. Pairing functions RP and PCRP are thus excluded, while
pairing functions PCP and SCP can only result in massive twin
binaries if the corresponding generating mass ratio distribution
is strongly peaked to q = 1.

The brown dwarf desert. The brown dwarf desert is defined
as a deficit (not necessarily a total absence) of brown dwarf

companions, either relative to the frequency of stellar com-
panions, or relative to the frequency of planetary companions
(McCarthy & Zuckerman 2004; Grether & Lineweaver 2006).
Theories have been developed that explain the existence of
the brown dwarf desert using migration (Armitage & Bonnell
2002) or ejection (Reipurth & Clarke 2001) of brown darfs.
The latter scenario “embryo ejection” is most popular, and pre-
dicts ejectino of brown dwarfs soon after their formation. In
this scenario, brown dwarfs could be considered as failed stars.
Kouwenhoven et al. (2007a), however, show that the scarcity
of brown dwarf companions among intermediate-mass stars can
also be explained by an extrapolation of the mass ratio distri-
bution into the brown dwarf regime. Metchev & Hillenbrand
(2008) reach a similar conclusion. PCP-I/II/III are thus not ex-
cluded by the presence of the brown dwarf desert.

The (initial) mass distribution. The initial or present-day
mass distribution fall(M) of a stellar population sets strong con-
straints on the star formation process, and is an important feature
of each pairing function. The distribution is often derived after
its members are securely identified (e.g., Kroupa 2001; Preibisch
et al. 2002; Harayama et al. 2008; Stolte et al. 2008). The mea-
sured mass distribution is often the distribution of single/primary
masses fM1,S (M), as it is not known which members are sin-
gle and which are binary, which results in a measured mass
distribution that is biased to higher masses with respect to the
overall mass distribution fall(M), which, if measured just after
star formation, is the IMF. As stellar masses are often derived
from measured luminosities, the presence of unresolved binaries
and crowding may further bias the measured (initial or present-
day) mass distribution to higher masses (e.g., Vanbeveren 1982;
Maíz Apellániz 2008; Weidner et al. 2008). Over the last decade,
considerable effort has been put into studying possible envi-
ronmental dependences of the IMF (see, e.g., Elmegreen 2007;
Kroupa 2008, for an overview and examples). The IMF of a pop-
ulation is presumably a result of the form of the initial core mass
function, and the primordial pairing function (i.e., how these
cores fragment into multiple systems, see Goodwin et al. 2008).
An environmental dependence of the primordial pairing func-
tion (e.g., mass ratio distribution, binary fraction) implies a dif-
ferent outcome of the star formation process with environment,
it also almost certainly implies an environmental dependence of
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the IMF (unless the core mass function changes in such as way
as to mask this change).

9.2. Recovering the pairing function

The pairing function, fM(M), fq(q) and B can in principle be
derived from observations of binary systems, provided that the
observations cover a large part of the parameter space {M1, q};
see Sect. 8. A significant complication, however, is introduced
by selection effects, in particular by detection limits that prevent
the detection of faint companion stars. As an example, a twin
peak for high mass binaries would rule out all of the models pre-
sented in this paper if fq(q) is assumed to be flat for PCP and SCP
(see Sect. 9.1). On the other hand, a twin peak at the low mass
end only rules out PCP-I (if the generating fq(q) is flat). So how
should we proceed when interpreting the observational data? If
we assume for the moment that we somehow know that one of
the eight pairing mechanisms discussed in this paper occurs in
Nature, we can advise the following:

– make sure the survey of the binary population is complete,
i.e., that all primary masses are sampled. As is clear from
Fig. 2, looking only at the low mass stars does not allow
differentiating PCP-II, PCP-III, RP, PCRP, and SCP-I/II/III
(all show a twin peak);

– examine not only the overall distribution of a certain param-
eter (such as q or the binary fraction) but also study how
it varies with primary mass. Again, from Fig. 2 it can be
seen that when considering only a single row of panels it is
not possible to easily differentiate the pairing mechanisms.
However, when looking at the overall and specific mass ra-
tio distributions, the differences do become clear;

– examine the combined behaviour of each parameter (the
mass ratio distribution and the binary fraction) as a function
of primary mass. The combination of these parameters con-
strains the possible pairing mechanisms significantly further;

– list all mechanisms capable of reproducing the observations
as possible solutions to the inverse problem. Do not try to
give a single answer if this is not warranted by the data.

In reality the number of possible models is of course much
larger, especially if we start from arbitrary probability distribu-
tions that are not constrained by an understanding of the physics
of binary formation. This is illustrated by the simple example in
Sect. 9.3 which shows that allowing a power-law distribution for
fq(q) means that only RP and PCRP can be excluded based on
an observed flat distribution of q.

The only practical way of excluding models of binary forma-
tion based on observations is to treat the inverse problem with
Monte Carlo methods where the observations are predicted from
the model and compared to the real observations. In this method
selection and observational biases should be included (see, e.g.,
Kouwenhoven 2006; Kouwenhoven et al. 2007b). Starting from
models based on probability distributions for a set of parame-
ters may not be the most useful way of constraining the forma-
tion mechanism for binaries as this leaves a lot of freedom. It is
more fruitful (but also more difficult) to start from actual phys-
ical models of binary formation and see if these are capable of
reproducing the observations.

A further complication occurs when one wants to recover
the primordial pairing function, i.e., the pairing function that is
present just after star formation, as the pairing function of a stel-
lar population evolves over time as a result of several processes.
During the first stages of star formation, the newly formed
proto-binaries are affected by pre-main sequence eigenevolution

(Kroupa 1995a,b,c) due to interaction with the remaining gas
in the circumbinary disc. Dynamical interactions can result in
ionisation of binaries, the formation of new binary systems, and
exchange interactions, and thus alters the pairing function of a
stellar population (see, e.g., Kroupa et al. 1999, 2001; Preibisch
et al. 2003; Duchêne et al. 2004; Köhler et al. 2006; Reipurth
et al. 2007). Thie process is enhanced by gravitational focusing
(e.g., Gaburov et al. 2008). The pairing function also changes
due to stellar evolution, which can change the mass of one or
both of the components of a binary system, and in some cases
in a merger (e.g., Sills et al. 2002; Gaburov et al. 2008), or
in the ejection of one of the components during a supernova
event (e.g., Blaauw 1961). The primordial pairing function can
be constrained using the technique of inverse dynamical popula-
tion synthesis (e.g., Kroupa 1995c,b), in which the outcome of
N-body simulations is compared with present-day binary popu-
lation in a Monte Carlo way.

Finally we stress that any interpretation of observations of a
binary population in terms of the formation of binaries should
start by stating the assumptions one makes in order to restrict
the number of solutions to explore. That is, in the context of
what class of binary formation mechanisms are the observations
interpreted?

9.3. An example – an observed flat mass ratio distribution

Most pairing functions result in a mass ratio distribution that
varies with primary spectral type. For this reason one has to be
cautious when interpreting the observations of a sample of bina-
ries. Given the observed dataset, what is the pairing function, and
what is the generating mass ratio distribution fq(q)? The answer
partially depends on the generating mass distribution, which we
assume to be the Kroupa mass distribution for now. More im-
portantly, the answer depends on the properties of the surveyed
targets. In this example we analyse three cases: a sample where
all binaries are studied, a sample of spectral type A/B targets,
and a sample of brown dwarf targets. Using Monte-Carlo tech-
niques we determine which pairing function is consistent with
an observed flat mass ratio distribution fq,obs(q) = 1 for each
subset, and, if applicable, which generating mass ratio distribu-
tion. We assume that the generating mass ratio distribution has
the form fq(q) ∝ qγq . We further assume that the observations
are complete in the range qmin < q ≤ 1 with qmin = 0.1, and that
no binaries with q < qmin are observed due to incompleteness.

Table 5 shows the best-fitting values of γq for each pair-
ing function, assuming binaries with q < 0.1 cannot be de-
tected. We ignore the other selection effects. The numbers in
the three columns represent the most compatible values of γq

for the overall mass ratio distribution fq(q), and for the specific
mass ratio distribution of binaries with A/B primaries and brown
dwarf primaries, respectively. For each for the three samples,
pairing functions RP and PCRP are excluded with high confi-
dence; these are unable to reproduce the observed flat mass ratio
distribution. The best-fitting value for pairing function PCP-I is
γq = 0 for all samples. This is not surprising, as for fq;M1 (q) =
fq(q) for this pairing function. For PCP-II and PCP-III the de-
rived γq for high-mass stars equals the observed value, but the
other two samples contain more binaries with large mass ratios.
For pairing functions SCP, the best-fitting intrinsic value of γq is
smaller than the observed value of γq for high-mass binaries, but
larger for low-mass binaries. This example illustrates that the in-
ferred intrinsic pairing properties may be significantly different
from the observed pairing properties, depending on the pairing
function and the selected sample of binaries.
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Table 5. Suppose that a stellar population has an observed mass ratio
distribution fq,obs(q) = 1 for qmin < q ≤ 1. What is the pairing function
and the generating mass distribution fq(q)? This table lists the exponent
γq of the generating mass distribution fq(q) ∝ qγq that is most compati-
ble with the synthetic observations.

Pairing function γq (all stars) γq (AB stars) γq (BDs)
Observed 0.00 0.00 0.00
PCP-I 0.00 0.00 0.00
PCP-II 0.35 0.00 1.30
PCP-III 0.55 0.00 1.80
RP excluded excluded excluded
PCRP excluded excluded excluded
SCP-I 0.00 −0.40 0.10
SCP-II 0.30 −0.40 1.50
SCP-III 0.55 −0.40 1.75

In practice, parameter distributions are often represented
with a functional form. Suppose, for example, that we assume
that the generating mass ratio distribution has the form fq(q) ∝
qγq . If we use this functional form for our model population, and
compare simulated observations with the true observations for
different values of γq, we will likely find a best-fitting γq. This
does not necessarily mean that the generating mass ratio distri-
bution has indeed the form fq(q) ∝ qγq . In this example we have
added another assumption, i.e., that the mass ratio distribution
has the form fq(q) ∝ qγq .

10. Summary and discussion

We have described several methods of pairing individual stars
into binary systems. We refer to these algorithms as pairing
functions. Each pairing function is characterized by a generat-
ing mass distribution fM(M) and a generating binary fraction B,
and most additionally by a generating mass ratio distribution
fq(q). Each pairing function results in a significantly different
binary population. Depending on the pairing function and the
mass range of the binaries studied, the resulting binary popu-
lation may or may not have a mass ratio distribution or binary
fraction that is equal to fq(q) or B, respectively. The binary frac-
tion and mass ratio distribution generally depend strongly on the
number of substellar objects in the population, and on the prop-
erties of the surveyed sample.

Eight pairing mechanisms are discussed in detail. For ran-
dom pairing (RP) both components are randomly drawn from the
mass distribution fM(M). For primary-constrained random pair-
ing (PCRP), both components are drawn from fM(M), with the
constraint that the companion is less massive than the primary.
For primary-constrained pairing (PCP-I, PCP-II, and PCP-III),
the primary is drawn from fM(M), and the companion mass is
determined using a mass ratio distribution fq(q). For split-core
pairing (SCP-I, SCP-II, and SCP-III), the core mass is drawn
from fM(M), and the masses of the binary components are de-
termined by the mass ratio fq(q), which splits up the core into
two stars. The difference between the variants of pairing func-
tions PCP and SCP lies in the treatment of low-mass compan-
ions (see Sect. 6). Seven pairing functions naturally result in a
specific mass ratio distribution that depends on primary spectral
type, and five naturally result in a mass-dependent binary frac-
tion. Seven out of eight pairing functions always produce a twin
peak for low-mass binaries, while none result in a twin peak for
high-mass binaries, unless the generating mass ratio distribution
is strongly peaked to q = 1.

The differences between pairing functions are important for
(i) the interpretation of observations; (ii) initial conditions of nu-
merical simulations; and (iii) understanding the outcome of star
formation:

(i) The interpretation of observations. The choice of the ob-
servational sample may mislead the observer in deriving
the overall properties of a stellar population, as most pair-
ing functions have a mass-dependent binary fraction and
mass ratio distribution. If the binary fraction or mass ra-
tio distribution of two samples (e.g., systems with B-type
primaries and those with M-type primaries) are different,
this does not necessarily mean that the underlying pairing
function is different. A significant further complication is
introduced by observational selection effects, which artifi-
cially decrease the binary fraction and increase the average
mass ratio. The only practical way to account for these is
by using a Monte Carlo approach, and to compare simu-
lated observations of a model population with the results
of the binarity survey, taking into account all sampling and
selection effects (Sect. 9).

(ii) Initial conditions for numerical simulations. A choice for
the pairing function has to be made when generating ini-
tial conditions for simulations of star cluster simulations
with binaries. The simplest choice is random pairing (RP),
although this pairing function is excluded from observa-
tions and not expected from star formation. When mod-
elling star clusters, one has to be aware that most pairing
mechanisms result in mass-dependent properties, such as
mass ratio distribution and binary fraction. The choice of
the pairing function affects the outcome of the simulations,
such as the dynamical evolution of star clusters, mass segre-
gation, and the number of contact binaries and supernovae.

(iii) Star formation. Different star formation scenarios result in
different mechanisms of pairing stars into binary systems.
After star formation, the pairing function is altered by dy-
namical interactions and stellar evolution. Random pairing,
however, is not predicted by star formation models, and is
excluded by observations (see Sect. 5). The binary fraction
and mass ratio distribution can be used to distinguish be-
tween the different pairing functions. Although the pairing
functions described in this paper are common in literature,
we do not suggest that one of these pairing functions in-
deed describes the natural outcome of the star forming pro-
cess. It is, for example, possible that the pairing properties
are a function of primary mass or core mass. If this is the
case, it may indicate different formation processes for dif-
ferent masses. Due to the lack of observations, this has not
been studied in detail, apart from the extreme ends of the
mass distribution (very massive stars and brown dwarfs).
Kroupa et al. (2003) and Thies & Kroupa (2007), for exam-
ple, find that the observed IMF and binary population can
be explained by separate formation mechanisms for stars
and brown dwarfs (see Sect. 6.1.1). Nevertheless, the pair-
ing functions described in this paper are useful tools to de-
scribe the outcome of star formation simulations. In order
to constrain the primordial binary population from obser-
vations, one does not only have to take into account the
selection effects, but also the change in the pairing function
that has occured due to the effects of stellar and dynami-
cal evolution. Over the last decade, considerable effort has
been put into studying possible environmental dependences
of the IMF. The IMF of a population is presumably a re-
sult of the form of the initial core mass function, and the
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primordial pairing function (i.e., how these cores fragment
into multiple systems, see Goodwin et al. 2008). An en-
vironmental dependence of the primordial pairing function
(e.g., mass ratio distribution and binary fraction) implies a
different outcome of the star formation process and almost
certainly an environmental dependence of the IMF (unless
the core mass function changes in such as way as to exactly
mask this change); see Sect. 8.

Each pairing function, as well as each subset of stars, results in
a different mass ratio distribution and binary fraction. It is there-
fore of great importance to carefully study selection effects in
observations, and to clearly state the pairing mechanism used in
simulations, in order to make statements about the star formation
process. The pairing functions described in this paper are likely
too simplistic to describe a realistic stellar population. However,
they are frequently used to describe observations and simula-
tions. The next step forward is to fully characterize the binary
population of several young stellar groupings; only in this way
the star formation process can be recovered.
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Appendix A: The pairing function and mass ratio

distributions

In this appendix we discuss for each of the pairing mechanisms
described in the main paper how to calculate the mass ratio dis-
tribution function fq(q). The masses of primary (M1) and sec-
ondary (M2) are drawn from the same generating mass distribu-
tion fM(M), or alternatively, the primary is drawn from fM(M)
while the secondary is drawn from a generating mass ratio dis-
tribution. The generating mass distribution is treated throughout
this appendix as a probability density:

P(M ≤ t) = FM(t) =
∫ t

−∞
fM(x)dx, (A.1)

and
∫ ∞

−∞
fM(M)dM = 1. (A.2)

In the subsequent section we describe for each of the pairing
functions first how to calculate fq(q) without specifying the gen-
erating mass distribution and then we work out the resulting
mass-ratio distributions for the single power-law fM(M) which
is given here as:

f (M) = aM−α with a =
1 − α

d1−α − c1−α =
γcγ

1 − (c/d)γ
, (A.3)

where α � 1 and γ = α − 1 and c and d are the lower and upper
limits on the mass distribution.

A.1. Random pairing

The simplest choice for a pairing function is that of “random
pairing” (RP). In this case both component masses are drawn

independently from fM(M) and swapped, if necessary, to en-
sure that M2 ≤ M1. In this case the joint distribution function
frp(M1,M2) for the component masses is given by:

frp(M1,M2) = 2 fM1 (M1) fM2 (M2), (A.4)

where the factor 2 accounts for the fact that the pairs of masses
are swapped in order to ensure that M2 ≤ M1. The masses are
restricted by a lower limit c and and upper limit d which leads
to the domain of frp(M1,M2) being defined as c ≤ M1 ≤ d and
c ≤ M2 ≤ M1.

A.1.1. Mass ratio distributions for RP

First, general expressions for the mass ratio distributions are
derived before working out specific examples. To derive the
mass ratio distribution we follow the appendix of Piskunov &
Mal’Kov (1991) and derive fq(q) from its cumulative distribu-
tion function:

P(y/x ≤ q) = Fq(q) =
�

S

frp(x, y)dxdy

=

∫ d

c/q

∫ qx

c
2 f (x) f (y)dydx, (A.5)

where for ease of notation we use M1 = x and M2 = y. The
integration domain S is shown in the left-hand panel of Fig. 5.
The probability density fq is then given by:

fq(q) =
d

dq
Fq(q). (A.6)

In observational surveys for binarity one is often restricted to
a certain range of primary spectral types for observational rea-
sons. To derive the effects of the selection on primary mass, the
derivation of fq(q) again proceeds via the cumulative distribution
function, which is now given by:

Fq(q) = P(y/x ≤ q|x1 ≤ x ≤ x2) ∝
�

S ′

frp(x, y)dxdy, (A.7)

where the primary mass range is restricted to x1 ≤ M1 ≤ x2
and the integration domain S ′ is as shown in Fig. 5. The integra-
tion domain limits now depend on whether q is larger or smaller
than c/x1. For q ≤ c/x1 the integration domain S ′ is given by:
c/q ≤ x ≤ x2 ∧ c ≤ y ≤ qx (middle panel in Fig. 5), while for
q > c/x1 S ′ is defined by x1 ≤ x ≤ x2 ∧ c ≤ y ≤ qx (right-hand
panel in Fig. 5). The minimum possible value of q is c/x2 in this
case, implying that F(q) = 0 for q < c/x2. Thus the expression
for the mass ratio distribution now becomes:

Fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 q < c
x2

k
∫ x2

c/q

∫ qx

c
2 f (x) f (y)dydx c

x2
≤ q < c

x1

k
∫ x2

x1

∫ qx

c
2 f (x) f (y)dydx c

x1
≤ q ≤ 1

, (A.8)

and the probability density fq is again derived according to
Eq. (A.6). The normalisation constant k can be calculated from
the condition Fq(1) = 1.

A.1.2. Binary fractions for RP

For RP, the overall binary fraction Ball is equal to the gener-
ating binary fraction B. The specific binary fraction BM1 (M1),
however, is generally a function of primary mass. For a given
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primary mass, the number of single stars S (M1) with mass M1
and the number of binary stars B(M1) with primary mass M1 is
given by:

S M1 = S fM(M1)dM1, (A.9)

where S is the total number of single stars in the system, and

BM1 = 2B fM(M1)dM1

∫ M1

c
fM(M′)dM′, (A.10)

where B is the total number of binary stars in the system
and c is the minimum stellar mass. The specific binary fraction
BM1 (M1) = BM1/(S M1 + BM1) is then given by:

BM1 (M1) =
2B FM(M1)

2B FM(M1) + S
=

(

B−1 − 1
2FM(M1)

+ 1

)−1

, (A.11)

where FM(M1) is the cumulative mass distribution (i.e., the
primitive of fM) evaluated at mass M1.

An example of the mass-dependent binary fraction result-
ing from RP is shown in Fig. 7. Clearly, we have BM1 (M1) ≡ 1
when S = 0, and BM1 (M1) ≡ 0 when B = 0. Also, BM1 (Mmax) =
2B/(2B + S ) ≥ B and BM1 (Mmin) = 0. The mass at which the
specific binary fraction equals the generating binary fraction can
be found by solving B = BM1 (M1), which gives FM(M1) = 0.5.
In other words, for pairing function RP the overall binary frac-
tion can be found at the median stellar mass 〈M〉. For higher pri-
mary masses, BM1 (M1) is higher, and for lower primary masses,
BM1 (M1) is lower.

A.1.3. Single power-law mass distribution

From Eqs. (A.5), (A.6), and (A.8) mass ratio distributions for
specific choices of the generating mass distribution can be de-
rived. The single power-law defined in Eq. (A.3) is considered
here. Without restrictions on the primary mass range, the cumu-
lative distribution for q is given by:

Fq(q) =
∫ d

c/q

∫ qx

c
2a2x−αy−αdydx

=
a2

γ2c2γ

(

(c/d)2γq−γ + qγ − 2(c/d)γ
)

.

The probability density for q is then obtained as the derivative
with respect to q of Fq which after some algebraic manipulation
leads to:

fq(q) =
γ

(1 − (c/d)γ)2

(

qα−2 − (c/d)2γq−α
)

. (A.12)

For c/d ≪ 1 one obtains:

fq(q) ≈
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(α − 1)qα−2 α > 1

(1 − α)q−α α < 1
. (A.13)

These approximations are poor when α ≈ 1.
Figure A.1 shows a number of examples of the resulting

mass ratio distributions for different values of c/d and the power-
law slope α. The values for α represent the Salpeter mass
distribution (2.35), the slopes at the lower mass end for the
Kroupa (2001) mass distribution (1.3 and 0.3), and a possible
slope at the very low mass end of the mass distribution, where
the number of stars increases with m. The latter value may occur
in a multi-part power-law mass distribution with a real turnover
at the low mass end. For α > 1 the mass distribution decreases

with log m and for α < 1 it increases with log m. However this
does not represent a real turnover in the mass distribution, the
number of stars still increases as the mass goes down as long as
α > 0. Note how the peak in the q distribution changes as the
values of α and c/d are changed. For very small values of c/d
one can see from the approximation (A.13) that fq will be flat
for α ≈ 0 and α ≈ 2 and that it will peak at small values of q for
0 < α < 2. For values of α larger than 2 the number of low-mass
stars is so dominant that large values of q are favoured (i.e., both
M1 and M2 are likely to be small). Conversely, for α < 0 the rise
of the number of stars with m again favours large values of q. For
0 < α < 2 the ratio of probabilities to obtain low- or high-mass
stars is such that drawing two equal mass star is unlikely thus
favouring small values of q.

To find the expression for fq when the primary mass range is
restricted Eq. (A.8) has to be worked out for the single power-
law mass distribution. For 0 < q < c/x2 Fq(q) = 0, while for
c/x2 ≤ q < c/x1 Fq(q) is given by:

Fq(q) ∝
∫ x2

c/q

∫ qx

c
x−αy−αdydx =

1
1 − α

×
∫ x2

c/q

x−α
(

q1−αx1−α − c1−α
)

dx

∝ 1
γ2

(

1
2

(

q−γx−2γ
2 + c−2γqγ

)

− c−γx−γ2

)

.

For c/x1 ≤ q ≤ 1 the cumulative distribution for q is given by:

Fq(q) ∝
∫ x2

x1

∫ qx

c
x−αy−αdydx

∝ 1
γ2

(

1
2

q−γ
(

x
−2γ
2 − x

−2γ
1

)

− c−γ
(

x
−γ
2 − x

−γ
1

)

)

.

The normalisation constant k for the probability density of q
can now be found by substituting q = 1 in the last expression
for Fq(q):

k = γ2

(

1
2

(

x
−2γ
2 − x

−2γ
1

)

− c−γ
(

x
−γ
2 − x

−γ
1

)

)−1

. (A.14)

Now the expressions for fq(q) can be derived by taking the
derivative of the integrals above:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 q < c
x2

k
2γc2γ

(

qα−2 −
(

c
x2

)2γ
q−α

)

c
x2
≤ q < c

x1

k

2γx
2γ
1

(

1 −
(

x1
x2

)2γ
)

q−α c
x1
≤ q ≤ 1

, (A.15)

If x1 = x2 fq(q) will be proportional to q−α for c/x1 ≤ q ≤ 1 and
zero otherwise:

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 q < c
x1

1−α
1−(c/x1)1−α q−α c

x1
≤ q ≤ 1

. (A.16)

Figure A.2 shows examples of the behaviour of fq(q) when the
primary mass range is restricted. The solid lines show the distri-
bution of q for a complete binary sample. The dotted lines show
what happens if there is only a lower limit (>c) on the primary
mass range. For α > 1 the large mass ratios are preferentially
removed because low-mass primaries are removed. Conversely
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Mass ratios for random pairing and single power law IMF with slope:  2.35
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Fig. A.1. Mass ratio distributions fq(q) for random pairing from the single power-law fM(M). The curves are shown for α = 2.35, 1.30, 0.30, −2.50
and four ratios of the lower to the upper mass limit of fM(M): c/d = 0.01, 0.1, 0.3, 0.5.

if there is only an upper limit on M1 (< d) only small mass ratios
are removed and the resulting fq(q) is given by the dashed lines.
The dot-dashed lines show a generic case with c < x1 < x2 < d.
The latter case for very narrow primary mass ranges fq(q) will
converge to fq(q) ∝ q−α. For 0 < α < 1 the effect of mass
selection is to remove the small values of q, thus flattening the
distribution and moving the peak. For α < 0 the mass selection
does not have much effect. This figure illustrates that the inter-
pretation of mass ratio distributions in terms of random pairing
is not straightforward unless the generating mass function is well
known and the observations are indeed complete over a known
primary mass range.

The expression for the specific binary fraction BM1 (M1) re-
sulting from random pairing is listed in Table A.3, and, for
the Salpeter generating mass distribution (α = 2.35), shown
in Fig. 7.

A.2. Primary-constrained random pairing

In this case (PCRP) the primary and secondary are again drawn
independently from the generating mass distribution, however
for the secondary the condition M2 ≤ M1 is imposed before
drawing the secondary mass. That is the probability density
fM2 (M2) is re-normalised to the interval [c,M1] (recall that c is
the lower mass limit on the mass distribution).

A.2.1. Mass ratio distributions for PCRP

Writing the re-normalised secondary mass distribution as
f ′M2

(M2) = f ′(y), the expression for the joint probability dis-
tribution fpcrp(M1,M2) is:

fpcrp(M1,M2) = fM1 (M1) f ′M2
(M2), (A.17)

which is normalised to 1 due to the re-normalisation
of f ′M2

(M2).
To derive fq one can proceed as for the RP case. The integra-

tion domain is as shown in the left-hand panel of Fig. 5 and the
expression for F(q) can be written as:

F(q) =
∫ d

c/q

∫ qx

c
f (x) f ′(y)dydx. (A.18)

Note that the normalisation constant for f ′(y) depends on x. The
expression for the restricted primary mass range becomes:

Fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 q < c
x2

k
∫ x2

c/q

∫ qx

c
f (x) f ′(y)dydx c

x2
≤ q < c

x1

k
∫ x2

x1

∫ qx

c
f (x) f ′(y)dydx c

x1
≤ q ≤ 1

, (A.19)

where the integration domains for c/x2 ≤ q < c/x1 and c/x1 ≤
q ≤ 1 are shown in the middle and right-hand panels of Fig. 5,
respectively.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=9
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Mass ratios for random pairing α= 2.35, c=0.020, d= 2.000
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Mass ratios for random pairing α=-2.50, c=0.020, d= 2.000
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Fig. A.2. Mass ratio distributions fq(q) for random pairing from a single power-law fM (M). The solid curve shows the complete mass ratio
distribution (for all binaries in the population). The other curves show what happens to the observed fq(q) if the primary mass M1 is restricted to
x1 ≤ M1 ≤ x2. The curves are shown for α = 2.35, 1.30, 0.30, −2.50. The value of c/d is 0.01 and x1 and x2 are listed in the panels.

A.2.2. Binary fractions for PCRP

For PCRP, the overall binary fraction Ball equals B, and specific
binary fraction BM1 (M1) is equal to the generating binary frac-
tion B for any mass M1.

A.2.3. Single power-law mass distribution

For the single power-law mass distribution, with lower and upper
mass limits c and d, the joint distribution of x = M1 and y =
M2 is:

fpcrp(x, y) = a1x−αa2(x)y−α, (A.20)

where the normalisation constant for f (y) depends on the pri-
mary mass x:

a1 =
γcγ

1 − (c/d)γ
and a2(x) =

γcγ

1 − (c/x)γ
· (A.21)

A distinction has to be made between the cases α < 1 and α > 1
as will become clear below.

Fq(q) is given by:

Fq(q) =
∫ d

c/q

∫ qx

c

γ2c2γx−α

(1 − (c/d)γ)(1 − (c/x)γ)
y−αdydx

= a1

∫ d

c/q

x−γ−1

[

q−γ(c/x)γ − 1
(c/x)γ − 1

]

dx.

Using the substitution z = c/x (which implies dx = −(c/z2)dz)
the integral can be written in a more convenient form and its
solution can be written as linear combination of the terms zγ and
ln (1 − zγ) for α > 1, while for α < 1 the terms zγ and ln (zγ − 1)
are involved.

The resulting expression for fq(q) is:

fq(q) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

γq−γ−1

1−(c/d)γ

[

ln
(

(c/d)γ−1
qγ−1

)

+ (c/d)γ − qγ
]

α < 1

γq−γ−1

1−(c/d)γ

[

ln
(

1−(c/d)γ

1−qγ

)

+ (c/d)γ − qγ
]

α > 1
. (A.22)

This expression diverges as q → 1 which is due to the low-
mass end of the primary mass distribution. As M1 approaches
c the values of q will increasingly all be close to 1. The rate
at which fq diverges depends on the value of α. For α > 0 the
mass distribution peaks at the low-mass end thus causing a rapid
divergence.

Figure A.3 shows four examples of the mass ratio distribu-
tion for PCRP from a single power-law mass distribution. The
curves are for the values of c/d of 0.01, 0.1, 0.3, and 0.5.

For the restricted primary mass range Eq. (A.19) has to be
worked out. For c/x2 ≤ q < c/x1 the expression for Fq is:

Fq(q) ∝
∫ x2

c/q

∫ qx

c

γcγx−α

1 − (c/x)γ
y−αdydx,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=10
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Mass ratios for PCRP and single power law IMF with slope:  2.35

0.0 0.2 0.4 0.6 0.8 1.0
q

0

2

4

6

8

10

12
f q

(q
)

c/d = 0.010

c/d = 0.100

c/d = 0.300

c/d = 0.500

Mass ratios for PCRP and single power law IMF with slope:  1.30

0.0 0.2 0.4 0.6 0.8 1.0
q

0

2

4

6

8

10

f q
(q

)

c/d = 0.010

c/d = 0.100

c/d = 0.300

c/d = 0.500
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Mass ratios for PCRP and single power law IMF with slope: -2.50
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Fig. A.3. Mass ratio distributions fq(q) for PCRP from a single power-law mass distribution. The curves are shown for α = 2.35, 1.30, 0.30, −2.50
and four ratios of the lower to the upper mass limit of the mass distribution: c/d = 0.01, 0.1, 0.3, 0.5.

which can be worked out to:

Fq(q) ∝
∫ x2

c/q

cγq−γx−2γ−1 − x−γ−1

(c/x)γ − 1
dx.

This integral can be worked out in the same way as for the full
primary mass range. For c/x1 ≤ q ≤ 1 the expression for Fq

becomes:

Fq(q) ∝
∫ x2

x1

cγq−γx−2γ−1 − x−γ−1

(c/x)γ − 1
dx.

The expression for fq(q) for α > 1 is:

fq(q) =
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⎨

⎪
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⎪

⎪

⎪
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0 q < c
x2

k
qγ+1

(

ln
(

1−(c/x2)γ

1−qγ

)

+
(

c
x2

)γ
− qγ

)

c
x2
≤ q < c

x1

k
qγ+1

(

ln
(

1−(c/x2)γ

1−(c/x1)γ

)

+
(

c
x2

)γ −
(

c
x1

)γ)
c
x1
≤ q ≤ 1

. (A.23)

For α < 1 the expression for fq is:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 q < c
x2

k
qγ+1

(

ln
(

(c/x2)γ−1
qγ−1

)

+
(

c
x2

)γ
− qγ

)

c
x2
≤ q < c

x1

k
qγ+1

(

ln
(

1−(c/x2)γ

1−(c/x1)γ

)

+
(

c
x2

)γ −
(

c
x1

)γ)
c
x1
≤ q ≤ 1

. (A.24)

The normalisation constant k is:

k = γ ((c/x1)γ − (c/x2)γ)−1
. (A.25)

Again, if x1 = x2, fq(q) will be proportional to q−α for c/x1 ≤
q ≤ 1 and zero otherwise and the expression is the same
as Eq. (A.16).

Examples of what happens in the case of PCRP when a se-
lection is done on primary mass are shown in Fig. A.4. The be-
haviour is qualitatively the same as for the random pairing case.

A.3. Primary-constrained pairing

For the pairing mechanism discussed now the assumption is that
there is a physical process which sets the primary mass and the
mass ratio of the binary, rather than setting the masses of pri-
mary and secondary. For the primary constrained pairing mech-
anism (PCP) the assumption is that M2 is determined from M1
through the mass ratio q. The probability densities for M1 and q
are specified in this case and they are assumed to be independent.
That is:

fpcp(M1, q) = fM1 (M1)hq(q), (A.26)

where the generating mass ratio distribution is written as hq(q)
in order to distinguish it from the observed mass ratio distribu-
tion fq(q). The latter can be obtained by integrating fpcp(M1, q)
over M1:

fq(q) =
∫

fpcp(M1, q)dM1. (A.27)

There are a number of choices one can make in generating a bi-
nary population from fpcp. The generating mass ratio distribution

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=11
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Mass ratios for PCRP α= 2.35, c= 0.020, d= 2.000
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Fig. A.4. Mass ratio distributions fq(q) for PCRP from a single power-law mass distribution. The solid curves show the complete mass ratio
distribution (for all binaries in the population). The other curves show what happens to the observed fq(q) if the primary mass M1 is restricted to
x1 ≤ M1 ≤ x2. The value of c/d is 0.01 and x1 and x2 are listed in the panels.

is assumed to be specified for the interval 0 < q ≤ 1 and
c ≤ M1 ≤ d, which leads to the following three possibilities:

PCP-I All values of q are allowed which means that for a given
primary mass M1, 0 < M2 ≤ M1. Thus binary systems with
“sub-stellar” secondary components are also allowed.

PCP-II All values of q are allowed but only binary systems for
which the secondary is “stellar” (i.e. M2 ≥ c) are retained.
This amounts to integrating fpcp over the range c/q ≤ M1 ≤ d
and re-normalising the resulting distribution of q to 1.

PCP-III Only values of q for which M2 ≥ c are allowed, i.e.
c/M1 ≤ q ≤ 1. This is equivalent to re-normalising the gen-
erating distribution hq(q) to the interval [c/M1, 1].

A.3.1. Mass ratio distributions for PCP

Again we first derive the general expressions for fq(q) before
discussing specific examples.

PCP-I In this case one always obtains fq(q) = hq(q) because the
distributions of q and M1 are independent. Also when restricting
the primary mass range the observed mass ratio distribution is
equal to the generating distribution.

PCP-II Here the systems with M2 < c are discarded and then:

fq(q) = k

∫ d

c/q

fpcp(M1, q)dM1 = k

∫ d

c/q

hq(q) fM1(M1)dM1, (A.28)

where k is a normalisation constant which ensures that
∫

fq(q)dq = 1. Of course fq(q) = 0 for 0 < q < c/d. For a
restricted primary mass range, c ≤ x1 ≤ M1 ≤ x2 ≤ d, the
expression for fq is:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2

c/q
hq(q) fM1 (M1)dM1

c
x2
≤ q < c

x1

k
∫ x2

x1
hq(q) fM1(M1)dM1

c
x1
≤ q ≤ 1

, (A.29)

where k is again a normalisation constant. For q < c/x2 the value
of c/q is larger than x2 so the lower integration limit of the inte-
gral in Eq. (A.28) becomes x2, i.e., all companions with q < c/x2
are rejected, as their mass is smaller than the minimum mass c.
For q > c/x1 we have c/q < x1 so the lower integration limit of
the integral should be fixed at x1.

PCP-III In this case the generating mass ratio distribution is re-
normalised to the interval [c/M1, 1], resulting in a generating dis-
tribution h′q(q). The expressions for fq are then derived as for the
PCP-II case:

fq(q) =
∫ d

c/q

fpcp(M1, q)dM1 =

∫ d

c/q

h′q(q) fM1(M1)dM1, (A.30)
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where a normalisation constant is now not needed (h′q(q) is nor-
malised). For the restricted primary mass range the expression is:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2

c/q
h′q(q) fM1(M1)dM1

c
x2
≤ q < c

x1

k
∫ x2

x1
h′q(q) fM1 (M1)dM1

c
x1
≤ q ≤ 1

. (A.31)

A.3.2. Binary fractions for PCP

PCP-I The overall and specific binary fractions are always
equal to the generating binary fraction B for PCP-I

PCP-II Due to the rejection of low-mass companions with M2 <
c, i.e., with q < qmin(M1) = c/M1, the binary fraction varies with
primary mass:

BM1 (M1) = B
∫ 1

qmin(M1)
hq(q) dq < B, (A.32)

where hq(q) is the generating mass ratio distribution. Note that
BM1 (M1) is independent of the generating mass distribution. An
example of the mass-dependent binary fraction resulting from
PCP-II is shown in Fig. 7. For high-mass binaries with M1 ≈ d,
very few companions are rejected as qmin(M1) ≪ 1, and hence
BM1 (M1) ≈ B. For the lowest mass binaries in the sample, on
the other hand, qmin(M1) ≈ 1, and therefore BM1 (M1) ≈ 0. The
overall binary fraction can be found by integrating over primary
mass

Ball =

∫ d

c

BM1 (M1) fM1 (M1) dM1, (A.33)

and is always lower than B.

PCP-III The overall and specific binary fractions are always
equal to the generating binary fraction B for PCP-III

A.3.3. Uniform mass ratio distribution and single power-law
mass distribution

The following is assumed for hq and fM1 (M1) = f (x) (using x =
M1 for ease of notation):

hq(q) = 1 0 < q ≤ 1

f (x) = ax−α c ≤ x ≤ d ,

where a = γcγ/(1 − (c/d)γ) and α � 1.

The PCP-II case For the full primary mass range we have from
Eq. (A.28):

fq(q) = k

∫ d

c/q

ax−αdx = k
qγ − (c/d)γ

1 − (c/d)γ
· (A.34)

The expression for k can be found by solving
∫ 1

c/d
fq(q)dq = 1

for k which leads to the final expression for the observed mass
ratio distribution:

fq(q) =

{

0 0 < q < c
d

(γ+1)(qγ−(c/d)γ)
1−(γ+1)(c/d)γ+γ(c/d)γ+1

c
d
≤ q ≤ 1 . (A.35)

If the primary mass range is restricted to x1 ≤ q ≤ x2 the expres-
sion for fq can be derived using Eq. (A.29):

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k(qγ − (c/x2)γ) c
x2
≤ q < c

x1

k((c/x1)γ − (c/x2)γ) c
x1
≤ q ≤ 1

, (A.36)

where the normalisation constant is:

k=
γ +1

(γ + 1) [(c/x1)γ − (c/x2)γ] − γ [(c/x1)γ+1− (c/x2)γ+1
] ·(A.37)

Note that if x1 = x2 the distribution of q will be uniform on the
interval [c/x1, 1], i.e. fq(q) = 1/(1 − c/x1). The equations above
do not hold for α = 0. This case is easily evaluated and the result
for α = 0 is:

fq(q) =
1

1 − c/d + (c/d) ln (c/d)

(

1 − c/d

q

)

· (A.38)

The PCP-III case Now the mass ratio distribution is re-
normalised to the interval [c/x, 1] which gives:

h′q(q) =
1

1 − c/x
· (A.39)

For the full primary mass range fq is obtained from Eq. (A.30):

fq(q) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 0 < q < c
d

a
∫ d

c/q

x1−α

x−c
dx c

d
≤ q ≤ 1

. (A.40)

Restricting the primary mass range leads to:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2

c/q

x1−α

x−c
dx c

x2
≤ q < c

x1

k
∫ x2

x1

x1−α

x−c
dx c

x1
≤ q ≤ 1

, (A.41)

The expressions for the PCP-III case can be written in a slightly
more convenient form when using the substitution z = c/x. For
the full primary mass range:

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 < q < c
d

γ

1−(c/d)γ

∫ q

c/d

zγ−1

1−z
dz c

d
≤ q ≤ 1

, (A.42)

and for the restricted range:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
γ

1−(c/d)γ

∫ q

c/x2

zγ−1

1−z
dx c

x2
≤ q < c

x1

k
γ

1−(c/d)γ

∫ c/x1

c/x2

zγ−1

1−z
dx c

x1
≤ q ≤ 1

. (A.43)

The integrals involving the term zγ−1/(1−z) can be solved and the
general expression involves the hypergeometric function 2F1.
The expression is:
∫

zγ−1

1 − z
dz =

zγ

γ
+

2F1(γ + 1, 1; γ + 2; z)zγ+1

γ + 1
· (A.44)

From the properties of the hypergeometric function (see
Gradshteyn & Ryzhik 2007, Chapt. 9) it follows that because
(γ+1)+1− (γ+2) = 0 the expression above converges through-
out the unit circle in the complex plane except at |z| = 1. So
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there will be a singularity at q = 1 for the full primary mass
range case.

For integer values of γ (or α) special care should be taken.
From the expression above it is clear that γ = 0 or γ = −1 should
be treated separately. Furthermore the hypergeometric series for
2F1(a, b; c; z) is indeterminate for c = −n where n = 0, 1, 2, ... if
neither a nor b is equal to −m (where m < n and m is a natural
number). Here this means that all cases γ + 2 = −n should be
treated separately which combined with the condition γ � 0,−1
implies that whenever γ = −n (i.e. α = −n + 1) the expression
above will not apply. The case α = 1, γ = 0, is excluded, so the
special cases are γ = −n − 1, α = −n, and then the expression
for the integrals becomes:
∫

dz

zn+1(1 − z)
=

n
∑

k=1

−1
(n + 1 − k)zn+1−k

− ln
1 − z

z
, (A.45)

where the solution can be found from formula 2.117(4) in
Gradshteyn & Ryzhik (2007). In the integrals above the inte-
gration constants were left out.

For restricted primary mass ranges the results above can be
used to evaluate the integrals listed in Eq. (A.43). The normali-
sation constant k can be obtained from numerical integration of
fq(q). Again, if x1 = x2 one obtains fq(q) = 1/(1− c/x1) for q in
the interval [c/x1, 1]. Figures A.5 and A.6 show examples of the
resulting mass ratio distributions for hq(q) = 1 and various sin-
gle power-law mass distributions for the primaries. The hyper-
geometric function was calculated using the routine from Press
et al. (2007, Sect. 6.13).

Finally, we have listed the expressions for the binary fraction
as a function of primary mass in Table A.3.

A.4. Split-core pairing

The mechanism of split-core pairing (SCP) works on the as-
sumption that binaries are formed by the splitting of star-forming
cores into two components. The component masses are speci-
fied through their mass ratio. The distribution function for the
core masses Mc is given by the core mass function fc(Mc) and
the mass ratio distribution fq(q) is specified independently. The
masses of the primary and secondary are then given by:

M1 =
1

1 + q
Mc and M2 =

1
1 + q−1

Mc, (A.46)

where for simplicity the star formation efficiency is assumed to
be 100% once the core mass is set. For a constant efficiency as
a function of core mass this assumption has no influence on the
results. Furthermore it is assumed that the minimum core mass
is large enough to ensure that the primary is always of “stellar”
mass. That is the minimum core mass has to be at least twice the
minimum stellar mass.

The joint probability density fscp for Mc and q is written as:

fscp(Mc, q) = fc(Mc)hq(q), (A.47)

where again the generating mass ratio distribution is written
as hq(q) in order to distinguish it from the observed mass ra-
tio distribution fq(q). The latter can be obtained by integrating
fscp(Mc, q) over Mc:

fq(q) =
∫

fscp(Mc, q)dMc. (A.48)

As for PCP there are three cases: The generating mass ratio dis-
tribution is assumed to be specified for the interval 0 < q ≤ 1

and we assume 2c ≤ Mc ≤ 2d (with c and 2d being the mini-
mum and maximum stellar mass, respectively), which leads to
the following three possibilities:

SCP-I All values of q are allowed, so that for a given core
mass Mc, M1 = Mc/(1 + q) and 0 < M2 ≤ M1. Thus bi-
nary systems with “sub-stellar” companions are allowed.

SCP-II All values of q are allowed, but only binaries for which
the secondary is “stellar” (i.e. M2 ≥ c) are retained. This
amounts to integrating fscp over the range c(1+ 1/q) ≤ Mc ≤
2d and then re-normalising the resulting distribution of q to
1.

SCP-III Only values of q for which M2 ≥ c are allowed, i.e.
c/(Mc − c) ≤ q ≤ 1. This is equivalent to re-normalising the
generating distribution hq(q) to the interval [c/(Mc − c), 1].

If we would have chosen our core mass distribution in the in-
terval c ≤ Mc ≤ 2d rather than 2c ≤ Mc ≤ 2d, we would
have encountered a further complication. For pairing function
SCP-II the resulting single star mass is then occasionally smaller
than c, and for SCP-III the splitting up is not possible if the bi-
nary system mass is smaller than 2c (see Sect. 6 for details). For
simplicity we avoid this issue in our analysis below, and sim-
ply draw masses from the core mass distribution in the range
2c ≤ Mc ≤ 2d.

A.4.1. Mass ratio distributions for SCP

We give the general expressions for fq(q) before discussing
specific examples. For ease of notation we use x = Mc and
f (x) = fc(Mc).

SCP-I If no selection on primary mass is made one always ob-
tains fq(q) = hq(q) because the distributions of q and Mc are
independent. Unlike PCP-I, restricting the primary mass range
now does cause changes of the observed mass ratio distribution
with respect to the generating one. Several cases have to be dis-
tinguished on the basis of the value of the primary mass selection
limits x1 and x2 compared to the values of c, d, 2c, and 2d. Note
that x1 and x2 are limits on M1, not Mc.

In all cases discussed below a selection x1 ≤ M1 ≤ x2 in
principle translates to x1(1 + q) ≤ x ≤ x2(1 + q) but the up-
per and/or lower limits on x and q used for integrating fscp and
normalising fq(q) are different for each case. We introduce the
following variables to distinguish the different cases:

q0 = 2c/x2 − 1 q2 = 2d/x2 − 1
q1 = 2c/x1 − 1 q3 = 2d/x1 − 1.

The value of x (core-mass) is restricted to [2c, 2d], hence for
q < q0 or q > q3 the probability distribution for q vanishes (as
these conditions imply M1 > x2 or M1 < x1, both of which are
not allowed). For q < q1 the lower integration limit for x when
determining fq is fixed at 2c and for q > q2 the upper limit is
fixed at 2d.

Case 1: x1 ≤ c < x2 ≤ 2c In this case the value of q0 is
between 0 and 1 and all other values of qi are larger than 1. This
means that two cases should be distinguished for fq, q < q0 and
q > q0, and that the lower integration limit for x is always fixed
at 2c. The expression for fq is then given by:

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 < q < q0

k
∫ x2(1+q)

2c
hq(q) f (x)dx q0 ≤ q ≤ 1

, (A.49)
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Mass ratios for PCP-II, single power-law IMF: α= 2.35
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Mass ratios for PCP-II, single power-law IMF: α= 0.30
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Mass ratios for PCP-III, single power-law IMF: α= 0.30
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Mass ratios for PCP-II, single power-law IMF: α=-2.50
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Mass ratios for PCP-III, single power-law IMF: α=-2.50
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Fig. A.5. Mass ratio distributions fq(q) for PCP-II and III for a uniform generating mass ratio distribution and primary masses from the single
power-law mass distribution for α = 2.35, 0.30, −2.50. The curves are shown for three ratios of the lower to the upper mass limit of the mass
distribution: c/d = 0.1, 0.3, 0.5.

where k is a normalisation constant which follows from:

∫ 1

q0

fq(q)dq = 1. (A.50)

Case 2: x1 ≤ c ∧ 2c < x2 ≤ d This is the same as case 1
except that now q0 < 0 so that there is only one part to the
expression for fq. The lower integration limit for x is still 2c:

fq(q) = k

∫ x2(1+q)

2c

hq(q) f (x)dx 0 < q ≤ 1, (A.51)
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Mass ratios for PCP-II α= 2.35, c=0.200, d= 2.000
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Mass ratios for PCP-II α= 0.30, c=0.200, d= 2.000
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Fig. A.6. Mass ratio distributions fq(q) for PCP-II and III for a uniform generating mass ratio distribution and primary masses from a single power-
law mass distribution. The solid curve shows the complete mass ratio distribution (for all binaries in the population) for c = 0.2 and d = 2.0. The
other curves show what happens to the observed fq(q) if the primary mass M1 is restricted to x1 ≤ M1 ≤ x2.

where the normalisation constant k is obtained by integrating fq
over [0, 1].

Case 3: x1 ≤ c ∧ d < x2 ≤ 2d Now the value of q2 is in
the interval [0, 1] which means that for the case q > q2 the upper

integration limit for x is fixed at 2d which leads to a plateau in
the probability density fq:

fq(q) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k
∫ x2(1+q)

2c
hq(q) f (x)dx 0 < q ≤ q2

k
∫ 2d

2c
hq(q) f (x)dx q2 < q ≤ 1

, (A.52)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=14
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where the normalisation constant k is obtained through integra-
tion over the intervals [0, q2] and [q2, 1].

Case 4: c < x1 < x2 ≤ 2c Now the values of q0 and q1 are
in the interval [0, 1] which means that the lower integration limit
for x depends on q. The probability density for q now consists of
three parts:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < q0

k
∫ x2(1+q)

2c
hq(q) f (x)dx q0 ≤ q < q1

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx q1 ≤ q ≤ 1

, (A.53)

where k now has to be obtained from condition (A.50) by inte-
grating over the intervals [q0, q1] and [q1, 1].

Case 5: c < x1 ≤ 2c ∧ 2c < x2 ≤ d The value of q0
becomes less than zero and we have:

fq(q) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k
∫ x2(1+q)

2c
hq(q) f (x)dx 0 < q < q1

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx q1 ≤ q ≤ 1

, (A.54)

where k is now has to be obtained from condition (A.50) by in-
tegrating over the intervals [0, q1] and [q1, 1].

Case 6: c < x1 ≤ 2c ∧ d < x2 ≤ 2d Now the values of q1
and q2 are in the interval [0, 1]. For q < q1 the lower integration
limit is fixed to 2c and for q > q2 the upper integration limit is
fixed to 2d. In addition it can happen that q1 < q2 or q1 ≥ q2. The
latter case will cause a plateau of constant probability density fq
for q1 ≤ q ≤ q2. So now there are two “sub-cases”.

Case 6a: q1 < q2

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k
∫ x2(1+q)

2c
hq(q) f (x)dx 0 < q < q1

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx q1 ≤ q < q2

k
∫ 2d

x1(1+q)
hq(q) f (x)dx q2 ≤ q ≤ 1

, (A.55)

where the normalisation constant k is obtained through integra-
tion over three intervals [0, q1], [q1, q2], and [q2, 1].

Case 6b: q1 ≥ q2

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k
∫ x2(1+q)

2c
hq(q) f (x)dx 0 < q < q2

k
∫ 2d

2c
hq(q) f (x)dx q2 ≤ q < q1

k
∫ 2d

x1(1+q)
hq(q) f (x)dx q2 ≤ q ≤ 1

, (A.56)

where the normalisation constant k is obtained through integra-
tion over three intervals [0, q2], [q2, q1], and [q1, 1].

Case 7: 2c < x1 < x2 ≤ d Now the values of q0 and q1 are
less than zero and both q2 and q3 are larger than 1. Hence the
probability density consists of one part only:

fq(q) = k

∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx 0 < q ≤ 1, (A.57)

where k is obtained by integrating fq over [0, 1].
Case 8: 2c < x1 ≤ d ∧ d < x2 ≤ 2d The value of q2 is now

in [0, 1] so fq will consist of two parts:

fq(q) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx 0 < q < q2

k
∫ 2d

x1(1+q)
hq(q) f (x)dx q2 ≤ q ≤ 1

, (A.58)

where k is obtained by integrating fq over [0, q2] and [q2, 1].

Case 9: d < x1 < x2 ≤ d Now the values of both q2 and q3
are in [0, 1] and the probability density will vanish if q > q3:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx 0 < q < q2

k
∫ 2d

x1(1+q)
hq(q) f (x)dx q2 ≤ q < q3

0 q3 ≤ q ≤ 1

, (A.59)

where k is obtained by integrating fq over [0, q2] and [q2, q3].

SCP-II The expression for fq is obtained by integrating the joint
distribution fscp over x over the range c(1 + 1/q) ≤ x ≤ 2d and
normalising the resulting expression for fq to 1:

fq(q) = k

∫ 2d

c(1+1/q)
hq(q) f (x)dx, (A.60)

where k is obtained from the condition:
∫ 1

c/(2d−c)
fq(q)dq = 1, (A.61)

with c/(2d − c) being the minimum possible value for q.
When the mass range is restricted there are again a number of

cases to consider, depending on the values of x1 and x2. However
the situation is less complicated than for SCP-I. First of all the
value of c(1 + 1/q) is always larger than 2c for 0 < q ≤ 1 which
means that the value of q1 plays no role. Secondly the minimum
possible value of q is c/x2 and this quantity is always larger than
q0 for x2 ≥ c (which is mandatory) and therefore also the value
of q0 plays no role. For q < c/x2 fq(q) is always zero. The values
of q2 and q3 do matter as discussed below.

Case 1: x1 < x2 ≤ d In this case the integration limits
for x, x1(1 + q) and x2(1 + q) are guaranteed to be less than 2d.
For q < c/x1 the value of x1(1 + q) is less than c(1 + 1/q) so
the lower limit for integral over x is then fixed at c(1+ 1/q). The
expression for fq(q) becomes:

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2(1+q)

c(1+1/q)
hq(q) f (x)dx c

x2
≤ q < c

x1

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx c

x1
≤ q ≤ 1

, (A.62)

where k is obtained from the condition:
∫ 1

c/x2

fq(q)dq = 1. (A.63)

Case 2: x1 ≤ d ∧ x2 > d Now the value of q2 is less
than 1 and for q > q2 the upper limit of the integral over x is
fixed at 2d (the value of x2(1 + q) being larger than 2d). Now,
q2 ≥ c/x2 but q2 may be larger or smaller than c/x1. So there are
two sub-cases:

Case 2a q2 ≤ c/x1

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2(1+q)

c(1+1/q)
hq(q) f (x)dx c

x2
≤ q < q2

k
∫ 2d

c(1+1/q)
hq(q) f (x)dx q2 ≤ q < c

x1

k
∫ 2d

x1(1+q)
hq(q) f (x)dx c

x1
≤ q ≤ 1

, (A.64)

where k is obtained by integrating fq over [c/x2, q2], [q2, c/x1],
and [c/x1, 1], and applying condition (A.63).
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Case 2b q2 >
c
x1

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2(1+q)

c(1+1/q)
hq(q) f (x)dx c

x2
≤ q < c

x1

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx c

x1
≤ q < q2

k
∫ 2d

x1(1+q)
hq(q) f (x)dx q2 ≤ q ≤ 1

, (A.65)

where k is obtained by integrating fq over [c/x2, c/x1], [c/x1, q2],
and [q2, 1], and applying condition (A.63).

Case 3: x1 > d This is the same as case 2 except that q3 < 1
which means that fq(q) = 0 for q > q3 (this is due to the value
of x1(1 + q) becoming larger than 2d). There are the same two
sub-cases:

Case 3a: q2 ≤ c/x1

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2(1+q)

c(1+1/q)
hq(q) f (x)dx c

x2
≤ q < q2

k
∫ 2d

c(1+1/q)
hq(q) f (x)dx q2 ≤ q < c

x1

k
∫ 2d

x1(1+q)
hq(q) f (x)dx c

x1
≤ q < q3

0 q3 ≤ q ≤ 1

, (A.66)

where k is obtained by integrating fq over [c/x2, q2], [q2, c/x1],
and [c/x1, q3], and applying condition (A.63).

Case 3b q2 > c/x1

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
∫ x2(1+q)

c(1+1/q)
hq(q) f (x)dx c

x2
≤ q < c

x1

k
∫ x2(1+q)

x1(1+q)
hq(q) f (x)dx c

x1
≤ q < q2

k
∫ 2d

x1(1+q)
hq(q) f (x)dx q2 ≤ q < q3

0 q3 ≤ q ≤ 1

, (A.67)

where k is obtained by integrating fq over [c/x2, c/x1], [c/x1, q2],
and [q2, q3], and applying condition (A.63).

SCP-III Now the generating mass ratio distribution hq is re-
stricted to the range c/(Mc − c) ≤ q ≤ 1 and re-normalised.
The corresponding distribution is h′q(q) and the expression for
fq becomes:

fq(q) =
∫ 2d

c(1+1/q)
h′q(q) f (x)dx, (A.68)

where the lower integration limit is set by the condition M2 ≥ c
and the distribution is normalised.

When the primary mass range is restricted to x1 ≤ x ≤ x2 the
cases and expressions for fq(q) are the same as for the SCP-II
case, except that h′q(q) replaces hq(q) everywhere.

A.4.2. Binary fractions for SCP

In order to find the specific binary fraction as a function of pri-
mary mass, we first need to find the primary mass distribution
fM1 (M1), which can be calculated as:

fM1 (M1) =
∫ qmax(M1)

qmin(M1)
fM1 ,q(M1, q) dq, (A.69)

where qmin(M1) and qmax(M1) are the minimum and maximum
mass ratios for a given primary mass M1, and fM1 ,q(M1, q) is the
joint probability density function for M1 and q. The latter can
be derived from the generating (core) mass distribution fMC (MC)
and the generating mass distribution hq(q):

fM1 ,q(M1, q) = fMC (MC(M1, q))hq(q)(1 + q), (A.70)

where the factor (1 + q) is the Jacobian of the transformation
M1 = MC(q + 1)−1 and q = q.

SCP-I The number of binary systems with a mass M1 is given
by NB fM1 (M1)dM1, where N is the total number of systems (sin-
gles plus binaries) in the population. The number of single stars
with a mass M1 is given by N(1 − B) fMC (M1)dM1. The specific
binary fraction is thus:

BM1 (M1) =
BM1

S M1 + BM1

=
B fM1 (M1)

B fM1 (M1) + (1 − B) fMC (M1)
· (A.71)

The integration limits for fM1 (M1) are indicated with domain S
in Fig. A.8, and are given by:

qmin =

{

2 − M1/c c ≤ M1 < 2c

0 2c ≤ M1 ≤ 2d
, (A.72)

and

qmax =

{

1 c ≤ M1 < d

2 − M1/d d ≤ M1 ≤ 2d
. (A.73)

An example for the specific binary fraction resulting from SCP-I
is shown in Fig. 7. The specific binary fraction for c ≤ M1 ≤ 2c
equals unity, as fMC (M1) = 0 in this mass range. In the mass
range 2c < M1 ≤ d the specific binary fraction is practically
independent of M1. Beyond M1 = d, the specific binary fraction
rapidly drops to zero at M1 = 2d. The overall binary fractionBall
is always equal to B for SCP-I.

SCP-II The integration domain for SCP-II to obtain fM1 (M1) is
indicated with region S ′ in Fig. A.8, i.e., for c ≤ M1 ≤ 2d − c.
The integration limits qmin and qmax are given by:

qmin = c/M1 c ≤ M1 < 2d − c, (A.74)

and

qmax =

{

1 c ≤ M1 < d

2 − M1/d d ≤ M1 ≤ 2d − c
. (A.75)

The specific binary fraction for a population with a generating
binary fraction of unity, i.e., B = 100%), is given by:

B100(M1) =

∫ qmax,2(M1)

qmin,2(M1)
fM1,q(M1, q) dq

∫ qmax,1(M1)

qmin,1(M1)
fM1,q(M1, q) dq

, (A.76)

where the joint probability distribution is given by Eq. (A.70).
For a given primary mass M1, the value of B100(M1) given by
the ratio between the (weighted) lengths of the horizontal line
segments of domain S ′ and S in Fig. A.8. The integration limits
qmin,2 and qmax,2 are thus given by Eqs. (A.74) and (A.75), and
the limits qmin,1 and qmax,1 are given by Eqs. (A.72) and (A.73),
respectively. For systems with an arbitrary value of B, the num-
ber of binary systems is given by

BM1 = NBB100(M1) fM1 (M1)dM1, (A.77)
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Table A.1. The specific mass ratio distribution fq(q) for pairing function SCP-I, resulting from a power-law generating mass distribution fm(m)
and a uniform generating mass ratio distribution hq(q). See Appendix A.4.3 for details.

SCP-I Mass ratio distribution Normalization constant
Case 1

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 < q < q0

k
[

1 − (2c/x2)γ(1 + q)−γ
]

q0 ≤ q ≤ 1
k =

1 − γ
(1 − q0)(1 − γ) − 21−γ(2c/x2)γ + 2c/x2

Case 2

fq(q) = k
[

1 − (2c/x2)γ(1 + q)−γ
]

0 < q ≤ 1 k =
1 − γ

(1 − γ) − (2c/x2)γ(21−γ − 1)

Case 3

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k
1−(2c/x2)γ(1+q)−γ

1−(c/d)γ 0 < q ≤ q2

k q2 < q ≤ 1
k−1 =

1
1 − (c/d)γ

[

q2 −
(2c/x2)γ((1 + q2)1−γ − 1)

1 − γ

]

+ 1 − q2

Case 4

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < q0

k
[

1 −
(

2c
x2

)γ
(1 + q)−γ

]

q0 ≤ q < q1

k
[(

2c
x1

)γ −
(

2c
x2

)γ]

(1 + q)−γ q1 ≤ q ≤ 1

k =
1 − γ

21−γ[(2c/x1)γ − (2c/x2)γ] − γ(2c/x1 − 2c/x2)

Case 5

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k
[

1 −
(

2c
x2

)γ
(1 + q)−γ

]

0 < q < q1

k
[(

2c
x1

)γ −
(

2c
x2

)γ]

(1 + q)−γ q1 ≤ q ≤ 1
k =

1 − γ
q1(1 − γ) + [(2c/x1)γ − (2c/x2)γ]21−γ + (2c/x2)γ − 2c/x1

Case 6a

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k
[

1 −
(

2c
x2

)γ
(1 + q)−γ

]

0 < q < q1

k
[(

2c
x1

)γ −
(

2c
x2

)γ]

(1 + q)−γ q1 ≤ q < q2

k
[(

2c
x1

)γ
(1 + q)1−γ −

(

c
d

)γ]

q2 ≤ q ≤ 1

k =
1 − γ

q1(1 − γ) − (2c/x2)γ
[

(1 + q1)1−γ − 1
]

+
1 − γ

[(2c/x1)γ − (2c/x2)γ]
[

(1 + q2)1−γ − (1 + q1)1−γ]

+
1 − γ

(2c/x1 )γ(21−γ − (1 + q2)1−γ) − (c/d)γ(1 − q2)(1 − γ)

Case 6b

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k
[

1 −
(

2c
x2

)γ
(1 + q)−γ

]

0 < q < q2

k[1 −
(

c
d

)γ
] q2 ≤ q < q1

k
[(

2c
x1

)γ
(1 + q)1−γ −

(

c
d

)γ]

q1 ≤ q ≤ 1

k =
1 − γ

q2(1 − γ) − (2c/x2)γ
[

(1 + q2)1−γ − 1
]

+
1 − γ

(1 − (c/d)γ)(q1 − q2)(1 − γ)

+
1 − γ

(2c/x1 )γ(21−γ − (1 + q1)1−γ) − (c/d)γ(1 − q1)(1 − γ)

Case 7

fq(q) = k(1 + q)−γ
k =

1 − γ
21−γ − 1

Case 8

fq(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k
[(

2c
x1

)γ −
(

2c
x2

)γ]

(1 + q)−γ 0 < q < q2

k
[(

2c
x1

)γ
(1 + q)1−γ −

(

c
d

)γ]

q2 ≤ q ≤ 1
k =

1 − γ
[(2c/x1)γ − (2c/x2)γ]

[

(1 + q2)1−γ − 1
]

+
1 − γ

(2c/x1 )γ(21−γ − (1 + q2)1−γ)

− 1 − γ
(c/d)γ(1 − q2)(1 − γ)

Case 9

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

k
[(

2c
x1

)γ −
(

2c
x2

)γ]

(1 + q)−γ 0 < q < q2

k
[(

2c
x1

)γ
(1 + q)1−γ −

(

c
d

)γ]

q2 ≤ q < q3

0 q3 ≤ q ≤ 1

k =
1 − γ

[(2c/x1)γ − (2c/x2)γ]
[

(1 + q2)1−γ − 1
]

+
1 − γ

(2c/x1 )γ((1 + q3)1−γ − (1 + q2)1−γ)

− 1 − γ
(c/d)γ(q3 − q2)(1 − γ)
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Mass ratios for SCP-I α= 2.35, c=0.200, d= 2.000
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Mass ratios for SCP-I α= 2.35, c=0.200, d= 2.000
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Mass ratios for SCP-I α= 0.30, c=0.200, d= 2.000
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Mass ratios for SCP-I α= 0.30, c=0.200, d= 2.000
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Mass ratios for SCP-I α=-2.50, c=0.200, d= 2.000
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Mass ratios for SCP-I α=-2.50, c=0.200, d= 2.000
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Case 1: x1= 0.10,  x2= 0.35

q0= 0.14, q1= 3.00, q2=10.43, q3=39.00

Case 2: x1= 0.10,  x2= 1.00

q0=-0.60, q1= 3.00, q2= 3.00, q3=39.00

Case 3: x1= 0.10,  x2= 3.00

q0=-0.87, q1= 3.00, q2= 0.33, q3=39.00

Case 4: x1= 0.25,  x2= 0.35

q0= 0.14, q1= 0.60, q2=10.43, q3=15.00

Case 5: x1= 0.25,  x2= 1.00

q0=-0.60, q1= 0.60, q2= 3.00, q3=15.00

Case 6a: x1= 0.25,  x2= 2.20

q0=-0.82, q1= 0.60, q2= 0.82, q3=15.00

Case 6b: x1= 0.25,  x2= 3.50

q0=-0.89, q1= 0.60, q2= 0.14, q3=15.00

Case 7: x1= 0.50,  x2= 1.80

q0=-0.78, q1=-0.20, q2= 1.22, q3= 7.00

Case 8: x1= 0.50,  x2= 3.80

q0=-0.89, q1=-0.20, q2= 0.05, q3= 7.00

Case 9: x1= 2.10,  x2= 2.30

q0=-0.83, q1=-0.81, q2= 0.74, q3= 0.90

Fig. A.7. Left: mass ratio distributions fq(q) for split-core pairing I for a uniform generating mass ratio distribution and core masses from single
power-law mass distribution, where 2c ≤ Mc ≤ 2d. The values of α are 2.35, 0.30, and −2.50. The black solid curve shows the complete mass ratio
distribution (for all binaries in the population) for c = 0.2 and d = 2.0. The other curves show what happens to the observed fq(q) if the primary
mass M1 is restricted to x1 ≤ M1 ≤ x2. The ten cases for SCP-I from section A.4.1 are listed in the legend. Right: same, but with the vertical scale
changed to bring out some of the details in the cases close to the line fq(q) = 1.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810234&pdf_id=15
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Table A.2. The specific mass ratio distribution fq(q) for pairing function SCP-II, resulting from a power-law generating mass distribution fm(m)
and a uniform generating mass ratio distribution hq(q). See Appendix A.4.3 for details.

SCP-II Mass ratio distribution Normalization constant
Case 1

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
[(

2q

1+q

)γ
−

(

2c/x2
1+q

)γ]
c
x2
≤ q < c

x1

k
[(

2c
x1

)γ
−

(

2c
x2

)γ]

(1 + q)−γ c
x1
≤ q ≤ 1

k−1 =

∫ c/x1

c/x2

(

2q

1 + q

)γ

dq − (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(

1 +
c

x1

)1−γ

−
(

1 +
c

x2

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ − (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

21−γ −
(

1 +
c

x1

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

Case 2a

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c

x2

k
[(

2q

1+q

)γ
−

(

2c/x2
1+q

)γ]
c
x2
≤ q < q2

k
[(

2q

1+q

)γ
−

(

c
d

)γ]

q2 ≤ q < c
x1

k
[(

2c/x1
1+q

)γ
−

(

c
d

)γ]
c
x1
≤ q ≤ 1

.

k−1 =

∫ c/x1

c/x2

(

2q

1 + q

)γ

dq

− (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(1 + q2)1−γ −
(

1 +
c

x2

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

21−γ −
(

1 +
c

x1

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

−
(

c

d

)γ

(1 − q2)

Case 2b

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
[(

2q

1+q

)γ
−

(

2c/x2
1+q

)γ]
c
x2
≤ q < c

x1

k
[(

2c

x1

)γ
−

(

2c

x2

)γ]

(1 + q)−γ c

x1
≤ q < q2

k
[(

2c/x1
1+q

)γ
−

(

c

d

)γ]

q2 ≤ q ≤ 1

.

k−1 =

∫ c/x1

c/x2

(

2q

1 + q

)γ

dq

− (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(

1 +
c

x1

)1−γ

−
(

1 +
c

x2

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ − (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(1 + q2)1−γ −
(

1 +
c

x1

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ

1 − γ
[

21−γ − (1 + q2)1−γ
]

−
(

c

d

)γ

(1 − q2)

Case 3a

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
[(

2q

1+q

)γ
−

(

2c/x2
1+q

)γ]
c
x2
≤ q < q2

k
[(

2q

1+q

)γ
−

(

c

d

)γ]

q2 ≤ q < c

x1

k
[(

2c/x1
1+q

)γ
−

(

c

d

)γ]
c

x1
≤ q < q3

0 q3 ≤ q ≤ 1

k−1 =

∫ c/x1

c/x2

(

2q

1 + q

)γ

dq

− (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣
(1 + q2)1−γ −

(

1 +
c

x2

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(1 + q3)1−γ −
(

1 +
c

x1

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

−
(

c

d

)γ

(q3 − q2)

Case 3b

fq(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 < q < c
x2

k
[(

2q

1+q

)γ
−

(

2c/x2
1+q

)γ]
c
x2
≤ q < c

x1

k
[(

2c/x1
1+q

)γ
−

(

2c/x2
1+q

)γ]
c
x1
≤ q < q2

k
[(

2c/x1
1+q

)γ
−

(

c
d

)γ]

q2 ≤ q < q3

0 q3 ≤ q ≤ 1

k−1 =

∫ c/x1

c/x2

(

2q

1 + q

)γ

dq

− (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(

1 +
c

x1

)1−γ

−
(

1 +
c

x2

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ − (2c/x2)γ

1 − γ

⎡

⎢

⎢

⎢

⎢

⎣

(1 + q2)1−γ −
(

1 +
c

x1

)1−γ⎤
⎥

⎥

⎥

⎥

⎦

+
(2c/x1)γ

1 − γ
[

(1 + q3)1−γ − (1 + q2)1−γ
]

−
(

c

d

)γ

(q3 − q2)
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Table A.3. The specific binary fractionBM1 (M1) for the nine pairing functions described in this paper, resulting from a power-law mass distribution
fM (M) and a uniform mass ratio distribution hq(q). See Appendices A.1–A.4 for a detailed description, and Fig. 7 for a visualisation.

Pairing function Specific binary fraction Remarks
RP

BM1 (M1) =

(

B−1 − 1
2FM (M1)

+ 1

)−1

c ≤ M1 ≤ d FM (M1) =
M1−α

1 − c1−α

d1−α − c1−α

PCRP

BM1 (M1) = B c ≤ M1 ≤ d

PCP-I

BM1 (M1) = B c ≤ M1 ≤ d

PCP-II

BM1 (M1) = B
(

1 − c

M1

)

c ≤ M1 ≤ d

PCP-III

BM1 (M1) = B c ≤ M1 ≤ d

SCP-I

BM1 (M1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 c ≤ M1 ≤ 2c

(

1 +
α + 2
B · R(M1)

)−1

2c ≤ M1 ≤ d

(

1 +
α + 2
B · S (M1)

)−1

d ≤ M1 ≤ 2d

R(M1) = 2α+2 −
(

3 − M1

c

)α+2

S (M1) =
(

3 − M1

d

)α+2

− 1

SCP-II

BM1 (M1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

B100,R(M1) c ≤ M1 ≤ 2c

B100,S (M1)(α + 2)
1 + S (M1)(B−1 − 1)

2c ≤ M1 ≤ d

B100,T (M1)(α + 2)
1 + T (M1)(B−1 − 1)

d ≤ M1 ≤ 2d − c

0 2d − c ≤ M1 ≤ 2d

B100,R(M1) =
2α+2 − (1 + c/M1)α+2

2α+2 − (3 − M1/c)α+2

B100,S (M1) =
2α+2 − (1 + c/M1)α+2

2α+2 − 1

B100,T (M1) =
(3 − M1/d)α+2 − (1 + c/M1)α+2

(3 − M1/c)α+2 − 1

S (M1) = 2α+2 −
(

1 +
c

M1

)α+2

T (M1) =
(

3 − M1

d

)α+2

−
(

1 +
c

M1

)α+2

SCP-III

BM1 (M1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 c ≤ M1 ≤ 2c

(

1 +
α + 2
B · R(M1)

)−1

2c ≤ M1 ≤ d

(

1 +
α + 2
B · S (M1)

)−1

d ≤ M1 ≤ 2d − c

0 2d − c ≤ M1 ≤ 2d

R(M1) =
(

1 − c

M 1

)−1
⎡

⎢

⎢

⎢

⎢

⎣

2α+2 −
(

1 +
c

M1

)α+2⎤
⎥

⎥

⎥

⎥

⎦

S (M1) =
(

1 − c

M 1

)−1
⎡

⎢

⎢

⎢

⎢

⎣

(

3 − M1

d

)α+2

−
(

1 +
c

M1

)α+2⎤
⎥

⎥

⎥

⎥

⎦

and the number of single stars by

S M1 = N(1 − B) fMC (M1)dM1

+NB(1 − B100(M1)) fM1 (M1)dM1, (A.78)

where the first term refers to the fraction of clumps that were
assigned to be single, and the second term refers to the primaries

that have become single due to the rejection of their low-mass
companions. The specific binary fraction is then given by:

BM1 (M1) =
BM1

S M1 + BM1

=
B100(M1)B fM1 (M1)

B fM1 (M1) + (1 − B) fMC (M1)
, (A.79)
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2d-c
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q

M2=c

S’

S

Fig. A.8. The integration domains for obtaining the primary mass distri-
bution and specific binary fraction for pairing functions SCP-I, SCP-II
and SCP-III. The domain S for SCP-I is the parallelogram enclosed by
the solid lines. The domain S ′ for SCP-II and SCP-III is indicated with
the shaded region.

An example of the specific binary fraction resulting from SCP-II
is shown in Fig. 7. For c ≤ M1 ≤ 2c, the above equation re-
duces to B(M1) = B100(M1) as fMC (M1) = 0. The binary frac-
tion among the lowest mass stars (M1 = c) equals unity, after
which it drops until M1 = 2c. Beyond that minimum mass it
rises again and reaches its maximum at M1 = d, after which it
drops again go zero at M1 = 2d, for the same reasons as for
the SCP-I case. The overall binary fraction can be calculated by
integrating B(M1) over primary mass, weighed by the primary
mass distribution fM1 (M1), see Eq. (A.33).

SCP-III The values for qmin and qmax for SCP-III are identical
to those for SCP-II, and are given by Eqs. (A.74) and (A.75).
The expression for the specific binary fraction for SCP-III is the
same as in (the one for SCP-I). Note, however, that the primary
mass distribution fM1 (M1) is different due to the different limits
qmin and qmax. The right-hand panel in Fig. 7 shows an example
of BM1 (M1) resulting from SCP-III. The term fMC (M1) vanishes
for c ≤ M1 ≤ 2c, so that BM1 (M1) = 1 in this mass range.
A discontinuity appears at M1 = 2c, beyond which BM1 (M1)
reaches its lowest point, after which it steadily rises until M1 =

d. Beyond M1 = d, the specific binary fraction decreases again
to BM1 (M1) = 0 at M1 = 2d, for the same reasons as for SCP-I
and SCP-II. The overall binary fraction Ball is always equal to B
for SCP-III.

A.4.3. Uniform mass ratio distribution and single power-law
mass distribution

In the expressions given in this section the term 1 − (c/d)γ has
often been absorbed in the normalisation constants (which are
therefore not strictly consistent with the expressions above). The
following is assumed for hq and fc(Mc) = f (x) (using x = Mc
for ease of notation):

hq(q) = 1 0 < q ≤ 1

f (x) = ax−α 2c ≤ x ≤ 2d,

where a = γ(2c)γ/(1 − (c/d)γ) and γ = α − 1, and α � 1.

The SCP-I case Without restricting the primary mass range the
expression for the mass ratio distribution is simply fq(q) = 1.
When the primary mass range is restricted the cases listed above
have to be worked out. The corresponding expressions for fq(q)
are listed in Table A.1. Figure A.7 shows an example of what
fq(q) looks like for all the SCP-I cases discussed above.

The SCP-II case Without restrictions on the primary mass
range the expression for the mass ratio distribution follows from
Eq. (A.60) and is:

fq(q) =
k

1 − (c/d)γ

[(

2q

1 + q

)γ

−
(

c

d

)γ
]

, (A.80)

where the normalisation constant follows from:

1 =
∫ 1

qmin

fq(q)dq

=
k

1 − (c/d)γ

(∫ 1

qmin

(

2q

1 + q

)γ

dq −
(

c

d

)γ

(1 − qmin)

)

, (A.81)

where qmin = (c/d)/(2 − c/d). The integral in this expression
will be dealt with below. With a restricted primary mass range
the expressions for fq are obtained for the three cases discussed
above. These expressions are listed in Table A.2. Again the term
1 − (c/d)γ is absorbed in the normalisation constants k. All the
normalisation constants for the SCP-II case contain the follow-
ing integral:

∫ (

2q

1 + q

)γ

dq. (A.82)

For γ � 0,−1,−2,−3, ... the integral evaluates to an expression
involving a hypergeometric function:

2γq1+γ
2F1(γ + 1, γ; γ + 2;−q)

γ + 1
. (A.83)

where the result was obtained by using the website
integrals.wolfram.com. The value γ = 0 is not allowed as
α = 1 was excluded. For γ = −1 (α = 0) the integral is:

1
2

(q + ln q). (A.84)

From the properties of the hypergeometric function (see PCP-III
case) it follows that for γ+2 = −n the expression above does not
converge. This means that for γ = −p, where p = 2, 3, 4, ... the
integral has to be evaluated separately. In this case we can write:

∫ (

2q

1 + q

)γ

dq = 2−p

∫ (

1 +
1
q

)p

dq

= 2−p

∫ p
∑

r=0

(

p
r

)

q−rdq,

which evaluates to:

2−p

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 + p ln q +

p
∑

r=2

(

p
r

)

1
1 − r

q1−r

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A.85)
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Mass ratios for SCP-II, single power-law IMF: α= 2.35
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Fig. A.9. Mass ratio distributions fq(q) for split-core pairing II and III for a uniform generating mass ratio distribution and core masses from single
power-law mass distribution for α = 2.35, 0.30, −2.50, where 2c ≤ Mc ≤ 2d. The curves are shown for c/d = 0.01, 0.1, 0.3, 0.5.

The SCP-III case Without restrictions on the primary mass
range the expression for the mass ratio distribution is:

fq(q) =
∫ 2d

c(1+1/q)

(

x − c

x − 2c

)

ax−αdx, (A.86)

where the term for h′q follows from h′q(q) = 1/(1 − c/(x − c)).
Note that the distribution is normalised. To bring out better the
dependence on c/d one can also write (substituting z = x/d):

fq(q) =
γ(2c/d)γ

1 − (c/d)γ

∫ 2

(c/d)(1+1/q)

(

z − (c/d)
z − (2c/d)

)

z−αdz. (A.87)
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Mass ratios for SCP-II α= 2.35, c=0.200, d= 2.000
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Mass ratios for SCP-II α= 0.30, c=0.200, d= 2.000
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Case 1: x1= 0.25,  x2= 1.50, c/x1= 0.80, c/x2= 0.13

q0=-0.73, q1= 0.60, q2= 1.67, q3=15.00

Case 2a: x1= 0.30,  x2= 3.80, c/x1= 0.67, c/x2= 0.05

q0=-0.89, q1= 0.33, q2= 0.05, q3=12.33

Case 2b: x1= 0.30,  x2= 2.10, c/x1= 0.67, c/x2= 0.10

q0=-0.81, q1= 0.33, q2= 0.90, q3=12.33

Case 3a: x1= 2.10,  x2= 3.80, c/x1= 0.10, c/x2= 0.05

q0=-0.89, q1=-0.81, q2= 0.05, q3= 0.90

Case 3b: x1= 2.20,  x2= 3.00, c/x1= 0.09, c/x2= 0.07

q0=-0.87, q1=-0.82, q2= 0.33, q3= 0.82

Fig. A.10. Mass ratio distributions fq(q) for split-core pairing II and III for a uniform generating mass ratio distribution and core masses from a
single power-law mass distribution with α = 2.35, where 2c ≤ Mc ≤ 2d. The black solid curve shows the complete mass ratio distribution (for all
binaries in the population) for c = 0.2 and d = 2.0. The other curves show what happens to the observed fq(q) if the primary mass M1 is restricted
to x1 ≤ M1 ≤ x2. Results are shown for α = 2.35 (top), α = 0.3 (middle) and α = −2.5 (bottom). The examples cases are listed in the legend.

The integral over z:

∫ (

z − (c/d)
z − (2c/d)

)

z−αdz (A.88)

can again be evaluated using the hypergeometric function for
α � 0, 1, 2, 3, ..., and the result is:

z1−α
(

2F1(1 − α, 1; 2 − α; z
2c/d

) − 2
)

2(α − 1)
· (A.89)
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The excluded values of α again follow from the convergence
properties of the hypergeometric function. For α = 0 the integral
evaluates to:

z − (c/d) ln (z − 2c/d). (A.90)

The case α = 1 is excluded and for α = p = 2, 3, 4, ... the integral
can be written as:
∫

(

1
zp−1(z − 2c/d)

− c/d

zp(z − 2c/d

)

dz. (A.91)

The solution can be found again from formula 2.117(4) in
Gradshteyn & Ryzhik (2007):

p−2
∑

r=1

1
(p − 1 − r)(2c/d)rzp−1−r

+

(

2c

d

)1−p

ln

(

z − 2c/d

z

)

−
(

c

d

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p−1
∑

r=1

1
(p − r)(2c/d)rzp−r

+

(

2c

d

)−p

ln

(

z − 2c/d

z

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·
(A.92)

With restrictions on the primary mass range the integral
discussed above has to be evaluated for the various integration
intervals corresponding to the cases discussed for SCP-II. The
normalisation constants k can be obtained from a numerical in-
tegration of the functions fq(q). For x1 = x2 the mass ratio dis-
tribution becomes fq(q) = 1/(1− c/(x1− c)) = (x1− c)/(x1−2c).
Figures A.9 and A.10 show examples of what fq(q) looks like
for all the SCP-II and SCP-III cases discussed above. Finally,
we have listed the expressions for the binary fraction as a func-
tion of primary mass in Table A.3.
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