
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1

Exploring the Design Tradeoffs for Extreme-
Scale High-Performance Computing System

Software
Ke Wang, Abhishek Kulkarni, Michael Lang, Dorian Arnold, and Ioan Raicu

Abstract—Owing to the extreme parallelism and the high component failure rates of tomorrow’s exascale, high-performance
computing (HPC) system software will need to be scalable, failure-resistant, and adaptive for sustained system operation and
full system utilizations. Many of the existing HPC system software are still designed around a centralized server paradigm and
hence are susceptible to scaling issues and single points of failure. In this article, we explore the design tradeoffs for scalable
system software at extreme scales. We propose a general system software taxonomy by deconstructing common HPC system
software into their basic components. The taxonomy helps us reason about system software as follows: (1) it gives us a
systematic way to architect scalable system software by decomposing them into their basic components; (2) it allows us to
categorize system software based on the features of these components, and finally (3) it suggests the configuration space to
consider for design evaluation via simulations or real implementations. Further, we evaluate different design choices of a
representative system software, i.e. key-value store, through simulations up to millions of nodes. Finally, we show evaluation
results of two distributed system software, Slurm++ (a distributed HPC resource manager) and MATRIX (a distributed task
execution framework), both developed based on insights from this work. We envision that the results in this article help to lay
the foundations of developing next-generation HPC system software for extreme scales.

Index Terms—Distributed systems, High-performance computing, Key-value stores, Simulation, Systems and Software

——————————  ——————————

1 INTRODUCTION

ystem software is a collection of important middle-
ware services that offer to upper-lay applications inte-

grated views and control capabilities of the underlying
hardware components. Generally system software allows
applications full and efficient hardware utilization. A typ-
ical system software stack includes (from the bottom up)
operating systems (OS), runtime systems, compilers, and
libraries [1]. Technological trends indicate that exascale
high-performance computing (HPC) systems will have
billion-way parallelism [2], and each node will have about
three orders of magnitude more intra-node parallelism
than that of the node of today’s petascale systems [4]. Ex-
ascale systems will pose fundamental challenges of man-
aging parallelism, locality, power, resilience, and scalabil-
ity [3][5][6].

Current HPC system software designs focus on opti-
mizing the inter-node parallelism by maximizing the
bandwidth and minimizing the latency of the intercon-
nection networks but suffer from the lack of scalable solu-
tions to expose the intra-node parallelism. New loosely-
coupled programming models (e.g. many-task computing
[38], over-decomposition [7], and MPI + OpenMP [8]) are

helping to address intra-node parallelism for exascale
systems. These programming models place a high de-
mand on system software for scalability, fault-tolerance
and adaptivity. However, many of the existing HPC sys-
tem software are still designed around a centralized serv-
er paradigm and, hence, are susceptible to scaling issues
and single points of failure. Such concerns suggest a
move towards fundamentally scalable distributed system
software designs – a move further motivated by the
growing amount of data (and metadata) that servers need
to maintain in a scalable, reliable, and consistent manner.

The exascale community has been exploring research
directions that address exascale system software chal-
lenges, such as lightweight OS and kernels (e.g. ZeptoOS
[9], Kitten [10]); asynchronous and loosely coupled
runtime systems (e.g. Charm++ [11], Legion [12], HPX
[13], STAPL [14], and Swift [15]); load balanced and local-
ity-aware execution and scheduling models (e.g. MATRIX
[23][25], ParallelX [16], and ARMI [17]); automatic and
auto-tuning compilers (e.g. ROSE [18], SLEEC [19]). The
general collections of HPC system software are those that
support system booting, system monitoring, hardware or
software configuration and management, job and re-
source management, I/O forwarding, and various
runtime systems for programming models and communi-
cation libraries. As HPC systems approach exascale, the
basic design principles of scalable and fault-tolerant sys-
tem architectures need to be investigated for HPC system
software implementations. Instead of exploring the de-
sign choices of each system software at every stack level
individually and in an ad hoc fashion, this work aims to

xxxx-xxxx/0x/$xx.00 © 2015 IEEE Published by the IEEE Computer Society

————————————————

 K. Wang is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60616. E-mail: kwang22@hawk.iit.edu.

 A. Kulkarni is with the Department of Computer Science, Indiana Univer-
sity, Bloomington, IN 47405. E-mail: adkulkar@cs.indiana.edu.

 M. Lang is with the Los Alamos National Laboratory, Los Alamos, NM
87544. E-mail: mlang@lanl.gov.

 D. Arnold is with the Department of Computer Science, University of New
Mexico, Albuquerque, NM 87131. E-mail: darnold@cs.unm.edu.

 I. Raicu is with the Department of Computer Science, Illinois Institute of
Technology, Chicago, IL 60616. E-mail: iraicu@cs.iit.edu.

S

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

develop a general framework that allows for systematic
explorations of the design space of HPC system software
and to evaluate the impacts of different design choices.

In this article, the questions we intend to answer are:
what are the scalabilities of different system software
architectures (centralized, hierarchical, distributed); and
at what scales and levels of reliability and consistency
does distributed design outweigh the extra complexity
and overhead of centralized and hierarchical designs.

To answer the questions, we devise a general taxono-
my that classifies system software based on basic compo-
nents, so as to identify their performance and scaling lim-
its. By identifying the common basic components and
focusing on designing these core components, we will
enable faster prototyping and development of new sys-
tem software. We then motivate key-value stores (KVS) as
a building block for HPC system software at extreme
scales, and then using KVS as a case study, we explore
design tradeoffs of system software. Via simulation, we
explore the scalability of each system architecture and
quantify the overheads in supporting reliability at ex-
treme scales. Finally, we evaluate two system software (a
distributed HPC resource manager, SLURM++ [22], and a
distributed task execution framework, MATRIX
[23][24][25]), which are developed based on the insights
from this work. We believe the work presented in this
article lays the foundations for the development of the
next-generation, extreme-scale HPC system software.

This article extends our previous work [26] that moti-
vated KVS as a building block for extreme-scale HPC sys-
tem software and evaluated different KVS designs. The
contributions of the previous work were: (1) a taxonomy
for classifying KVS; (2) a simulation tool to explore KVS
design choices for large-scale system software; and (3) an
evaluation of KVS design choices at extreme scales using
both synthetic workloads and real workload traces.

The extension covers the aspects of both depth and
broadness of scope. For broadness, we focus on general
HPC system software instead of just KVS. For depth, we
add a hierarchical architecture in the comparison with the
centralized and distributed ones. We also evaluate more
system software that apply KVS as distributed metadata
management to demonstrate more extensively that KVS is
a fundamental block for extreme-scale system software.

The new contributions of this article are as follows:
1. We devise a comprehensive taxonomy by deconstructing

system software into their core components. The taxonomy
helps us reason about general system software as follows: (1) it
gives a systematic way to decompose system software into their
basic components; (2) it allows one to categorize system soft-
ware based on the features of these components, and finally, (3)
it suggests the configuration spaces to consider for evaluating
system designs via simulation or real implementation.

2. We conduct an inclusive evaluation of different system
architectures (centralized, hierarchical, and distributed) under
various design choices, such as different replication, recovery,
and consistency models.

3. We offer empirical evaluations of other system software
that use KVS for metadata management. This supports pro-
posal of using KVS as a building block for HPC system soft-

ware at extreme scales.
The rest of this article is organized as follows. Section 2

motivates KVS as a building block and identifies the cen-
tralized architecture’s bottleneck for HPC system soft-
ware at extreme scales; Section 3 presents the taxonomy
and shows how the taxonomy can help to classify existing
system software; Section 4 details the KVS simulation
design and implementation; Section 5 evaluates different
architectures through simulations up to millions of nodes,
and offers the evaluation of two system software that ap-
ply KVS as distributed metadata management; Section 6
discusses other related research; Section 7 presents our
conclusions and opportunities for future work.

2 KEY-VALUE STORES IN HPC

2.1 Building Blocks for HPC

We motivate that KVS is a building block for HPC system
software at extreme scales. The HPC system software,
which we generally target, are those that support system
booting, system monitoring, hardware or software con-
figuration and management, job and resource manage-
ment, I/O forwarding, and various runtime systems for
programming models and communication libraries
[29][30][31][32]. For extreme-scale HPC systems, these
system software all need to operate on large volumes of
data in a scalable, resilient and consistent manner. We
observe that such system software commonly and natu-
rally comprise of data-access patterns amenable to the
NoSQL abstraction, a lightweight data storage and re-
trieval paradigm that admits weaker consistency models
than traditional relational databases.

These requirements are consistent with those of large-
scale distributed data centers, such as, Amazon, Facebook,
LinkedIn and Twitter. In these commercial enterprises,
NoSQL data stores – Distributed Key-Value Stores (KVS)
in particular – have been used successfully [33][34][35] in
deploying software as a service (SaaS). We assert that by
taking the particular needs of HPC system into account,
we can use KVS for HPC system software to help resolve
many scalability, robustness, and consistency issues.

By encapsulating distributed system complexities in
the KVS, we can simplify HPC system software designs
and implementations. Giving some examples as follows:
For resource management, KVS can be used to maintain
necessary job and node status information. For monitor-
ing, KVS can be used to maintain system activity logs. For
I/O forwarding in file systems, KVS can be used to main-
tain file metadata, including access authority and modifi-
cation sequences. In job start-up, KVS can be used to dis-
seminate configuration and initialization data amongst
composite tool or application processes (an example of
this is under development in the MRNet project [32]).
Application developers from Sandia National Laboratory
[36] are targeting KVS to support local checkpoint/restart
protocols. Additionally, we have used KVS to implement
several system software, such as a many-task computing
(MTC) task execution [37][38][39][40] framework – MA-
TRIX [23][24][25], where KVS is used to store the task
metadata information, and a fuse-based distributed file

KE WANG ET AL.: EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 3

system, FusionFS [41], where the KVS is used to track file
metadata.

2.2 Centralized Architecture’s Bottleneck

HPC system software designed around the centralized
architecture suffer from limited scalability, high likeli-
hood of non-recoverable failures and other inefficiencies.
To validate this, we assess the performance and resilience
of a centralized file-backed KVS.

We implement a KVS prototype. Each request (put, get,
and delete) was turned into a corresponding file system
operation (write, read and remove, respectively) by the
server. A request with a 16-byte payload is consist of a
(key, value) pair. We run the prototype on a 128-node ma-
chine with AMD 2GHz Dual-Core Opteron and 4 GB of
memory per node. Compute nodes are connected with
Gigabit Ethernet. At every second boundary, the
throughput attained by the server is measured to deter-
mine the maximum throughput during operation.

Fig 1: Performance and Resilience of Centralized KVS

Fig 1 shows the peak throughput is achieved at 64 cli-
ents with the configuration of one client per node. As
multiple clients per node are spawned, the throughput
decreases due to network contention. At relatively mod-
est scales, centralized server shows significant perfor-
mance degradation due to contention.

To measure the reliability of the centralized server, we
set the failure rate of the server to be dependent on the
number of clients it is serving due to the increasing loads
on the server. Considering an exponential distribution of
server failures, the relationship between the server’s up
time and the number of clients is: 𝑢𝑝 𝑡𝑖𝑚𝑒 = 𝐴𝑒𝜆𝑛, where 𝐴 is the up time with zero client, 𝜆 is the failure rate, and 𝑛 is the number of clients. Assuming a 2-month up time
with zero client (𝐴 = 1440 hours), and a 1-month (i.e. 720
hours) up time with 1024 clients of a single server, we
show the trend of the server up time with respect to the
number of clients (dotted blue line) in Fig 1. The reliabil-
ity decreases as the scale of the system increases.

At exascale, the above results would be amplified to
pose serious operability concerns. While not surprising
results, these results motivate alternative distributed architec-
tures that support scalability, reliability and consistency in a
holistic manner. These issues can be addressed by identify-
ing the core components required by system software,
such as a global naming system, an abstract KVS, a decen-
tralized architecture, and a scalable, resilient overlay net-
work.

3 HPC SYSTEM SOFTWARE TAXONOMY

In contrast to the traditional HPC system software that
are tightly coupled for synchronized workloads, SaaS
developed for the Cloud domain is designed for loosely
asynchronous embarrassingly parallel workloads in dis-
tributed systems with wide area networks. As HPC sys-
tems are approaching exascale, the HPC system software
will need to be more asynchronous and loosely coupled
to expose the ever-growing intra-node parallelism and
hide latency. To be able to reason about general HPC sys-
tem software at exascale, we devise a taxonomy by break-
ing system software down into various core components
that can be composed into a full system software. We in-
troduce the taxonomy, through which, we then categorize
a set of system software.

A system software can be primarily characterized by
its service model, data layout model, network model,
recovery model, and consistency model. These compo-
nents are explained in detail as follows:

(I) Service Model describes system software func-
tionality, architecture, and the roles of the software’s
composite entities. Other properties such as atomicity,
consistency, isolation, durability (ACID) [27], availability,
partition-tolerance etc. also are expressed as parts of the
service model. These characteristics define the overall
behavior of the system software and the constraints it
imposes on the other models. A transient data aggrega-
tion tool, a centralized job scheduler, a resource manager
with a single failover, a parallel file system are some ex-
amples of the service model.

(II) Data Layout Model defines the system software
data distribution. In a centralized model, a single server is
responsible for maintaining all the data. Alternatively, the
data can be partitioned among distributed servers with
varying levels of replication, such as partitioned (no rep-
lication), mirrored (full replication), and overlapped (par-
tial replication).

(III) Network Model dictates how system software
components are connected. In a distributed network,
servers can form structured overlays – rings, binomial, k-
ary, n-cube, radix trees; complete, binomial graphs; or
unstructured overlay – random graphs. The system soft-
ware could be further differentiated based on determinis-
tic or non-deterministic information routing in the over-
lay network. While some overlay networks imply a com-
plete membership set (e.g. fully-connected), others as-
sume a partial membership set (e.g. binomial graphs).

(IV) Recovery Model describes how system software
deals with server failures with minimum manual inter-
vention. The most common methods include fail-over,
checkpoint-restart, and roll-forward. Triple modular re-
dundancy and erasure coding [20] are additional ways to
deal with server failures and ensure data integrity. The
recovery model can either be self-contained, such as re-
covery via logs from persistent storage, or require com-
munication with others to retrieve replicated data.

(V) Consistency Model pertains to how rapidly data
changes in a distributed system are propagated and kept
coherent. Depending on the data layout model and the
corresponding level of replication, system software may

900

1000

1100

1200

1300

1400

1500

1600

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35
U

p
 T

im
e

 (
h

o
u

rs
)

Number of clients

T
h

ro
u

g
h

p
u

t
(K

 o
p

s
/s

e
c
)

Maximum Throughput

Up Time

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

employ different levels of consistency. The level of con-
sistency is a tradeoff between the server’s response time
and how tolerant clients are to stale data. It can also com-
pound the complexity of recovery under failures. Servers
could employ weak, strong, or eventual consistency de-
pending on the importance of the data.

By combining specific instances of these components,
we can define a system architecture of system software.
Fig 2 and Fig 3 depict some specific system architectures
derived from the taxonomy. For instance, ctree is a system
architecture with a centralized data layout model and a
tree-based hierarchical overlay network; dfc architecture
has a distributed data layout model with a fully-
connected overlay network, whereas dchord architecture has
a distributed data layout model and a Chord overlay
network [28] with partial membership. Recovery and con-
sistency models are not depicted, but would need to be
identified to define a complete service architecture.

 (a) csingle (b) cfailover

(c) ctree

Fig 2: Centralized system architecture

(a) dfc

 (b) dchord (c) drandom

Fig 3: Distributed system architecture

Looking into the memory requirements of these archi-
tectures allows deriving observations analytically. Fig 4 (a)
shows the per-server memory requirement of the client
data for different architectures, assuming 16GB client data.
A single server must have the memory capacity to hold
all the data, where the dfc and dchord architectures partition
the data evenly across many servers. Fig 4 (b) illustrates
the per-server memory requirements to store the server
membership information, assuming each server identifi-

cation is 10KB. This is trivial for a single server. For dfc, it
grows linearly with the number of severs, while for dchord,
the relationship is logarithm.

(a) Data memory per server

(b) Membership memory per server

Fig 4: Memory requirements for different architectures

To demonstrate how common HPC system software
would fit into the taxonomy, we have classified, at a high-
level, some representative system software in Table 1.

4 KEY-VALUE STORES SIMULATION

Having motivated KVS as a building block for extreme-
scale HPC system software, using the taxonomy we nar-
row the parameter space and focus on the major KVS
components. Then we can use simulation to evaluate the
design spaces for any specific KVS applications before
any implementation. Additionally, we can create modular
KVS components that allow the easy creation of extreme-
scale system software. This section presents the design
and implementation details of a KVS simulator. The
simulator allows us to explore all the system architec-
tures, namely csingle, ctree, dfc and dchord. Here we assume a
centralized data layout model for csingle and ctree, and a dis-
tributed data layout model for dfc and dchord. The simulator
is extendable to other network and data layout models.
The architectures can be configured with N-way replica-
tion for the recovery model and either eventual or strong
consistency for the consistency model. The conclusions
that we will draw from KVS simulations can be general-
ized to other system software, such as job schedulers, re-
source managers, I/O forwarding, monitoring, and file
systems.

S

S

S0

S

S1 S2 S3 S.. SN

S1 S2 S3 S.. SN

16

64

256

1024

4096

16384

1 10 100 1000P
a

rt
it
io

n
e

d
 D

a
ta

 M
e

m
o

ry
 (

M
B

)

No. of Server

csingle partitioned data memory
dfc partitioned data memory
dchord partitioned data memory

0.01

0.1

1

10

1 10 100 1000

P
e
r-

S
e

rv
e

r
M

e
m

b
e

rs
h

ip
 M

e
m

o
ry

(M

B
)

No. of Server

dfc membership memory

dchord membership memory

KE WANG ET AL.: EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 5

Table 1: Representative system services categorized through the taxonomy

System Software Service Model Data Layout Model Network Model Recovery Model Consistency Model

Charm++ Runtime System Distributed Hierarchical N-way Replication Strong

Legion Runtime System Distributed Hierarchical None Strong

STAPL Runtime System Distributed Nested/Hierarchical N-Way Replication Strong

HPX Runtime System Distributed Fully-connected N-Way Replication Strong

SLURM Resource Manager Replicated Centralized Fail-Over Strong

SLURM++ Resource Manager Distributed Fully-connected Fail-Over Strong

MATRIX Task Scheduler Distributed Fully-connected None Strong

OpenSM Fabric Manager Replicated Centralized Fail-Over Strong

MRNet Data Aggregation Centralized Hierarchical None None

Lilith Data Distribution Replicated Hierarchical Fail-Over Strong

Yggdrasil Data Aggregation Replicated Hierarchical Fail-Over Strong

IOFSL I/O Forwarding Centralized Hierarchical None None

Riak Key-value store Distributed Partially-connected N-way Replication Strong and Eventual

FusionFS File System Distributed Fully-connected N-way Replication Strong and Eventual

4.1 Simulator Overview

Simulations are conducted up to exascale levels with tens
of thousands of nodes (each one has tens to hundreds of
thousands threads of execution) running millions of cli-
ents and thousands of servers. The clients are simulated
as compute daemons that communicate with the servers
to store data and system states. The millions of clients are
spread out as millions of compute daemon processes over
all the highly parallel compute nodes. Furthermore, the
number of clients and servers are configurable.

The data records stored in the servers are (key, value)
pairs; the key uniquely identifies the record and the value
is the actual data object. By hashing the key through some
hashing function (e.g. modular) over all the servers, the
client knows the exact server that is storing the data.
Servers are modeled to maintain two queues: a commu-
nication queue for sending and receiving messages and a
processing queue for handling incoming requests that
operate on the local data. Requests regarding other serv-
ers’ data cannot be handled locally and are forwarded to
the corresponding servers.

4.2 Data Layout and Network Models

The data layout and network models supported are: cen-
tralized data server (csingle), centralized data server with
aggregation servers in a tree overlay (ctree), distributed
data servers with fully connected overlay (dfc), distributed
data servers with partial connected overlay (dchord).

For csingle and ctree, all data is stored in a single server.
The main difference is that ctree has a layer of aggregation
servers to whom the client submits requests. Currently,
the aggregation servers only gather requests.

For dfc and dchord, the key space along with the associated
data value is evenly partitioned among all the servers en-
suring a perfect load balancing. In dfc, data is hashed to
the server in an interleaved way (key modular the server
id), while in dchord, consistent hashing [42] is the method
for distributing data. The servers in dfc have global
knowledge of all servers, while in dchord, each server has
only partial knowledge of the other servers; specifically
this is logarithm of the total number of servers with base
2 and is kept in a table referred to as the finger table in
each server.

4.3 Recovery Model
The recovery model defines how a server recovers its
state and how it rejoins the system after a failure. This
includes how a recovered server recovers its data and
how to update the replica information of other servers
that are affected due to the recovery. The first replica of a
failed server is notified by an external mechanism (EM)
[28] (e.g. a monitoring system software that knows the
status of all servers) when the primary server recovers.
Then the first replica sends all the replicated data (includ-
ing the data of the recovering server and of other servers
for which the recovering server acts as a replica) to the
recovered server. The recovery is done once the server
acknowledges that it has received all data.

We implement a replication model in the simulator for
the purpose of handling failures. In csingle and ctree, one or
more failovers are added; while in dfc and dchord, each serv-
er replicates its data in the consecutive servers (servers
have consecutive id numbers from 0 to server count - 1).
Failure events complicate server replication model. When
a server fails, the first replica sends the failed server’s
data to an additional server to ensure that there are
enough replicas. In addition, all the servers that replicate
data on the failed server would also send their data to one
more server. The clients can tolerate server failures by
identifying the replicas of a server as consecutive servers.

Our simulator implements different policies for the cli-
ents to handle server failures, such as timeouts, multi-trial,
and round-robin. For example, in the timeouts policy, a
client would wait a certain time for the server to respond.
If the server doesn’t respond after the timeout, the client
then turns to the next replica. In addition, our simulator
has the ability to handle communication failures by rely-
ing on the EM. The EM monitors the status of all the serv-
ers by issuing periodic heart-beat messages. When a link
failure of a server happens, the EM detects it according to
the failed heart-beat message and then notifies the affect-
ed clients, which then direct requests to the next replica.

4.4 Consistency Model
Our simulator implements two consistency models: strong
consistency and eventual consistency [21].

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

4.4.1 Strong Consistency

In strong consistency, updates are made with atomicity
guarantee so that no two replicas may store different val-
ues for the same key at any given time. A client sends re-
quests to a dedicated server (primary replica). The get re-
quests are processed and returned back immediately. The
put requests are first processed locally and then sent to the
replicas; the primary replica waits for an acknowledge-
ment from each other replica before it responds back to the
client. When a server recovers from failure, before getting
back all its data, it caches all the requests directed to it. In
addition, the first replica (notified by the EM) of the newly
recovered server migrates all pending put requests, which
should have been served by the recovered server, to the
recovered server. This ensures that only the primary repli-
ca processes put requests at any time while there may be
more than one replicas processing get requests.

4.4.2 Eventual Consistency

In eventual consistency, given a sufficiently long period of
time over which no further updates are sent, all updates
will propagate and all the replicas will be consistent even-
tually, although different replicas may have different ver-
sions of data of the same key at a given time. After a client
finds the correct server, it sends requests to a random repli-
ca (called the coordinator). This is to model inconsistent
updates of the same key and also to achieve load balancing,
among all the replicas. There are three key parameters to
the consistency mechanism: the number of replicas–N, the
number of replicas that must participate in a quorum for a
successful get request–R, and the number of replicas that
must participate in a quorum for a successful put request-
W. We satisfy R+W>N to guarantee “read our writes” [21].
Similar to Dynamo [33] and Voldemort [35], we use vector
clock to track different data versions and detect conflicts. A
vector clock is a <serverId, counter> pair for each key in
each server. It specifies how many updates have been pro-
cessed by the server for a key. If all counters in a vector
clock V1 are no larger than all corresponding ones in a vec-
tor clock V2, then V1 precedes V2, and can be replaced by
V2. If V1 overlaps with V2, then there is a conflict.

For a get request, the coordinator reads the value locally,
sends the request to other replicas, and waits for <value,
vector clock> responses. When a replica receives a get re-
quest, it first checks the corresponding vector clock. If it
precedes the coordinator’s, then the replica responds with
success. Otherwise, the replica responds failure, along with
its <value, vector clock> pair. The coordinator waits for
R−1 successful responses, and returns all the versions of
data to the client who is responsible for reconciliation (ac-
cording to an application-specific rule such as “largest val-
ue wins”) and writing back the reconciled version.

For a put request, the coordinator generates a new vec-
tor clock by incrementing the counter of the current one by
1, and writes the new version locally. Then the coordinator
sends the request, along with the new vector clock to other
replicas for quorum. If the new vector clock is preceded by
a replica’s, the replica accepts the update and responds
success; otherwise, responds failure. If at least W−1 replicas
respond success, the put request is considered successful.

4.5 KVS Simulator Implementation Details

After evaluating several simulation frameworks such as
OMNET++ [43], OverSim [44], SimPy [45], PeerSim [46],
we chose to develop the simulator on top of PeerSim be-
cause of its support for extreme scalability and dynamicity.
We use the discrete-event simulation (DES) [47] engine of
PeerSim. Every behavior in the system is converted to an
event and tagged with an occurrence time. All the events
are inserted in a global event queue that is sorted based on
the event occurrence time. In every iteration, the simulation
engine fetches the first event and executes the correspond-
ing actions, which may result in following events. The
simulation terminates when the queue is exhausted.

The simulator is developed in Java (built on top of Peer-
Sim) and has about 10,000 lines of code. The input to the
simulation is a configuration file, which specifies the sys-
tem architecture, and the system parameters.

5 EVALUATION

Our evaluation aims to give insights into the design spac-
es of HPC system software through KVS simulations, and
to show the capabilities of our simulator in exposing costs
inherent in design choices. We evaluate the overheads of
different architectures as we vary the major components
defined in section 3. We present results by incrementally
adding complex features such as replication, fail-
ure/recovery, and consistency, so that we can measure
the individual contributions to the overheads due to sup-
porting these distributed features.

The simulations are run on a single node; the largest
amount of memory required for any of the simulations is
25GB and the longest running time is 40 minutes (millions
of clients, thousands of servers, and tens of millions of
requests). Given our lightweight simulator, we can ex-
plore an extremely large scale range.

Our simulator has been validated against two real key-
value stores, ZHT [48] and Voldemort [35], within mod-
erate scales, 8K nodes for ZHT and 500 nodes for Volde-
mort. The simulator reported a relatively small average
difference of 4.38% comparing with ZHT and of 10.71%
comparing with Voldemort. The validation details can be
found in our prior work [26].

One important metric used in our evaluation is efficien-
cy. The efficiency is the percentage ratio of the ideal run-
ning time to the actual running time of a given workload.
The ideal running time is calculated by accounting to
merely request processing time and assuming zero com-
munication overheads. The efficiency quantifies the aver-
age utilization of the system. Higher efficiency numbers
indicate less communication overheads.

5.1 Architecture Comparisons

We compare different architectures for the basic scenario
(no replication, failure/recovery or consistency models)
with synthetic workloads to investigate the tradeoffs be-
tween these system architectures at increasingly large
scales. In the synthetic workload, each client submits 10
requests with 5 get operations and 5 put operations on the
key space of 128-bit (generated with a uniform random
distribution), and each request message is 10KB.

KE WANG ET AL.: EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 7

5.1.1 csingle vs. ctree

Fig 5 shows the comparison between csingle and ctree. We see
that before 16 clients, ctree performs worse than csingle due to
that the small gather size (at most 16) is insufficient to
make up the additional latency of the extra communica-
tion hop. Between 32 (1 aggregation server) to 16K clients
(16 aggregation servers with each one managing 1K cli-
ents), ctree performs better than csingle because of the larger
gather sizes (32 to 1K). After 32K clients, the individual
performance is degrading, the relative performance gap is
decreasing and finally disappearing. This is because the
per-request processing time is getting larger when the
number of clients increases due to contentions, which
renders that the communication overhead is negligible.

Fig 5: Throughput of csingle vs ctree

To model the server contention due to the increasing
number of clients, we run a prototype of a centralized
KVS (csingle) implementation up to 1K nodes and apply a
polynomial regression on the processing time with re-
spect to the number of clients with the base of 500ms.
Within 1K nodes, the changing of processing time is
shown in Table 2. The 1K-client processing time (637 ms)
is used in dfc and dchord as each server manages 1K clients.
For csingle and ctree, Beyond 1K nodes, we increase the pro-
cessing time linearly with respect to the client count.

In Fig 5, the values after 1K clients are linear models.
There could be other models (e.g. logarithm, polynomial,
exponential) between processing time and the number of
clients depending on the server implementation (e.g. mul-
ti-threading, event-driven, etc). We only use the calibrat-
ed values up to 1K clients. We show the results after 1K
clients merely to point out that there is a severe server
contention in a single server at large scales, leading to
poor scalability of the centralized architecture.

Table 2: Processing time as a function of number of clients

Number of Clients 1 2 4 8 16 32 64 128 256 512 1K

Processing Time (ms) 613 611 608 601 588 567 537 509 505 541 637

5.1.2 dfc vs. dchord

The comparison between dfc and dchord is shown in Fig 6.
Each server is configured to manage 1K clients. With dfc,
we observe that the server throughput almost scales line-
arly with respect to the server count, and the efficiency
has a fairly constant value (67%) at extreme scales, mean-
ing that dfc has great scalability. With dchord, we see slightly
less throughput as we scale up, and the efficiency de-

creases smoothly (Fig 6(a)). This is due to the additional
routing required by dchord to satisfy requests: one-hop max-
imum for dfc and logN hops for dchord.

We show the average per-client throughput for both dfc
and dchord in Fig 6(b). Up to 1M clients, dfc is about twice as
fast as dchord from the client’s perspective. From the error
bars, we see that dchord has higher deviation of the per-
client throughput than that of dfc. This is again due to the
extra hops required to find the correct server in dchord.

(a) Server throughput and efficiency

(b) Average throughput per client

Fig 6: dfc and dchord performance comparison

The conclusion is that at the base case, the partial con-
nectivity of dchord results in latency as high as twice as that
of the full connectivity of dfc, due to the extra routing.

5.2 Server Failure Effect with Replication

This section explores the overhead of failure events when
a server is configured to keep updated replicas for resili-
ence. We choose the multi-trial policy: the clients resend
the failed requests to the primary server several times (an
input parameter) before turning to the next replica.

Fig 7 displays the efficiency comparison between the
base dfc and dfc configured with failure events and replica-
tion, and between the base dchord and dchord configured with
failure events and replication, respectively. We use 3 rep-
licas, set the failure rate to be 5 failure events per minute,
and apply a strong consistency model. As seen in Fig 7,
both dfc and dchord have significant efficiency degradation
when failures and replication are enabled (blue solid line
vs blue dotted line, red solid line vs red dotted line). The
performance degradation of dfc is more severe than that of
dchord - 44% (67% to 23%) for dfc vs. 17% (32% to 15%) for
dchord. We explain the reasons with the help of Table 3.

0

200

400

600

800

1000

1200

1400

1600

1800

A
g
g
re

g
a
te

d
 S

e
rv

e
r

T
h
ro

u
g
h
p
u
t

(o
p

s
/s

e
c
)

Scale (No. of Client)

csingle server throughput

ctree server throughput

30%

40%

50%

60%

70%

80%

90%

512

2048

8192

32768

131072

524288

2097152

E
ff

ic
ie

n
c
y

A
g
g
re

g
a
te

d
 S

e
rv

e
r

T
h
ro

u
g
h
p
u
t

(o
p

s
/s

e
c
)

Scale (No. of Clients)

dfc server throughput
dchord server throughput
dfc efficiency
dchord efficiency

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

A
v
e

ra
g

e
 C

lie
n

t
T

h
ro

u
g

h
p

u
t

(o
p

s
/s

e
c
)

Scale (No. of Clients)

dfc client throughput

dchord client throughput

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

Fig 7: Server failure effect with replication

Table 3 lists the message count of each property (pro-
cess request, failure, strong consistency) for both dfc and
dchord. We see that at extreme scales, the request-process
message count (dominant factor) does not increase much
when turning on failures and replicas for both dfc and
dchord. The message count of failure event is negligible, and
of strong consistency increases significantly at the same
rate for both dfc and dchord. However, these added messages
account for 1/3(20M/60M) for dfc, while less than 1/8
(20M/170M) for dchord. Due to the high request-process
message count in dchord, the overhead of dfc seems more
severe. The replication overhead is costly, which indicates
that tuning a system software to the appropriate number
of replicas will have a large impact on performance.

5.3 Strong and Eventual Consistency

We compare the overheads of consistency models in this
section. We enable failures with 5 failure events per mi-
nute and use 3 replicas. Like Dynamo [33], for eventual
consistency, we configure (N, R, W) to be (3, 2, 2).

Fig 8: Strong consistency and eventual consistency

Fig 8 shows the efficiency results of both dfc and dchord.
We see that eventual consistency has larger overhead
than strong consistency. From strong to eventual con-
sistency, efficiency reduces by 4.5% for dfc and 3% for dchord
at extreme scales. We also list the number of messages for
request-process, failure events, and consistency models in
Table 4. We observe that the request-process message
count doesn’t vary much for both dfc and dchord. However,
for consistency messages, eventual consistency introduces
about as twice (41M/21M) the number of messages as
that of strong consistency. This is because in eventual
consistency, each request would be forwarded to all N=3
replicas and the server waits for R=2 and W=2 successful
acknowledgments. With strong consistency, just the put
requests would be forwarded to all other replicas. Even-
tual consistency gives faster response times to the clients
but with larger cost of communication overhead.

5.4 KVS Applicability to HPC System Software

In this section, we show that KVS can be used as building

Table 3: Message count for dfc, dchord with and without failure and replica (F&R)

 request-process message count failure message count strong consistency message count

Clients dfc dchord dfc (F&R) dchord (F&R) dfc (F&R) dchord (F&R) dfc (F&R) dchord (F&R)

4096 143.4K 185.0K 312.4K 246.2K 33 4.5K 217.7K 87.1K

8192 307.3K 491.1K 404.1K 596.2K 42 445 175.4K 170.9K

16384 634.8K 1.2M 726.1K 1.5M 66 28.6K 336.5K 377.1K

32768 1.3M 2.8M 1.4M 3.0M 114 712 665.4K 662.0K

65536 2.6M 6.4M 2.7M 6.6M 210 590 1.3M 1.3M

131072 5.2M 14.3M 5.3M 14.5M 402 888 2.6M 2.6M

262144 10.5M 31.3M 10.6M 31.7M 786 996 5.3M 5.2M

524288 21.0M 67.9M 21.1M 68.4M 1.6K 1.1K 10.5M 10.5M

1048576 41.9M 146.6M 42.0M 147.1M 3.1K 1.3K 21.0M 21.0M

Table 4: Message count of strong consistency (sc) and eventual consistency (ec) for dfc and dchord

process message count failure message count consistency message count

sc ec Sc ec sc ec

Clients dfc dchord dfc dchord dfc dchord dfc dchord dfc dchord dfc dchord

4096 312.4K 246.2K 141.5K 211.4K 30 4.6K 30 360 217.7K 87.1K 167.2K 164.5K

8192 404.1K 596.2K 391.9K 682.7K 40 450 50 590 175.4K 170.8K 340.2K 328.2K

16384 726.1K 1.5M 733.1K 1.5M 67 28.6K 90 23.7K 336.5K 377.1K 668.2K 655.4K

32768 1.4M 3.0M 1.4M 3.1M 110 710 150 830 665.4K 661.9K 1.3M 1.3M

65536 2.7M 6.7M 2.7M 6.6M 210 590 210 770 1.3M 1.3M 2.6M 2.6M

131072 5.3M 14.5M 5.3M 14.8M 400 890 530 1.1K 2.6M 2.6M 5.3M 5.3M

524288 21.1M 68.4M 21.0M 68.7M 1.6K 1.1K 2.1K 1.4K 10.5M 10.5M 21.0M 21.0M

1048576 42.0M 147.1M 42.0M 148.0M 3.1K 1.3K 4.1K 1.6K 21.0M 21.0M 42.0M 42.0M

10%

20%

30%

40%

50%

60%

70%

80%

4096
16384

65536

262144

1048576

E
ff

ic
ie

n
c

y

Scale (No. of Clients)

dfc 1 replica no failure

dfc 3 replicas 5 failure events/min

dchord 1 replica no failure

dchord 3 replicas 5 failure events/min

10%

14%

18%

22%

26%

30%

E
ff

ic
ie

n
c
y

Scale (No. of Clients)

dfc strong consistency
dfc eventual consistency
dchord strong consistency
dchord eventual consistency

KE WANG ET AL.: EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 9

block for developing HPC system software. First, we
conduct simulations with three workloads, which were
obtained from real traces of three system software: job
launch using SLURM, monitoring by Linux Syslog, and
I/O forwarding using the FusionFS [41] distributed file
system. Then, we evaluate two distributed system soft-
ware that use a KVS (i.e. ZHT [48]) for distributed state
management, namely an HPC resource manager,
SLURM++ [22], and a MTC task scheduler, MATRIX [23].

5.4.1 Simulation with Real Workload Traces

We run simulations with three workloads obtained from
typical HPC system software, listed as follows:

1. Job Launch: this workload is obtained from moni-
toring the messages between the server and client during
an MPI job launch in SLURM resource manager. Though
the job launch is not implemented in a distributed fashion,
the messages should be representative regardless of the
server structure, and in turn drive the communications
between the distributed servers. The workload is charac-
terized with the controlling messages of the slurmctld
(get) and the results returning from the slurmds (put).

2. Monitoring: we get this workload from a 1600-node
cluster’s syslog data. The data is categorized by message-
type (denoting the key space) and count (denoting the
frequency of each message). This distribution is used to
generate the workload that is completely put dominated.

3. I/O Forwarding: We generate this workload by
running the FusionFS distributed file system. The client
creates 100 files and operates (reads or writes with 50%
probability) on each file once. We collect the logs of the
ZHT metadata servers that are integrated in FusionFS.

We extend these workloads to make them large
enough for exascale systems. For job launch and I/O for-
warding, we repeat the workloads several times until
reaching 10M requests, and the key of each request is gen-
erated with uniform random distribution (URD) within
64-bit key space. The monitoring workload has 77 mes-
sage types with each one having a different probability.
We generate 10M put requests; the key is generated based
on the probability distribution of the message types and is
mapped to 64-bit key space. We point out that these exten-
sions reflect some important properties of each workload,
even though cannot reflect every details: the job launch
and I/O forwarding workloads reflect the time serializa-
tion property and the monitoring workload reflects the
probability distribution of all obtained messages.

We run these workloads in our simulator, and present
the efficiency results for dfc and dchord with both strong and
eventual consistency, in Fig 9. We see that for job launch
and I/O forwarding, eventual consistency performs
worse than strong consistency. This is because both work-
loads have almost URD for request type and the key. For
monitoring workload, eventual consistency does better
because all requests are put type. The strong consistency
requires acknowledgments from all the other N-1 replicas,
while the eventual consistency just requires W-1 ac-
knowledgments. Another fact is that the monitoring
workload has the lowest efficiency because the key space is
not uniformly generated, resulting in poor load balancing.

(a) dfc

(b) dchord

Fig 9: dfc and dchord with real workloads

The above results demonstrate that our KVS frame-
work can simulate various system software as long as the
workloads could be mirrored to put or get requests, which
is true for the HPC system software we have investigated.

5.4.2 SLURM++ Distributed Resource Manager
The majority use cases of traditional big machines are
running large-scale (e.g. full scale or at least jobs with a
large percentage of the machine) tightly coupled HPC
applications with long durations (e.g. days to weeks). In
addition, strict policies are set to limit the number of con-
current job submissions per client, and the job sizes are
suggested to be large (e.g. 512 nodes on the IBM BG/P
machine in ANL). These constraints make great efforts to
guarantee the resource allocation of high-priority large
jobs, although it has been criticized that these policies
often lead to low utilizations. In this scenario, a central-
ized resource manager with a single job scheduling com-
ponent performs adequately as there are only limited
number of decisions of resource allocation and schedul-
ing that need to be made at a time.

As the exascale machines will have about one order of
magnitude more nodes with each one having up to three
orders of magnitude more parallelism (making up billion-
way parallelism), we argue that besides the traditional
large-scale HPC jobs, many orders of magnitude more
asynchronous jobs with a wide distribution of job sizes
and durations should be supported concurrently, in order
to maximize the system utilization. Because only a small
number of applications can scale up to exascale requiring
full-scale parallelism, most applications will be decom-
posed with the high-order low-order methods, which
have many small-scale coordinated ensemble jobs with

0%

5%

10%

15%

20%

25%

30%

E
ff

ic
ie

n
c
y

Scale (No. of Clients)

job launch (sc) job launch (ec)
monitoring (sc) monitoring (ec)
I/O forwarding (sc) I/O forwarding (ec)

0%

5%

10%

15%

20%

25%

30%

E
ff

ic
ie

n
c
y

Scale (No. of Clients)

job launch (sc) job launch (ec)
monitoring (sc) monitoring (ec)
I/O forwarding (sc) I/O forwarding (ec)

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

shorter durations. In addition, as the compute node will
have much higher parallelism at exascale, it is important
to support asynchronous parallel MTC workloads that
are fine-grained in both job size (e.g. per-core task) and
durations (e.g. from sub-second to hours). Furthermore,
we hope that the scheduling policies will be changed to
allow many users to submit more jobs of various re-
quirements of resources concurrently. The mixture of ap-
plications and the ever-growing number of job submis-
sions will pose significant scalability and reliability chal-
lenges on the resource manager and job scheduler.

One potential solution is to partition the whole ma-
chine and enable distributed resource management and
job scheduling in multiple partitions. In designing the
next-generation resource manager for exascale machines,
we have developed a prototype of distributed resource
manager, SLURM++, based on the SLURM centralized
resource manager, combined with the fully distributed
(dfc) KVS, ZHT. SLURM++ comprises of multiple control-
lers, and each one manages a partition of SLURM dae-
mons (slurmd), in contrast to SLURM’s centralized archi-
tecture (a single controller, slurmctld manages all the
slurmds). The controllers use ZHT to keep the free node
list in local partition and to resolve resource contentions
(via the atomic compare and swap [49] operation of ZHT).

To achieve dynamic resource balancing, we develop a
random resource stealing technique. When launching a
job, a controller first checks the local free nodes. If local
partition has enough free nodes, the controller directly
allocates them; otherwise, it queries ZHT for other parti-
tions from which it will steal resources. The technique
keeps stealing nodes from random controllers until the
job allocation is satisfied. For systems with heterogeneous
interconnections that impose different data rates and la-
tencies among compute nodes, we improve the random
technique by distinguishing the “nearby” and “distant”
neighbors. The technique always tries to steal resources
randomly from the “nearby” partitions first, and will turn
to the “distant” partitions if experiences several failures in
a row. For example, in a Torus network, we can set an
upper bound of number of hops between two controllers.
If the hop count is less than the upper bound, the two
partitions are considered “nearby”; otherwise, they are
“distant”. In a fat-tree network, “nearby” partitions could
be the sibling controllers that have the same parent.

We configure each controller to manage 50 slurmds
(50:1 configuration). However, SLURM++ can be config-
ured to have any homogeneous partition size (e.g. 1, 50,
100, 1024), and heterogeneous partition sizes. We com-
pare SLURM with SLURM++ under “sleep 0” jobs of dif-
ferent job sizes. Even though the “sleep 0” workloads are
not typical HPC jobs that use MPI for synchronization
and communication, they are simple enough to help
quantify the overheads of resource allocation and job
scheduling, as the first step.

(1) Small-Job Workload (job size is 1 node)
The first workload just includes one-node jobs (essen-

tially MTC jobs), and each controller launches 50 jobs.
Therefore, when the number of controller is n (number of
compute demons is 50*n), the total number of jobs is 50*n.

This workload is used to test the pure job launching
speed in the best case from the performance’s perspective.

Fig 10 shows the performance results. We see that the
throughput of SLURM first increases to a saturation point,
and then has a decreasing trend as the number of nodes
scales up (51.6 jobs/sec at 250 nodes, down to 39 jobs/sec
at 500 nodes). This is because the processing capacity of
the centralized slurmctld is limited, and it takes longer
time for the slurmctld to launch jobs as the job count and
system scale increase. On the other hand, the throughput
of SLURM++ increases almost linearly with respect to the
scale, and this trend is likely to continue at larger scales.
At 500-node scale, SLURM++ can launch jobs 2.34X faster
than SLURM (91.5 jobs/sec vs. 39 jobs/sec). Given the
throughput trends of SLURM++ and SLURM, we believe
the speedup will only grow as the scale is increased.

Fig 10: Small-Job: SLURM++ (50:1) vs. SLURM

The average ZHT message count per task remains al-
most constant with respect to the scale. This trend shows
great scalability of SLURM++ for this workload. In prior
work on evaluating ZHT [7], micro-benchmarks showed
ZHT achieving more than 1M ops/sec at 1024K-node
scale. At the largest scale of SLURM++, the average ZHT
message count is 12 (about 6K messages for 500 jobs),
along with the throughput of 91.5 jobs/sec, indicates ZHT
message rate of 1098 ops/sec. ZHT is far from being a
bottleneck for the workload and scale tested.

Fig 11: Small-Job: SLURM++ (1:1) vs. SLURM++ (50:1)

We also configure SLURM++ with 1:1 mapping of con-
trollers to compute nodes to best support MTC workloads.
We run experiments up to 200 nodes, with each controller
launching a single one-node job. There are 200 controllers
and 200 slurmds with 1:1 mapping. Fig 11 shows the per-
formance results of SLURM++ with both 1:1 and 50:1 con-
figurations. The throughputs increase linearly with re-
spect to the scales, and the average message count keeps
almost constant. For the 1:1 MTC configuration, based on

0

4

8

12

16

20

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

A
v
e

ra
g

e
 Z

H
T

 M
e

s
s
a

g
e

 C
o

u
n

t

T
h

ro
u

g
h

p
u

t
(j
o

b
s
 /
 s

e
c
)

Scale (no. of nodes)

SLURM++ (50:1)
SLURM
SLURM++ (50:1) average message count

0

4

8

12

16

1

10

100

1000

10000

50 100 150 200

A
v
e

ra
g

e
 Z

H
T

 M
e

s
s
a

g
e

 C
o

u
n

t

T
h

ro
u

g
h

p
u

t
(j
o

b
s
 /
 s

e
c
)

Scale (no. of nodes)

SLURM++ (1:1) throughput
SLURM++ (50:1) throughput
SLURM++ (1:1) average message count
SLURM++ (50:1) average message count

KE WANG ET AL.: EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 11

these trends, ideally, we can achieve 20K jobs/sec at 1K-
node scale and will need to process only 12K ZHT mes-
sages. Besides, SLURM++ could be configured less ag-
gressively with larger partition sizes, which would reduce
the traffic loads to ZHT due to smaller number of control-
lers. Another fact is that the 1:1 configuration can achieve
about 2 orders of magnitude higher throughput than the
50:1 one, even though the average message count doesn’t
change. This is because for 50:1 mapping, a controller
needs to spend more time to fill the value for ZHT and to
communicate with ZHT servers, as the length of value is
longer, resulting in larger communication packages.

(2) Medium-Job Workload (job size is 1-50 nodes)
The second experiment tests how SLURM and

SLURM++ behave under moderate job sizes. The work-
load is that each controller launches 50 jobs, and each job
requires a random number of nodes ranging from 1 to 50.

Fig 12: Medium-Job: SLURM++ (50:1) vs. SLURM

Fig 12 illustrates the performance results. We see that
for SLURM, as the number of nodes scales up, the
throughput increases a little bit (from 2.1 jobs/sec at 50
nodes to 7 jobs/sec at 250 nodes), and then keeps almost
constant or with a slow decrease. For SLURM++, the
throughput increases approximately linearly with respect
to the scale (from 6.2 jobs/sec at 50 nodes to 68 jobs/sec
at 500 nodes). SLURM++ can launch jobs faster than
SLURM at any scale we evaluated, and the gap is getting
larger at larger scales. At 500-node scale, SLURM++
achieves 11X (68 / 6.2) faster than SLURM; and the trends
show that the speedup will increase at larger scales. We
also see that the average ZHT message count first increas-
es slightly (from 13 messages/job at 50 nodes to 19 mes-
sages/job at 200 nodes), and then experiences perturba-
tions after that. The average ZHT message count will like-
ly keep within a range (17-20), and might be increasing
slightly at larger scales. This extra number of messages
comes from the involved resource stealing operations.

(3) Big-Job Workload (job size is 25 – 75 nodes)
The third experiment tests the ability of both SLURM

and SLURM++ of launching big jobs. In this case, each
controller launches 20 jobs, where each job requires a
random number of nodes ranging from 25 to 75.

The performance results are shown in Fig 13. SLURM
shows a throughput increasing trend up to 500 nodes
(from 1.2 jobs/sec at 100 nodes to 4.3 jobs/sec at 500
nodes), and the throughput is about to saturate after 400
nodes (from 3.8 jobs/sec at 400 nodes to 4.3 jobs/sec at
500 nodes). While the throughput of SLURM++ keeps

increasing almost linearly up to 500 nodes. Like the mid-
job case, SLURM++ can launch jobs faster than SLURM at
any scale we evaluated, and the gap is getting larger as
the scale increases. At 500-node scale, SLURM++ launch-
es jobs about 4.5X (19.3 / 4.3) faster than SLURM. Again,
we believe the speedup will become bigger at larger scale.

Fig 13: Large-Job: SLURM++ (50:1) vs. SLURM

In terms of the average ZHT message count, it shows a
decreasing trend (from 30.1 messages/job at 50 nodes to
24.7 messages/job at 500 nodes) with respect to the scale.
This is because when adding more partitions, each job
that needs to steal resource will have higher chance to get
resource as there are more options. This gives us intuition
about how promising the resource stealing algorithm will
solve the resource contention problems of distributed
resource manager towards exascale computing.

We observe that not only does SLURM++ outperform
SLURM in nearly all cases, but the performance slow-
down due to increasingly larger jobs at large scale is bet-
ter for SLURM++; this highlights the better scalability of
SLURM++. Another fact is that as the scale increases, the
throughput speedup is also increasing for all of the three
workloads. This indicates that at larger scales, SLURM++
would outperform SLURM even more. Also, we can con-
clude that SLURM++ has great scalability for medium-
size jobs, and there are improvements for large-size jobs.
We have high hopes that distributed HPC scheduling can
revolutionize batch-scheduling at extreme scales in the
support of a wider variety of applications.

5.4.3 MATRIX Distributed Task Scheduler
MATRIX is a fully distributed task scheduler for fine-
grained MTC workloads that include loosely coupled
small (e.g. per-core) tasks with shorter durations (e.g.
sub-second) and large volumes of data with dependen-
cies. MATRIX uses work stealing [50] to achieve load bal-
ancing, and ZHT to keep the task metadata (data depend-
encies, data localities) in the support of monitoring task
execution progress and data-aware scheduling.

Each scheduler in MATRIX maintains four queues (i.e.
task wait queue, dedicated local task ready queue, shared
work stealing task ready queue and task complete queue),
and tasks are moved from one queue to another when
state changes during execution. The task metadata is
stored in ZHT, and modified when a task’s state has
changed. Tasks in the dedicated ready queue are sched-
uled and executed locally, while tasks in the shared work
stealing queue could be migrated among schedulers for

0

4

8

12

16

20

24

28

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

A
v
e

ra
g

e
 Z

H
T

 M
e

s
s
a

g
e

 C
o

u
n

t

T
h

ro
u

g
h

p
u

t
(j
o

b
s
 /
 s

e
c
)

Scale (no. of nodes)

SLURM++ (50:1) throughput
SLURM throughput
SLURM++ (50:1) average message count

0

8

16

24

32

40

0

4

8

12

16

20

100 150 200 250 300 350 400 450 500 A
v
e

ra
g

e
 Z

H
T

 M
e

s
s
a

g
e

 C
o

u
n

t

T
h

ro
u

g
h

p
u

t
(j
o

b
s
 /
 s

e
c
)

Scale (no. of nodes)

SLURM++ (50:1) throughput
SLURM throughput
SLURM++ (50:1) average message count

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

balancing loads. A ready task will be put in either queue
based on the size and location of the demanded data.

We evaluate MATRIX with the all-pairs application in
biometrics [51]. All-Pairs application describes the behav-
ior of a new function on two sets. For example, finding
the covariance of two gene code sequences. In this work-
load, all the tasks are independent, and each task runs for
100 ms to compare two 12MB files with one from each set.
We run strong-scaling experiments up to 200 cores using
a 500*500 workload size with 250K tasks in total.

Fig 14: MATRIX ran all-pairs applications (200 cores)

The results are shown in Fig 14 at 200-core scale. We
see that MATRIX can achieve almost 120K task/min (al-
most 2K task/sec) at the stable stage (after 54 sec) when
the loads are perfectly balanced. This indicates a nearly
100% efficiency, as the throughput upper bound is 2K for
100ms tasks with 200 cores (200 * (1 / 0.01)). This also
means the task launch time for fine-grained tasks is negli-
gible comparing to the 100ms running time. The overall
system utilization is about 95% (red area/green area), the
5% performance loss (100/0.95–100=5.3 ms extra time per
task) is due to the short ramp up period needed to
achieve load balancing and the very short task launching
overhead. This great result attributes to the load balanced
work stealing technique and the use of the ZHT KVS to
store the task metadata in a distributed and scalable way.

5.4.4 Fault Tolerance of SLURM++ and MATRIX

Both SLURM++ and MATRIX have distributed architec-
tures that apply multiple servers to participate in resource
allocations and job scheduling. The clients can submit
workloads to arbitrary server. The server failures would
have trivial side effects on the functionalities offered to
the clients, because the clients can easily re-submit work-
loads to another server in the case of server failures.

In terms of preserving and recovering the system state
under server failures, since the servers of both SLURM++
and MATRIX are stateless (all the data is stored in ZHT),
they can tolerate failures with a minimum efforts. We
expect the ZHT to take over the responsibilities of dealing
with replications, failure and recovery and consistency of
the stored data. Up to date, ZHT has implemented differ-
ent failure, recovery and consistency mechanisms.

Both systems demonstrate that KVS is a viable build-
ing block. Relying on KVS for distributed state manage-
ment can not only ease the development of a general sys-
tem software, but can improve the scalability, efficiency
and fault tolerance of a system software significantly.

6 RELATED WORK

Work that is related to the simulation of system software
includes an investigation of peer-to-peer networks [52], te-
lephony simulations [53], simulations of load monitoring
[54], and simulation of consistency [55]. However, none of
the investigations focused on HPC, or combine replication,
failures and consistency. This survey [56] investigated 6 dis-
tributed hash tables and categorized them in a taxonomy of
algorithms. The work focused on the overlay networks. In
[57], p2p file sharing services were traced and used to build
a parameterized model. Another taxonomy was developed
for grid computing workflows [58]. The taxonomy was used
to categorize existing grid workflow managers to find their
common features and weaknesses. But none of these work
targeted HPC workloads and system software, and none of
them use the taxonomy to drive features in a simulation.

Examples of the types of system software of interest in
HPC are listed in Table 1. It includes resource manager,
SLURM [29], which is scalable for clusters. It has a cen-
tralized manager that monitors resources and assigns
work to compute daemons; I/O forwarding system,
IOFSL [30], which is a scalable, unified I/O forwarding
framework for HPC systems; interconnect fabric manag-
ers, OpenSM [59]. OpenSM is an InfiniBand subnet man-
ager; and data aggregation system, such as MRNet, which
is a software overlay network that provides multicast and
reduction communications for parallel and distributed
tools. These are the types of system software that will be
targeted for design explorations with our simulator.

Distributed key-value storage system is a building
block for system software. Dynamo [33] is a highly avail-
able and scalable KVS of Amazon. Data is partitioned,
distributed and replicated using consistent hashing, and
eventual consistency is facilitated by object versioning.
Voldemort is an open-source implementation of Dynamo
developed by LinkedIn. Cassandra [34] is a distributed
KVS developed by Facebook for Inbox Search. ZHT [48] is
a zero-hop distributed hash table for managing the
metadata of future exascale distributed system software.
Our simulator is flexible enough to be configured to rep-
resent each of these key-value storage systems.

7 CONCLUSIONS AND FUTURE WORK

The goal of this work was to propose a general system soft-
ware taxonomy for exascale HPC system software, and to
ascertain that a specific HPC system software should be im-
plemented at certain scales with certain levels of replication
and consistency as distributed systems. We devised a system
software taxonomy. Four classes of system architectures were
studied through a key-value store simulator. We conducted
extreme-scale experiments to quantify the overheads of dif-
ferent recovery, replication and consistency models for these
architectures. We also showed how KVS could be used as a
building block for general system software. The motivation
was that a centralized server architecture doesn’t scale
and is a single point of failure. Distributed system archi-
tectures are necessary to expose the extreme parallelism,
to hide latency, to maximize locality, and to build scalable
and reliable system software at exascale.

KE WANG ET AL.: EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 13

The conclusions of this work are: (1) KVS is a viable
building block; (2) when there are a huge amount of client
requests, dfc scales well under moderate failure frequency,
with different replication and consistency models, while
dchord scales moderately with less expensive overhead; (3)
when the communication is dominated by server messag-
es (due to failure/recovery, replication and consistency),
dchord will have an advantage; (4) different consistency
models have different application domains. Strong con-
sistency is more suitable for running read-intensive appli-
cations, while eventual consistency is preferable for ap-
plications that require high availability (shown in Fig 15).

Fig 15: Guide to choose different consistency models

The tools that are developed allow insights to be made
in scalable system software design through simulations.
We show how these insights can be applied in the design
of real system software, such as SLURM++ and MATRIX,
by leveraging KVS as a building block to reduce complex-
ity in developing modern scalable system software.

Future work includes improving the comprehensive-
ness of the taxonomy. For example, the network model
will consider the latencies and data rates of links of dif-
ferent kinds of interconnections (e.g. Ethernet and Infini-
Band); it should also consider more complicated topolo-
gies, such as Dragonfly, Fat tree, and multi-dimension
Torus networks. We also plan to evolve the simulator to
cover more of the taxonomy. Furthermore, we will use
the simulator to model other system software and vali-
date these at small scale, and then simulate at much larg-
er scales. This work will guide the development of a gen-
eral building block library that can be used to compose
large scale distributed resilient system software. Besides
the distributed resource manager (SLURM++) and task
scheduler (MATRIX), other system software implementa-
tions will be developed to support csingle, ctree, and dchord
with various properties from the taxonomy.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of En-
ergy under contract DE-FC02-06ER25750, and in part by
the National Science Foundation under award CNS-
1042543 (PRObE). This work was also in part supported
by the National Science Foundation grant NSF-1054974.
This research also used resources of the ALCF at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
DEAC02-06CH11357.

REFERENCES

[1] Department of Energy. Architectures and Technology for Extreme

Scale Computing. San Diego, CA: Department of Energy, 2009.

[2] P. Kogge, K. Bergman, et al. ExaScale computing study: Technology

challenges in achieving exascale systems, Sept. 28, 2008.

[3] M. A. Heroux. Software challenges for extreme scale computing: Going

from petascale to exascale systems. Int. J. High Perform. Comput. 2009.

[4] Department of Energy. Top Ten Exascale Research Challenges. DOE

ASCAC Subcommittee Report. February 10, 2014.

[5] Department of Energy. Exascale Operating System and Runtime Soft-

ware Report. DOE Office of Science, Office of ASCR, November 1, 2012.

[6] R. Wisniewski. HPC System Software Vision for Exascale Computing

and Beyond. Salishan conference. April 23, 2014.

[7] X. Besseron and T. Gautier. “Impact of Over-Decomposition on Coor-

dinated Checkpoint/Rollback Protocol”, Euro-Par Parallel Processing

Workshops, Lecture Notes in Computer Science Volume 7156, 2012.

[8] R. Rabenseifner, G. Hager, G. Jost. “Hybrid MPI and OpenMP Parallel
Programming”, Tutorial tut123 at SC13, November 17, 2013.

[9] ZeptoOS project. http://www.zeptoos.org/. MCS of ANL, 2015.

[10] Kitten Lightweight Kernel. https://software.sandia.gov/trac/kitten.

Sandia National Laboratory, 2015.

[11] L. Kale, A. Bhatele. “Parallel Science and Engineering Applications: The

Charm++ Approach”. Taylor & Francis Group, CRC Press. 2013.

[12] M. Bauer, S. Treichler, et al. Legion: expressing locality and independ-

ence with logical regions. ACM/IEEE, SC '12.

[13] H. Kaiser, T. Heller, et al. HPX – A Task Based Programming Model in

a Global Address Space. International Conference on PGAS 2014.

[14] Antal Buss, Harshvardhan, et al. STAPL: standard template adaptive

parallel library. In Proceedings of the 3rd SYSTOR conference, 2010.

[15] J. Wozniak, T. Armstrong, et al. Foster Swift/T: Large-scale application

composition via distributed-memory data flow processing. In Proc

CCGrid 2013.

[16] H. Kaiser, M. Brodowicz, et al. "ParalleX An Advanced Parallel Execu-

tion Model for Scaling-Impaired Applications," In Parallel Processing

Workshops, 2009.

[17] N. Thomas, S. Saunders, et al. ARMI: A high level communication

library for STAPL. Parallel Processing Letters, 16(02):261–280, 2006.

[18] J. Lidman, D. Quinlan, et al. “Rose: fttransform-a source-to-source trans-

lation framework for exascale fault-tolerance research,” in 42nd De-

pendable systems and networks workshops (dsn-w), 2012.

[19] M. Kulkarni, A. Prakash, M. Parks. “Semantics-rich Libraries for Effec-

tive Exascale Computation or SLEEC”.
https://xstackwiki.modelado.org/SLEEC. 2015.

[20] H. Weatherspoon and J. D. Kubiatowicz. "Erasure coding vs. replica-

tion: A quantitiative comparison", Proc. IPTPS, 2002.

[21] W. Vogels. 2009. Eventually consistent. Commun. ACM 52, 1, 2009.

[22] K. Wang, X. Zhou, et al. “Next Generation Job Management Systems

for Extreme Scale Ensemble Computing”, ACM HPDC 2014.

[23] K. Wang, A. Rajendran, I. Raicu. “MATRIX: MAny-Task com-

puting execution fabRIc at eXascale,” tech report, IIT, 2013.

[24] K. Wang, X. Zhou, et al. "Optimizing Load Balancing and Data-

Locality with Data-aware Scheduling", IEEE BigData 2014.

[25] K. Wang, A. Rajendran, et al. “Paving the Road to Exascale with
Many-Task Computing”, Doctoral Showcase, SC 2012.

[26] K. Wang, A. Kulkarni, et al. “Using Simulation to Explore Dis-

tributed Key-Value Stores for Extreme-Scale Systems Ser-

vices”, IEEE/ACM Supercomputing/SC 2013.

[27] T. Haerder and A. Reuter. Principles of transaction-oriented

database recovery. ACM Comput. Surv. 15, 4, 1983, 287-317.

[28] I. Stoica, et al. Chord: A scalable peer-to-peer lookup service for

http://datasys.cs.iit.edu/publications/2014_HPDC14_SLURM++.pdf
http://datasys.cs.iit.edu/publications/2014_HPDC14_SLURM++.pdf
http://datasys.cs.iit.edu/publications/2013_SC13-KVS.pdf
http://datasys.cs.iit.edu/publications/2013_SC13-KVS.pdf
http://datasys.cs.iit.edu/publications/2013_SC13-KVS.pdf
http://sc13.supercomputing.org/

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

internet applications. Sigcomm Comput. Commun. Rev., 2001.

[29] M. Jette, A. Yoo, et al. SLURM: Simple Linux utility for resource

management. International Workshop on JSSPP, 2003.

[30] N. Ali, P. Carns, et al. Scalable I/O Forwarding Framework for

High-Performance Computing Systems. In CLUSTER, 2009.

[31] A. Vishnu, A. Mamidala, et al. Performance Modeling of Subnet

Management on Fat Tree InfiniBand Networks using OpenSM.

In IPDPS’05 - Workshop 18 - Volume 19, 2005.

[32] P. Roth, D. Arnold, et al. MRNet: A software-based mul-

ticast/reduction network for scalable tools. ACM/IEEE SC’03.

[33] G. DeCandia, et al. Dynamo: Amazon’s highly available key-

value store. In Proceedings of ACM SOSP, 2007.

[34] A. Lakshman and P. Malik. Cassandra: a decentralized struc-

tured storage system. SIGOPS Oper. Syst. Rev., 2010.

[35] A. Feinberg. Project Voldemort: Reliable Distributed Storage.

ICDE, 2011.

[36] M. A. Heroux. Toward Resilient Algorithms and Applications,

April 2013. Available from

http://www.sandia.gov/~maherou/docs/HerouxTowardResi

lientAlgsAndApps.pdf

[37] I. Raicu, I. Foster, et al. Middleware support for many-task computing.

Cluster Computing, 13(3):291–314, September 2010. ISSN: 1386-7857.

[38] I. Raicu, I. T. Foster, et al. Many-task computing for grids and super-

computers. In MTAGS workshop, 2008.

[39] Ioan Raicu. Many-task computing: Bridging the gap between high-

throughput computing and high-performance computing. Proquest,

Umi Dissertation Publishing, 2009.

[40] I. Raicu, et al. Towards data intensive many-task computing. In Data

Intensive Distributed Computing: Challenges and Solutions for Large-

Scale Information Management, IGI Global Publishers, 2009.

[41] D. Zhao, Z. Zhang, et al. "FusionFS: Towards Supporting Data-

Intensive Scientific Applications on Extreme-Scale High-

Performance Computing Systems", IEEE BigData 2014.

[42] D. Karger, E. Lehman, et al. Consistent hashing and random

trees: distributed caching protocols for relieving hot spots on

the world wide web. In Proceedings of STOC ’97.

[43] A. Varga and R. Hornig. An overview of the omnet++ simulation envi-

ronment. In Proceedings international conference on Simutools, 2008.

[44] I. Baumgart, B. Heep, and S. Krause. Oversim: A flexible overlay net-

work simulation framework. In IEEE Global Internet Symposium, 2007.

[45] T. Vignaux and K. Muller. Simpy:documentation, May 2010. Available

from http: //simpy.sourceforge.net/SimPyDocs/index.html

[46] A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In

Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), 2009.

[47] K. Wang, K. Brandstatter, et al. SimMatrix: Simulator for many-task

computing execution fabric at exascale. In Proceeding of HPC’13.

[48] T. Li, X. Zhou, et al. ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table. IPDPS, 2013.

[49] M. Herlihy. Wait-free synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[50] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computa-

tions by work stealing. Journal of the ACM (JACM), 1999.

[51] I. Raicu, I. Foster, et al. "The Quest for Scalable Support of Data Inten-

sive Workloads in Distributed Systems", ACM HPDC09, 2009.

[52] Ti. Tuan, A. Dinh, et al. Evaluating Large Scale Distributed Simulation

of P2P Networks. In Proceedings of the 2008 12th IEEE/ACM Interna-

tional Symposium on DS-RT, 2008.

[53] I. Diane, I. Niang, et al. A Hierarchical DHT for Fault Tolerant Man-

agement in P2P-SIP Networks. In Proceedings of the 2010 IEEE 16th In-

ternational Conference on ICPADS, 2010.

[54] B. Ghit, F. Pop, et al. Epidemic-Style Global Load Monitoring in Large-

Scale Overlay Networks. In Proceedings of the 2010 International Con-

ference on 3PGCIC, 2010.

[55] M. Rahman, W. Golab, et al. Toward a Principled Framework for

Benchmarking Consistency. In Proceedings of the Eighth USENIX con-

ference on Hot Topics in System Dependability (HotDep'12). 2012.

[56] E. Lua, J. Crowcroft, et al. A survey and comparison of peer-to-peer

overlay network schemes. IEEE Communications Surveys and Tutori-

als, 7(2):72–93, 2005.

[57] K. Gummadi, et al. Measurement, modeling, and analysis of a peer-to-

peer file-sharing workload. In Proceedings of the nineteenth ACM

symposium on SOSP, 2003.

[58] J. Yu and R. Buyya. A taxonomy of workflow management systems for

grid computing. Journal of Grid Computing, 3(3-4):171–200, 2005.

[59] A. Vishnu et al. Performance modeling of subnet management on fat

tree infiniband networks using opensm. Workshop 18, IPDPS, 2005.

Ke Wang is a Ph.D. candidate of the Department of
Computer Science at Illinois Institute of Technology
(IIT). He is a member of the Data-Intensive Distributed
Systems Laboratory at IIT, and working with Dr. Ioan
Raicu. His research work and interests are delivering

distributed job management systems towards extreme-scale compu-
ting. Wang received his degree of B.S. in Software Engineering from
Huazhong University of Science and Technology, Wuhan, China in
2010. He is a student member of IEEE and ACM.

Abhishek Kulkarni is a PhD candidate at the School
of Informatics and Computing at Indiana University.
He is a member of the Center for Research in Ex-
treme Scale Technologies (CREST) working with Dr.
Andrew Lumsdaine. His research interests include
execution models and runtime systems for HPC, and

performance modeling and simulation of parallel programs. He re-
ceived his MS in Computer Science from Indiana University in 2010.

Michael Lang is the team leader of the Ultrascale
Systems Research at Los Alamos National Laborato-
ry (LANL). His research interests include intercon-
nects for large-scale systems, performance of large-
scale systems, operating system and runtime issues
for exascale and HPC. Lang was formerly a member

of LANL's Performance and Architecture team, involved in perfor-
mance analysis of large-scale systems for DOE. He received a B.S.
in Computer Engineering and an M.S. in Electrical Engineering in
1988 and 1993 respectively, both from the University of New Mexico.

Dr. Dorian Arnold is an assistant professor in the
Department of Computer Science at the University of
New Mexico. He is co-director of the Scalable Sys-
tems Laboratory at UNM where he directs research in
the broad areas of high-performance computing and
large scale distributed systems, with focuses on scal-

able middleware, runtime data analysis, fault-tolerance and HPC
tools. Arnold collaborates with researchers from several national
laboratories and universities, and his research projects have been
selected as Top 100 R&D technologies in 1999 and 2011. He holds
a Ph.D. in Computer Science from the University of Wisconsin, an
M.S. in Computer Science from the University of Tennessee and a
B.S. in Mathematics and Computer Science from Regis University.

Dr. Ioan Raicu is an assistant professor in the De-
partment of Computer Science at IIT, as well as a
guest research faculty in the Math and Computer Sci-
ence Division at Argonne National Laboratory. He is
also the founder (2011) and director of the Data-
Intensive Distributed Systems Laboratory at IIT. He

obtained his Ph.D. in Computer Science from University of Chicago
under the guidance of Dr. Ian Foster. He is particularly interested in
many-task computing, data intensive computing, Cloud computing,
and many-core computing. He is a member of the IEEE and ACM.

http://datasys.cs.iit.edu/publications/2009_HPDC09_data-diffusion.pdf
http://datasys.cs.iit.edu/publications/2009_HPDC09_data-diffusion.pdf

