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Exploring the Design Tradeoffs for Extreme-
Scale High-Performance Computing System 
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Abstract—Owing to the extreme parallelism and the high component failure rates of tomorrow’s exascale, high-performance 
computing (HPC) system software will need to be scalable, failure-resistant, and adaptive for sustained system operation and 
full system utilizations. Many of the existing HPC system software are still designed around a centralized server paradigm and 
hence are susceptible to scaling issues and single points of failure. In this article, we explore the design tradeoffs for scalable 
system software at extreme scales. We propose a general system software taxonomy by deconstructing common HPC system 
software into their basic components. The taxonomy helps us reason about system software as follows: (1) it gives us a 
systematic way to architect scalable system software by decomposing them into their basic components; (2) it allows us to 
categorize system software based on the features of these components, and finally (3) it suggests the configuration space to 
consider for design evaluation via simulations or real implementations. Further, we evaluate different design choices of a 
representative system software, i.e. key-value store, through simulations up to millions of nodes. Finally, we show evaluation 
results of two distributed system software, Slurm++ (a distributed HPC resource manager) and MATRIX (a distributed task 
execution framework), both developed based on insights from this work. We envision that the results in this article help to lay 
the foundations of developing next-generation HPC system software for extreme scales. 

Index Terms—Distributed systems, High-performance computing, Key-value stores, Simulation, Systems and Software 
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1 INTRODUCTION

ystem software is a collection of important middle-
ware services that offer to upper-lay applications inte-

grated views and control capabilities of the underlying 
hardware components. Generally system software allows 
applications full and efficient hardware utilization. A typ-
ical system software stack includes (from the bottom up) 
operating systems (OS), runtime systems, compilers, and 
libraries [1]. Technological trends indicate that exascale 
high-performance computing (HPC) systems will have 
billion-way parallelism [2], and each node will have about 
three orders of magnitude more intra-node parallelism 
than that of the node of today’s petascale systems [4]. Ex-
ascale systems will pose fundamental challenges of man-
aging parallelism, locality, power, resilience, and scalabil-
ity [3][5][6]. 

Current HPC system software designs focus on opti-
mizing the inter-node parallelism by maximizing the 
bandwidth and minimizing the latency of the intercon-
nection networks but suffer from the lack of scalable solu-
tions to expose the intra-node parallelism. New loosely-
coupled programming models (e.g. many-task computing 
[38], over-decomposition [7], and MPI + OpenMP [8]) are 

helping to address intra-node parallelism for exascale 
systems. These programming models place a high de-
mand on system software for scalability, fault-tolerance 
and adaptivity. However, many of the existing HPC sys-
tem software are still designed around a centralized serv-
er paradigm and, hence, are susceptible to scaling issues 
and single points of failure. Such concerns suggest a 
move towards fundamentally scalable distributed system 
software designs – a move further motivated by the 
growing amount of data (and metadata) that servers need 
to maintain in a scalable, reliable, and consistent manner. 

The exascale community has been exploring research 
directions that address exascale system software chal-
lenges, such as lightweight OS and kernels (e.g. ZeptoOS 
[9], Kitten [10]); asynchronous and loosely coupled 
runtime systems (e.g. Charm++ [11], Legion [12], HPX 
[13], STAPL [14], and Swift [15]); load balanced and local-
ity-aware execution and scheduling models (e.g. MATRIX 
[23][25], ParallelX [16], and ARMI [17]); automatic and 
auto-tuning compilers (e.g. ROSE [18], SLEEC [19]). The 
general collections of HPC system software are those that 
support system booting, system monitoring, hardware or 
software configuration and management, job and re-
source management, I/O forwarding, and various 
runtime systems for programming models and communi-
cation libraries. As HPC systems approach exascale, the 
basic design principles of scalable and fault-tolerant sys-
tem architectures need to be investigated for HPC system 
software implementations. Instead of exploring the de-
sign choices of each system software at every stack level 
individually and in an ad hoc fashion, this work aims to 
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develop a general framework that allows for systematic 
explorations of the design space of HPC system software 
and to evaluate the impacts of different design choices.  

In this article, the questions we intend to answer are: 
what are the scalabilities of different system software 
architectures (centralized, hierarchical, distributed); and 
at what scales and levels of reliability and consistency 
does distributed design outweigh the extra complexity 
and overhead of centralized and hierarchical designs. 

To answer the questions, we devise a general taxono-
my that classifies system software based on basic compo-
nents, so as to identify their performance and scaling lim-
its. By identifying the common basic components and 
focusing on designing these core components, we will 
enable faster prototyping and development of new sys-
tem software. We then motivate key-value stores (KVS) as 
a building block for HPC system software at extreme 
scales, and then using KVS as a case study, we explore 
design tradeoffs of system software. Via simulation, we 
explore the scalability of each system architecture and 
quantify the overheads in supporting reliability at ex-
treme scales. Finally, we evaluate two system software (a 
distributed HPC resource manager, SLURM++ [22], and a 
distributed task execution framework, MATRIX 
[23][24][25]), which are developed based on the insights 
from this work. We believe the work presented in this 
article lays the foundations for the development of the 
next-generation, extreme-scale HPC system software. 

This article extends our previous work [26] that moti-
vated KVS as a building block for extreme-scale HPC sys-
tem software and evaluated different KVS designs. The 
contributions of the previous work were: (1) a taxonomy 
for classifying KVS; (2) a simulation tool to explore KVS 
design choices for large-scale system software; and (3) an 
evaluation of KVS design choices at extreme scales using 
both synthetic workloads and real workload traces.  

The extension covers the aspects of both depth and 
broadness of scope. For broadness, we focus on general 
HPC system software instead of just KVS. For depth, we 
add a hierarchical architecture in the comparison with the 
centralized and distributed ones. We also evaluate more 
system software that apply KVS as distributed metadata 
management to demonstrate more extensively that KVS is 
a fundamental block for extreme-scale system software.  

The new contributions of this article are as follows: 
1.   We devise a comprehensive taxonomy by deconstructing 

system software into their core components. The taxonomy 
helps us reason about general system software as follows: (1) it 
gives a systematic way to decompose system software into their 
basic components; (2) it allows one to categorize system soft-
ware based on the features of these components, and finally, (3) 
it suggests the configuration spaces to consider for evaluating 
system designs via simulation or real implementation.  

2.   We conduct an inclusive evaluation of different system 
architectures (centralized, hierarchical, and distributed) under 
various design choices, such as different replication, recovery, 
and consistency models.  

3.   We offer empirical evaluations of other system software 
that use KVS for metadata management. This supports pro-
posal of using KVS as a building block for HPC system soft-

ware at extreme scales. 
The rest of this article is organized as follows. Section 2 

motivates KVS as a building block and identifies the cen-
tralized architecture’s bottleneck for HPC system soft-
ware at extreme scales; Section 3 presents the taxonomy 
and shows how the taxonomy can help to classify existing 
system software; Section 4 details the KVS simulation 
design and implementation; Section 5 evaluates different 
architectures through simulations up to millions of nodes, 
and offers the evaluation of two system software that ap-
ply KVS as distributed metadata management; Section 6 
discusses other related research; Section 7 presents our 
conclusions and opportunities for future work. 

2 KEY-VALUE STORES IN HPC 

2.1 Building Blocks for HPC 

We motivate that KVS is a building block for HPC system 
software at extreme scales. The HPC system software, 
which we generally target, are those that support system 
booting, system monitoring, hardware or software con-
figuration and management, job and resource manage-
ment, I/O forwarding, and various runtime systems for 
programming models and communication libraries 
[29][30][31][32]. For extreme-scale HPC systems, these 
system software all need to operate on large volumes of 
data in a scalable, resilient and consistent manner. We 
observe that such system software commonly and natu-
rally comprise of data-access patterns amenable to the 
NoSQL abstraction, a lightweight data storage and re-
trieval paradigm that admits weaker consistency models 
than traditional relational databases. 

These requirements are consistent with those of large-
scale distributed data centers, such as, Amazon, Facebook, 
LinkedIn and Twitter. In these commercial enterprises, 
NoSQL data stores – Distributed Key-Value Stores (KVS) 
in particular – have been used successfully [33][34][35] in 
deploying software as a service (SaaS). We assert that by 
taking the particular needs of HPC system into account, 
we can use KVS for HPC system software to help resolve 
many scalability, robustness, and consistency issues.  

By encapsulating distributed system complexities in 
the KVS, we can simplify HPC system software designs 
and implementations. Giving some examples as follows: 
For resource management, KVS can be used to maintain 
necessary job and node status information. For monitor-
ing, KVS can be used to maintain system activity logs. For 
I/O forwarding in file systems, KVS can be used to main-
tain file metadata, including access authority and modifi-
cation sequences. In job start-up, KVS can be used to dis-
seminate configuration and initialization data amongst 
composite tool or application processes (an example of 
this is under development in the MRNet project [32]). 
Application developers from Sandia National Laboratory 
[36] are targeting KVS to support local checkpoint/restart 
protocols. Additionally, we have used KVS to implement 
several system software, such as a many-task computing 
(MTC) task execution [37][38][39][40] framework – MA-
TRIX [23][24][25], where KVS is used to store the task 
metadata information, and a fuse-based distributed file 
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system, FusionFS [41], where the KVS is used to track file 
metadata. 

2.2 Centralized Architecture’s Bottleneck 

HPC system software designed around the centralized 
architecture suffer from limited scalability, high likeli-
hood of non-recoverable failures and other inefficiencies. 
To validate this, we assess the performance and resilience 
of a centralized file-backed KVS. 

We implement a KVS prototype. Each request (put, get, 
and delete) was turned into a corresponding file system 
operation (write, read and remove, respectively) by the 
server. A request with a 16-byte payload is consist of a 
(key, value) pair. We run the prototype on a 128-node ma-
chine with AMD 2GHz Dual-Core Opteron and 4 GB of 
memory per node. Compute nodes are connected with 
Gigabit Ethernet. At every second boundary, the 
throughput attained by the server is measured to deter-
mine the maximum throughput during operation. 

 
Fig 1: Performance and Resilience of Centralized KVS 

Fig 1 shows the peak throughput is achieved at 64 cli-
ents with the configuration of one client per node. As 
multiple clients per node are spawned, the throughput 
decreases due to network contention. At relatively mod-
est scales, centralized server shows significant perfor-
mance degradation due to contention.  

To measure the reliability of the centralized server, we 
set the failure rate of the server to be dependent on the 
number of clients it is serving due to the increasing loads 
on the server. Considering an exponential distribution of 
server failures, the relationship between the server’s up 
time and the number of clients is: 𝑢𝑝 𝑡𝑖𝑚𝑒 = 𝐴𝑒𝜆𝑛, where 𝐴 is the up time with zero client, 𝜆 is the failure rate, and 𝑛 is the number of clients. Assuming a 2-month up time 
with zero client (𝐴 = 1440 hours), and a 1-month (i.e. 720 
hours) up time with 1024 clients of a single server, we 
show the trend of the server up time with respect to the 
number of clients (dotted blue line) in Fig 1. The reliabil-
ity decreases as the scale of the system increases. 

At exascale, the above results would be amplified to 
pose serious operability concerns. While not surprising 
results, these results motivate alternative distributed architec-
tures that support scalability, reliability and consistency in a 
holistic manner. These issues can be addressed by identify-
ing the core components required by system software, 
such as a global naming system, an abstract KVS, a decen-
tralized architecture, and a scalable, resilient overlay net-
work. 

3 HPC SYSTEM SOFTWARE TAXONOMY 

In contrast to the traditional HPC system software that 
are tightly coupled for synchronized workloads, SaaS 
developed for the Cloud domain is designed for loosely 
asynchronous embarrassingly parallel workloads in dis-
tributed systems with wide area networks. As HPC sys-
tems are approaching exascale, the HPC system software 
will need to be more asynchronous and loosely coupled 
to expose the ever-growing intra-node parallelism and 
hide latency. To be able to reason about general HPC sys-
tem software at exascale, we devise a taxonomy by break-
ing system software down into various core components 
that can be composed into a full system software. We in-
troduce the taxonomy, through which, we then categorize 
a set of system software. 

A system software can be primarily characterized by 
its service model, data layout model, network model, 
recovery model, and consistency model. These compo-
nents are explained in detail as follows:  

(I)   Service Model describes system software func-
tionality, architecture, and the roles of the software’s 
composite entities. Other properties such as atomicity, 
consistency, isolation, durability (ACID) [27], availability, 
partition-tolerance etc. also are expressed as parts of the 
service model. These characteristics define the overall 
behavior of the system software and the constraints it 
imposes on the other models. A transient data aggrega-
tion tool, a centralized job scheduler, a resource manager 
with a single failover, a parallel file system are some ex-
amples of the service model. 

(II)   Data Layout Model defines the system software 
data distribution. In a centralized model, a single server is 
responsible for maintaining all the data. Alternatively, the 
data can be partitioned among distributed servers with 
varying levels of replication, such as partitioned (no rep-
lication), mirrored (full replication), and overlapped (par-
tial replication). 

(III)   Network Model dictates how system software 
components are connected. In a distributed network, 
servers can form structured overlays – rings, binomial, k-
ary, n-cube, radix trees; complete, binomial graphs; or 
unstructured overlay – random graphs. The system soft-
ware could be further differentiated based on determinis-
tic or non-deterministic information routing in the over-
lay network. While some overlay networks imply a com-
plete membership set (e.g. fully-connected), others as-
sume a partial membership set (e.g. binomial graphs). 

(IV)   Recovery Model describes how system software 
deals with server failures with minimum manual inter-
vention. The most common methods include fail-over, 
checkpoint-restart, and roll-forward. Triple modular re-
dundancy and erasure coding [20] are additional ways to 
deal with server failures and ensure data integrity. The 
recovery model can either be self-contained, such as re-
covery via logs from persistent storage, or require com-
munication with others to retrieve replicated data. 

(V)   Consistency Model pertains to how rapidly data 
changes in a distributed system are propagated and kept 
coherent. Depending on the data layout model and the 
corresponding level of replication, system software may 
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employ different levels of consistency. The level of con-
sistency is a tradeoff between the server’s response time 
and how tolerant clients are to stale data. It can also com-
pound the complexity of recovery under failures. Servers 
could employ weak, strong, or eventual consistency de-
pending on the importance of the data.  

By combining specific instances of these components, 
we can define a system architecture of system software. 
Fig 2 and Fig 3 depict some specific system architectures 
derived from the taxonomy. For instance, ctree is a system 
architecture with a centralized data layout model and a 
tree-based hierarchical overlay network; dfc architecture 
has a distributed data layout model with a fully-
connected overlay network, whereas dchord architecture has 
a distributed data layout model and a Chord overlay 
network [28] with partial membership. Recovery and con-
sistency models are not depicted, but would need to be 
identified to define a complete service architecture. 

         

                             (a) csingle                                          (b) cfailover 

 

(c) ctree 

Fig 2: Centralized system architecture 

 

(a) dfc 

     

                              (b) dchord                                    (c) drandom 

Fig 3: Distributed system architecture 

Looking into the memory requirements of these archi-
tectures allows deriving observations analytically. Fig 4 (a) 
shows the per-server memory requirement of the client 
data for different architectures, assuming 16GB client data. 
A single server must have the memory capacity to hold 
all the data, where the dfc and dchord architectures partition 
the data evenly across many servers. Fig 4 (b) illustrates 
the per-server memory requirements to store the server 
membership information, assuming each server identifi-

cation is 10KB. This is trivial for a single server. For dfc, it 
grows linearly with the number of severs, while for dchord, 
the relationship is logarithm. 

 

(a) Data memory per server 

 

(b) Membership memory per server 

Fig 4: Memory requirements for different architectures 

To demonstrate how common HPC system software 
would fit into the taxonomy, we have classified, at a high-
level, some representative system software in Table 1. 

4 KEY-VALUE STORES SIMULATION 

Having motivated KVS as a building block for extreme-
scale HPC system software, using the taxonomy we nar-
row the parameter space and focus on the major KVS 
components. Then we can use simulation to evaluate the 
design spaces for any specific KVS applications before 
any implementation. Additionally, we can create modular 
KVS components that allow the easy creation of extreme-
scale system software. This section presents the design 
and implementation details of a KVS simulator. The 
simulator allows us to explore all the system architec-
tures, namely csingle, ctree, dfc and dchord. Here we assume a 
centralized data layout model for csingle and ctree, and a dis-
tributed data layout model for dfc and dchord. The simulator 
is extendable to other network and data layout models. 
The architectures can be configured with N-way replica-
tion for the recovery model and either eventual or strong 
consistency for the consistency model. The conclusions 
that we will draw from KVS simulations can be general-
ized to other system software, such as job schedulers, re-
source managers, I/O forwarding, monitoring, and file 
systems. 
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Table 1: Representative system services categorized through the taxonomy 

System Software Service Model Data Layout Model Network Model Recovery Model Consistency Model 

Charm++ Runtime System Distributed Hierarchical N-way Replication Strong 

Legion Runtime System Distributed Hierarchical None Strong 

STAPL Runtime System Distributed Nested/Hierarchical N-Way Replication Strong 

HPX Runtime System Distributed Fully-connected N-Way Replication Strong 

SLURM Resource Manager Replicated Centralized Fail-Over Strong 

SLURM++ Resource Manager Distributed Fully-connected Fail-Over Strong 

MATRIX Task Scheduler Distributed Fully-connected None Strong 

OpenSM Fabric Manager Replicated Centralized Fail-Over Strong 

MRNet Data Aggregation Centralized Hierarchical None None 

Lilith Data Distribution Replicated Hierarchical Fail-Over Strong 

Yggdrasil Data Aggregation Replicated Hierarchical Fail-Over Strong 

IOFSL I/O Forwarding Centralized Hierarchical None None 

Riak Key-value store Distributed Partially-connected N-way Replication Strong and Eventual 

FusionFS File System Distributed Fully-connected N-way Replication Strong and Eventual 

4.1 Simulator Overview 

Simulations are conducted up to exascale levels with tens 
of thousands of nodes (each one has tens to hundreds of 
thousands threads of execution) running millions of cli-
ents and thousands of servers. The clients are simulated 
as compute daemons that communicate with the servers 
to store data and system states. The millions of clients are 
spread out as millions of compute daemon processes over 
all the highly parallel compute nodes. Furthermore, the 
number of clients and servers are configurable.  

The data records stored in the servers are (key, value) 
pairs; the key uniquely identifies the record and the value 
is the actual data object. By hashing the key through some 
hashing function (e.g. modular) over all the servers, the 
client knows the exact server that is storing the data. 
Servers are modeled to maintain two queues: a commu-
nication queue for sending and receiving messages and a 
processing queue for handling incoming requests that 
operate on the local data. Requests regarding other serv-
ers’ data cannot be handled locally and are forwarded to 
the corresponding servers. 

4.2 Data Layout and Network Models 

The data layout and network models supported are: cen-
tralized data server (csingle), centralized data server with 
aggregation servers in a tree overlay (ctree), distributed 
data servers with fully connected overlay (dfc), distributed 
data servers with partial connected overlay (dchord). 

For csingle and ctree, all data is stored in a single server. 
The main difference is that ctree has a layer of aggregation 
servers to whom the client submits requests. Currently, 
the aggregation servers only gather requests. 

For dfc and dchord, the key space along with the associated 
data value is evenly partitioned among all the servers en-
suring a perfect load balancing. In dfc, data is hashed to 
the server in an interleaved way (key modular the server 
id), while in dchord, consistent hashing [42] is the method 
for distributing data. The servers in dfc have global 
knowledge of all servers, while in dchord, each server has 
only partial knowledge of the other servers; specifically 
this is logarithm of the total number of servers with base 
2 and is kept in a table referred to as the finger table in 
each server. 

4.3 Recovery Model 
The recovery model defines how a server recovers its 
state and how it rejoins the system after a failure. This 
includes how a recovered server recovers its data and 
how to update the replica information of other servers 
that are affected due to the recovery. The first replica of a 
failed server is notified by an external mechanism (EM) 
[28] (e.g. a monitoring system software that knows the 
status of all servers) when the primary server recovers. 
Then the first replica sends all the replicated data (includ-
ing the data of the recovering server and of other servers 
for which the recovering server acts as a replica) to the 
recovered server. The recovery is done once the server 
acknowledges that it has received all data. 

We implement a replication model in the simulator for 
the purpose of handling failures. In csingle and ctree, one or 
more failovers are added; while in dfc and dchord, each serv-
er replicates its data in the consecutive servers (servers 
have consecutive id numbers from 0 to server count - 1). 
Failure events complicate server replication model. When 
a server fails, the first replica sends the failed server’s 
data to an additional server to ensure that there are 
enough replicas. In addition, all the servers that replicate 
data on the failed server would also send their data to one 
more server. The clients can tolerate server failures by 
identifying the replicas of a server as consecutive servers.  

Our simulator implements different policies for the cli-
ents to handle server failures, such as timeouts, multi-trial, 
and round-robin. For example, in the timeouts policy, a 
client would wait a certain time for the server to respond. 
If the server doesn’t respond after the timeout, the client 
then turns to the next replica. In addition, our simulator 
has the ability to handle communication failures by rely-
ing on the EM. The EM monitors the status of all the serv-
ers by issuing periodic heart-beat messages. When a link 
failure of a server happens, the EM detects it according to 
the failed heart-beat message and then notifies the affect-
ed clients, which then direct requests to the next replica.  

4.4 Consistency Model 
Our simulator implements two consistency models: strong 
consistency and eventual consistency [21]. 
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4.4.1 Strong Consistency 

In strong consistency, updates are made with atomicity 
guarantee so that no two replicas may store different val-
ues for the same key at any given time. A client sends re-
quests to a dedicated server (primary replica). The get re-
quests are processed and returned back immediately. The 
put requests are first processed locally and then sent to the 
replicas; the primary replica waits for an acknowledge-
ment from each other replica before it responds back to the 
client. When a server recovers from failure, before getting 
back all its data, it caches all the requests directed to it. In 
addition, the first replica (notified by the EM) of the newly 
recovered server migrates all pending put requests, which 
should have been served by the recovered server, to the 
recovered server. This ensures that only the primary repli-
ca processes put requests at any time while there may be 
more than one replicas processing get requests. 

4.4.2 Eventual Consistency 

In eventual consistency, given a sufficiently long period of 
time over which no further updates are sent, all updates 
will propagate and all the replicas will be consistent even-
tually, although different replicas may have different ver-
sions of data of the same key at a given time. After a client 
finds the correct server, it sends requests to a random repli-
ca (called the coordinator). This is to model inconsistent 
updates of the same key and also to achieve load balancing, 
among all the replicas. There are three key parameters to 
the consistency mechanism: the number of replicas–N, the 
number of replicas that must participate in a quorum for a 
successful get request–R, and the number of replicas that 
must participate in a quorum for a successful put request-
W. We satisfy R+W>N to guarantee “read our writes” [21]. 
Similar to Dynamo [33] and Voldemort [35], we use vector 
clock to track different data versions and detect conflicts. A 
vector clock is a <serverId, counter> pair for each key in 
each server. It specifies how many updates have been pro-
cessed by the server for a key. If all counters in a vector 
clock V1 are no larger than all corresponding ones in a vec-
tor clock V2, then V1 precedes V2, and can be replaced by 
V2. If V1 overlaps with V2, then there is a conflict. 

For a get request, the coordinator reads the value locally, 
sends the request to other replicas, and waits for <value, 
vector clock> responses. When a replica receives a get re-
quest, it first checks the corresponding vector clock. If it 
precedes the coordinator’s, then the replica responds with 
success. Otherwise, the replica responds failure, along with 
its <value, vector clock> pair. The coordinator waits for 
R−1 successful responses, and returns all the versions of 
data to the client who is responsible for reconciliation (ac-
cording to an application-specific rule such as “largest val-
ue wins”) and writing back the reconciled version.  

For a put request, the coordinator generates a new vec-
tor clock by incrementing the counter of the current one by 
1, and writes the new version locally. Then the coordinator 
sends the request, along with the new vector clock to other 
replicas for quorum. If the new vector clock is preceded by 
a replica’s, the replica accepts the update and responds 
success; otherwise, responds failure. If at least W−1 replicas 
respond success, the put request is considered successful. 

4.5 KVS Simulator Implementation Details 

After evaluating several simulation frameworks such as 
OMNET++ [43], OverSim [44], SimPy [45], PeerSim [46], 
we chose to develop the simulator on top of PeerSim be-
cause of its support for extreme scalability and dynamicity. 
We use the discrete-event simulation (DES) [47] engine of 
PeerSim. Every behavior in the system is converted to an 
event and tagged with an occurrence time. All the events 
are inserted in a global event queue that is sorted based on 
the event occurrence time. In every iteration, the simulation 
engine fetches the first event and executes the correspond-
ing actions, which may result in following events. The 
simulation terminates when the queue is exhausted. 

The simulator is developed in Java (built on top of Peer-
Sim) and has about 10,000 lines of code. The input to the 
simulation is a configuration file, which specifies the sys-
tem architecture, and the system parameters. 

5 EVALUATION 

Our evaluation aims to give insights into the design spac-
es of HPC system software through KVS simulations, and 
to show the capabilities of our simulator in exposing costs 
inherent in design choices. We evaluate the overheads of 
different architectures as we vary the major components 
defined in section 3. We present results by incrementally 
adding complex features such as replication, fail-
ure/recovery, and consistency, so that we can measure 
the individual contributions to the overheads due to sup-
porting these distributed features. 

The simulations are run on a single node; the largest 
amount of memory required for any of the simulations is 
25GB and the longest running time is 40 minutes (millions 
of clients, thousands of servers, and tens of millions of 
requests). Given our lightweight simulator, we can ex-
plore an extremely large scale range. 

Our simulator has been validated against two real key-
value stores, ZHT [48] and Voldemort [35], within mod-
erate scales, 8K nodes for ZHT and 500 nodes for Volde-
mort. The simulator reported a relatively small average 
difference of 4.38% comparing with ZHT and of 10.71% 
comparing with Voldemort. The validation details can be 
found in our prior work [26].  

One important metric used in our evaluation is efficien-
cy. The efficiency is the percentage ratio of the ideal run-
ning time to the actual running time of a given workload. 
The ideal running time is calculated by accounting to 
merely request processing time and assuming zero com-
munication overheads. The efficiency quantifies the aver-
age utilization of the system. Higher efficiency numbers 
indicate less communication overheads.  

5.1 Architecture Comparisons 

We compare different architectures for the basic scenario 
(no replication, failure/recovery or consistency models) 
with synthetic workloads to investigate the tradeoffs be-
tween these system architectures at increasingly large 
scales. In the synthetic workload, each client submits 10 
requests with 5 get operations and 5 put operations on the 
key space of 128-bit (generated with a uniform random 
distribution), and each request message is 10KB. 
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5.1.1 csingle vs. ctree 

Fig 5 shows the comparison between csingle and ctree. We see 
that before 16 clients, ctree performs worse than csingle due to 
that the small gather size (at most 16) is insufficient to 
make up the additional latency of the extra communica-
tion hop. Between 32 (1 aggregation server) to 16K clients 
(16 aggregation servers with each one managing 1K cli-
ents), ctree performs better than csingle because of the larger 
gather sizes (32 to 1K). After 32K clients, the individual 
performance is degrading, the relative performance gap is 
decreasing and finally disappearing. This is because the 
per-request processing time is getting larger when the 
number of clients increases due to contentions, which 
renders that the communication overhead is negligible. 

 
Fig 5: Throughput of csingle vs ctree 

To model the server contention due to the increasing 
number of clients, we run a prototype of a centralized 
KVS (csingle) implementation up to 1K nodes and apply a 
polynomial regression on the processing time with re-
spect to the number of clients with the base of 500ms. 
Within 1K nodes, the changing of processing time is 
shown in Table 2. The 1K-client processing time (637 ms) 
is used in dfc and dchord as each server manages 1K clients. 
For csingle and ctree, Beyond 1K nodes, we increase the pro-
cessing time linearly with respect to the client count. 

In Fig 5, the values after 1K clients are linear models. 
There could be other models (e.g. logarithm, polynomial, 
exponential) between processing time and the number of 
clients depending on the server implementation (e.g. mul-
ti-threading, event-driven, etc). We only use the calibrat-
ed values up to 1K clients. We show the results after 1K 
clients merely to point out that there is a severe server 
contention in a single server at large scales, leading to 
poor scalability of the centralized architecture. 

Table 2: Processing time as a function of number of clients 

Number of Clients 1 2 4 8 16 32 64 128 256 512 1K 

Processing Time (ms) 613 611 608 601 588 567 537 509 505 541 637 

5.1.2 dfc vs. dchord 

The comparison between dfc and dchord is shown in Fig 6. 
Each server is configured to manage 1K clients. With dfc, 
we observe that the server throughput almost scales line-
arly with respect to the server count, and the efficiency 
has a fairly constant value (67%) at extreme scales, mean-
ing that dfc has great scalability. With dchord, we see slightly 
less throughput as we scale up, and the efficiency de-

creases smoothly (Fig 6(a)). This is due to the additional 
routing required by dchord to satisfy requests: one-hop max-
imum for dfc and logN hops for dchord.  

We show the average per-client throughput for both dfc 
and dchord in Fig 6(b). Up to 1M clients, dfc is about twice as 
fast as dchord from the client’s perspective. From the error 
bars, we see that dchord has higher deviation of the per-
client throughput than that of dfc. This is again due to the 
extra hops required to find the correct server in dchord. 

 

(a) Server throughput and efficiency 

 

(b) Average throughput per client 

Fig 6: dfc and dchord performance comparison 

The conclusion is that at the base case, the partial con-
nectivity of dchord results in latency as high as twice as that 
of the full connectivity of dfc, due to the extra routing.  

5.2 Server Failure Effect with Replication 

This section explores the overhead of failure events when 
a server is configured to keep updated replicas for resili-
ence. We choose the multi-trial policy: the clients resend 
the failed requests to the primary server several times (an 
input parameter) before turning to the next replica.  

Fig 7 displays the efficiency comparison between the 
base dfc and dfc configured with failure events and replica-
tion, and between the base dchord and dchord configured with 
failure events and replication, respectively. We use 3 rep-
licas, set the failure rate to be 5 failure events per minute, 
and apply a strong consistency model. As seen in Fig 7, 
both dfc and dchord have significant efficiency degradation 
when failures and replication are enabled (blue solid line 
vs blue dotted line, red solid line vs red dotted line). The 
performance degradation of dfc is more severe than that of 
dchord - 44% (67% to 23%) for dfc vs. 17% (32% to 15%) for 
dchord. We explain the reasons with the help of Table 3. 
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Fig 7: Server failure effect with replication 

Table 3 lists the message count of each property (pro-
cess request, failure, strong consistency) for both dfc and 
dchord. We see that at extreme scales, the request-process 
message count (dominant factor) does not increase much 
when turning on failures and replicas for both dfc and 
dchord. The message count of failure event is negligible, and 
of strong consistency increases significantly at the same 
rate for both dfc and dchord. However, these added messages 
account for 1/3(20M/60M) for dfc, while less than 1/8 
(20M/170M) for dchord. Due to the high request-process 
message count in dchord, the overhead of dfc seems more 
severe. The replication overhead is costly, which indicates 
that tuning a system software to the appropriate number 
of replicas will have a large impact on performance. 

5.3 Strong and Eventual Consistency 

We compare the overheads of consistency models in this 
section. We enable failures with 5 failure events per mi-
nute and use 3 replicas. Like Dynamo [33], for eventual 
consistency, we configure (N, R, W) to be (3, 2, 2). 

 
Fig 8: Strong consistency and eventual consistency 

Fig 8 shows the efficiency results of both dfc and dchord. 
We see that eventual consistency has larger overhead 
than strong consistency. From strong to eventual con-
sistency, efficiency reduces by 4.5% for dfc and 3% for dchord 
at extreme scales. We also list the number of messages for 
request-process, failure events, and consistency models in 
Table 4. We observe that the request-process message 
count doesn’t vary much for both dfc and dchord. However, 
for consistency messages, eventual consistency introduces 
about as twice (41M/21M) the number of messages as 
that of strong consistency. This is because in eventual 
consistency, each request would be forwarded to all N=3 
replicas and the server waits for R=2 and W=2 successful 
acknowledgments. With strong consistency, just the put 
requests would be forwarded to all other replicas. Even-
tual consistency gives faster response times to the clients 
but with larger cost of communication overhead.  

5.4 KVS Applicability to HPC System Software 

In this section, we show that KVS can be used as building

Table 3: Message count for dfc, dchord with and without failure and replica (F&R) 

 request-process message count failure message count strong consistency message count 

# Clients dfc dchord dfc (F&R) dchord (F&R) dfc (F&R) dchord (F&R) dfc (F&R) dchord (F&R) 

4096 143.4K 185.0K 312.4K 246.2K 33 4.5K 217.7K 87.1K 

8192 307.3K 491.1K 404.1K 596.2K 42 445 175.4K 170.9K 

16384 634.8K 1.2M 726.1K 1.5M 66 28.6K 336.5K 377.1K 

32768 1.3M 2.8M 1.4M 3.0M 114 712 665.4K 662.0K 

65536 2.6M 6.4M 2.7M 6.6M 210 590 1.3M 1.3M 

131072 5.2M 14.3M 5.3M 14.5M 402 888 2.6M 2.6M 

262144 10.5M 31.3M 10.6M 31.7M 786 996 5.3M 5.2M 

524288 21.0M 67.9M 21.1M 68.4M 1.6K 1.1K 10.5M 10.5M 

1048576 41.9M 146.6M 42.0M 147.1M 3.1K 1.3K 21.0M 21.0M 

Table 4: Message count of strong consistency (sc) and eventual consistency (ec) for dfc and dchord 

 
process message count failure message count consistency message count 

sc ec Sc ec sc ec 

# Clients dfc dchord dfc dchord dfc dchord dfc dchord dfc dchord dfc dchord 

4096 312.4K 246.2K 141.5K 211.4K 30 4.6K 30 360 217.7K 87.1K 167.2K 164.5K 

8192 404.1K 596.2K 391.9K 682.7K 40 450 50 590 175.4K 170.8K 340.2K 328.2K 

16384 726.1K 1.5M 733.1K 1.5M 67 28.6K 90 23.7K 336.5K 377.1K 668.2K 655.4K 

32768 1.4M 3.0M 1.4M 3.1M 110 710 150 830 665.4K 661.9K 1.3M 1.3M 

65536 2.7M 6.7M 2.7M 6.6M 210 590 210 770 1.3M 1.3M 2.6M 2.6M 

131072 5.3M 14.5M 5.3M 14.8M 400 890 530 1.1K 2.6M 2.6M 5.3M 5.3M 

524288 21.1M 68.4M 21.0M 68.7M 1.6K 1.1K 2.1K 1.4K 10.5M 10.5M 21.0M 21.0M 

1048576 42.0M 147.1M 42.0M 148.0M 3.1K 1.3K 4.1K 1.6K 21.0M 21.0M 42.0M 42.0M 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

4096 
16384 

65536 

262144 

1048576 

E
ff

ic
ie

n
c

y
 

Scale (No. of Clients) 

dfc 1 replica no failure 

dfc 3 replicas 5 failure events/min 

dchord 1 replica no failure 

dchord 3 replicas 5 failure events/min 

10%

14%

18%

22%

26%

30%

E
ff

ic
ie

n
c
y

Scale (No. of Clients)

dfc strong consistency
dfc eventual consistency
dchord strong consistency
dchord eventual consistency



KE WANG ET AL.:  EXPLORING THE DESIGN TRADEOFFS FOR EXTREME-SCALE HIGH-PERFORMANCE COMPUTING SYSTEM SOFTWARE 9 

 

block for developing HPC system software. First, we 
conduct simulations with three workloads, which were 
obtained from real traces of three system software: job 
launch using SLURM, monitoring by Linux Syslog, and 
I/O forwarding using the FusionFS [41] distributed file 
system. Then, we evaluate two distributed system soft-
ware that use a KVS (i.e. ZHT [48]) for distributed state 
management, namely an HPC resource manager, 
SLURM++ [22], and a MTC task scheduler, MATRIX [23]. 

5.4.1 Simulation with Real Workload Traces 

We run simulations with three workloads obtained from 
typical HPC system software, listed as follows: 

1.  Job Launch: this workload is obtained from moni-
toring the messages between the server and client during 
an MPI job launch in SLURM resource manager. Though 
the job launch is not implemented in a distributed fashion, 
the messages should be representative regardless of the 
server structure, and in turn drive the communications 
between the distributed servers. The workload is charac-
terized with the controlling messages of the slurmctld 
(get) and the results returning from the slurmds (put). 

2.  Monitoring: we get this workload from a 1600-node 
cluster’s syslog data. The data is categorized by message-
type (denoting the key space) and count (denoting the 
frequency of each message). This distribution is used to 
generate the workload that is completely put dominated. 

3.  I/O Forwarding: We generate this workload by 
running the FusionFS distributed file system. The client 
creates 100 files and operates (reads or writes with 50% 
probability) on each file once. We collect the logs of the 
ZHT metadata servers that are integrated in FusionFS. 

We extend these workloads to make them large 
enough for exascale systems. For job launch and I/O for-
warding, we repeat the workloads several times until 
reaching 10M requests, and the key of each request is gen-
erated with uniform random distribution (URD) within 
64-bit key space. The monitoring workload has 77 mes-
sage types with each one having a different probability. 
We generate 10M put requests; the key is generated based 
on the probability distribution of the message types and is 
mapped to 64-bit key space. We point out that these exten-
sions reflect some important properties of each workload, 
even though cannot reflect every details: the job launch 
and I/O forwarding workloads reflect the time serializa-
tion property and the monitoring workload reflects the 
probability distribution of all obtained messages.  

We run these workloads in our simulator, and present 
the efficiency results for dfc and dchord with both strong and 
eventual consistency, in Fig 9. We see that for job launch 
and I/O forwarding, eventual consistency performs 
worse than strong consistency. This is because both work-
loads have almost URD for request type and the key. For 
monitoring workload, eventual consistency does better 
because all requests are put type. The strong consistency 
requires acknowledgments from all the other N-1 replicas, 
while the eventual consistency just requires W-1 ac-
knowledgments. Another fact is that the monitoring 
workload has the lowest efficiency because the key space is 
not uniformly generated, resulting in poor load balancing. 

 
(a) dfc   

 
(b) dchord 

Fig 9: dfc and dchord with real workloads 

The above results demonstrate that our KVS frame-
work can simulate various system software as long as the 
workloads could be mirrored to put or get requests, which 
is true for the HPC system software we have investigated. 

5.4.2 SLURM++ Distributed Resource Manager 
The majority use cases of traditional big machines are 
running large-scale (e.g. full scale or at least jobs with a 
large percentage of the machine) tightly coupled HPC 
applications with long durations (e.g. days to weeks). In 
addition, strict policies are set to limit the number of con-
current job submissions per client, and the job sizes are 
suggested to be large (e.g. 512 nodes on the IBM BG/P 
machine in ANL). These constraints make great efforts to 
guarantee the resource allocation of high-priority large 
jobs, although it has been criticized that these policies 
often lead to low utilizations. In this scenario, a central-
ized resource manager with a single job scheduling com-
ponent performs adequately as there are only limited 
number of decisions of resource allocation and schedul-
ing that need to be made at a time.  

As the exascale machines will have about one order of 
magnitude more nodes with each one having up to three 
orders of magnitude more parallelism (making up billion-
way parallelism), we argue that besides the traditional 
large-scale HPC jobs, many orders of magnitude more 
asynchronous jobs with a wide distribution of job sizes 
and durations should be supported concurrently, in order 
to maximize the system utilization. Because only a small 
number of applications can scale up to exascale requiring 
full-scale parallelism, most applications will be decom-
posed with the high-order low-order methods, which 
have many small-scale coordinated ensemble jobs with 
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shorter durations. In addition, as the compute node will 
have much higher parallelism at exascale, it is important 
to support asynchronous parallel MTC workloads that 
are fine-grained in both job size (e.g. per-core task) and 
durations (e.g. from sub-second to hours). Furthermore, 
we hope that the scheduling policies will be changed to 
allow many users to submit more jobs of various re-
quirements of resources concurrently. The mixture of ap-
plications and the ever-growing number of job submis-
sions will pose significant scalability and reliability chal-
lenges on the resource manager and job scheduler.  

One potential solution is to partition the whole ma-
chine and enable distributed resource management and 
job scheduling in multiple partitions. In designing the 
next-generation resource manager for exascale machines, 
we have developed a prototype of distributed resource 
manager, SLURM++, based on the SLURM centralized 
resource manager, combined with the fully distributed 
(dfc) KVS,  ZHT. SLURM++ comprises of multiple control-
lers, and each one manages a partition of SLURM dae-
mons (slurmd), in contrast to SLURM’s centralized archi-
tecture (a single controller, slurmctld manages all the 
slurmds). The controllers use ZHT to keep the free node 
list in local partition and to resolve resource contentions 
(via the atomic compare and swap [49] operation of ZHT).  

To achieve dynamic resource balancing, we develop a 
random resource stealing technique. When launching a 
job, a controller first checks the local free nodes. If local 
partition has enough free nodes, the controller directly 
allocates them; otherwise, it queries ZHT for other parti-
tions from which it will steal resources. The technique 
keeps stealing nodes from random controllers until the 
job allocation is satisfied. For systems with heterogeneous 
interconnections that impose different data rates and la-
tencies among compute nodes, we improve the random 
technique by distinguishing the “nearby” and “distant” 
neighbors. The technique always tries to steal resources 
randomly from the “nearby” partitions first, and will turn 
to the “distant” partitions if experiences several failures in 
a row. For example, in a Torus network, we can set an 
upper bound of number of hops between two controllers. 
If the hop count is less than the upper bound, the two 
partitions are considered “nearby”; otherwise, they are 
“distant”. In a fat-tree network, “nearby” partitions could 
be the sibling controllers that have the same parent. 

We configure each controller to manage 50 slurmds 
(50:1 configuration). However, SLURM++ can be config-
ured to have any homogeneous partition size (e.g. 1, 50, 
100, 1024), and heterogeneous partition sizes. We com-
pare SLURM with SLURM++ under “sleep 0” jobs of dif-
ferent job sizes. Even though the “sleep 0” workloads are 
not typical HPC jobs that use MPI for synchronization 
and communication, they are simple enough to help 
quantify the overheads of resource allocation and job 
scheduling, as the first step. 

(1) Small-Job Workload (job size is 1 node) 
The first workload just includes one-node jobs (essen-

tially MTC jobs), and each controller launches 50 jobs. 
Therefore, when the number of controller is n (number of 
compute demons is 50*n), the total number of jobs is 50*n. 

This workload is used to test the pure job launching 
speed in the best case from the performance’s perspective.  

Fig 10 shows the performance results. We see that the 
throughput of SLURM first increases to a saturation point, 
and then has a decreasing trend as the number of nodes 
scales up (51.6 jobs/sec at 250 nodes, down to 39 jobs/sec 
at 500 nodes). This is because the processing capacity of 
the centralized slurmctld is limited, and it takes longer 
time for the slurmctld to launch jobs as the job count and 
system scale increase. On the other hand, the throughput 
of SLURM++ increases almost linearly with respect to the 
scale, and this trend is likely to continue at larger scales. 
At 500-node scale, SLURM++ can launch jobs 2.34X faster 
than SLURM (91.5 jobs/sec vs. 39 jobs/sec). Given the 
throughput trends of SLURM++ and SLURM, we believe 
the speedup will only grow as the scale is increased.  

 
Fig 10: Small-Job: SLURM++ (50:1) vs. SLURM 

The average ZHT message count per task remains al-
most constant with respect to the scale. This trend shows 
great scalability of SLURM++ for this workload. In prior 
work on evaluating ZHT [7], micro-benchmarks showed 
ZHT achieving more than 1M ops/sec at 1024K-node 
scale. At the largest scale of SLURM++, the average ZHT 
message count is 12 (about 6K messages for 500 jobs), 
along with the throughput of 91.5 jobs/sec, indicates ZHT 
message rate of 1098 ops/sec. ZHT is far from being a 
bottleneck for the workload and scale tested. 

 
Fig 11: Small-Job: SLURM++ (1:1) vs. SLURM++ (50:1) 

We also configure SLURM++ with 1:1 mapping of con-
trollers to compute nodes to best support MTC workloads. 
We run experiments up to 200 nodes, with each controller 
launching a single one-node job. There are 200 controllers 
and 200 slurmds with 1:1 mapping. Fig 11 shows the per-
formance results of SLURM++ with both 1:1 and 50:1 con-
figurations. The throughputs increase linearly with re-
spect to the scales, and the average message count keeps 
almost constant. For the 1:1 MTC configuration, based on 
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these trends, ideally, we can achieve 20K jobs/sec at 1K-
node scale and will need to process only 12K ZHT mes-
sages. Besides, SLURM++ could be configured less ag-
gressively with larger partition sizes, which would reduce 
the traffic loads to ZHT due to smaller number of control-
lers. Another fact is that the 1:1 configuration can achieve 
about 2 orders of magnitude higher throughput than the 
50:1 one, even though the average message count doesn’t 
change. This is because for 50:1 mapping, a controller 
needs to spend more time to fill the value for ZHT and to 
communicate with ZHT servers, as the length of value is 
longer, resulting in larger communication packages. 

(2) Medium-Job Workload (job size is 1-50 nodes) 
The second experiment tests how SLURM and 

SLURM++ behave under moderate job sizes. The work-
load is that each controller launches 50 jobs, and each job 
requires a random number of nodes ranging from 1 to 50.   

 
Fig 12: Medium-Job: SLURM++ (50:1) vs. SLURM 

Fig 12 illustrates the performance results. We see that 
for SLURM, as the number of nodes scales up, the 
throughput increases a little bit (from 2.1 jobs/sec at 50 
nodes to 7 jobs/sec at 250 nodes), and then keeps almost 
constant or with a slow decrease. For SLURM++, the 
throughput increases approximately linearly with respect 
to the scale (from 6.2 jobs/sec at 50 nodes to 68 jobs/sec 
at 500 nodes). SLURM++ can launch jobs faster than 
SLURM at any scale we evaluated, and the gap is getting 
larger at larger scales. At 500-node scale, SLURM++ 
achieves 11X (68 / 6.2) faster than SLURM; and the trends 
show that the speedup will increase at larger scales. We 
also see that the average ZHT message count first increas-
es slightly (from 13 messages/job at 50 nodes to 19 mes-
sages/job at 200 nodes), and then experiences perturba-
tions after that. The average ZHT message count will like-
ly keep within a range (17-20), and might be increasing 
slightly at larger scales. This extra number of messages 
comes from the involved resource stealing operations. 

(3) Big-Job Workload (job size is 25 – 75 nodes) 
The third experiment tests the ability of both SLURM 

and SLURM++ of launching big jobs. In this case, each 
controller launches 20 jobs, where each job requires a 
random number of nodes ranging from 25 to 75. 

The performance results are shown in Fig 13. SLURM 
shows a throughput increasing trend up to 500 nodes 
(from 1.2 jobs/sec at 100 nodes to 4.3 jobs/sec at 500 
nodes), and the throughput is about to saturate after 400 
nodes (from 3.8 jobs/sec at 400 nodes to 4.3 jobs/sec at 
500 nodes). While the throughput of SLURM++ keeps 

increasing almost linearly up to 500 nodes. Like the mid-
job case, SLURM++ can launch jobs faster than SLURM at 
any scale we evaluated, and the gap is getting larger as 
the scale increases. At 500-node scale, SLURM++ launch-
es jobs about 4.5X (19.3 / 4.3) faster than SLURM. Again, 
we believe the speedup will become bigger at larger scale. 

 
Fig 13: Large-Job: SLURM++ (50:1) vs. SLURM 

In terms of the average ZHT message count, it shows a 
decreasing trend (from 30.1 messages/job at 50 nodes to 
24.7 messages/job at 500 nodes) with respect to the scale. 
This is because when adding more partitions, each job 
that needs to steal resource will have higher chance to get 
resource as there are more options. This gives us intuition 
about how promising the resource stealing algorithm will 
solve the resource contention problems of distributed 
resource manager towards exascale computing. 

We observe that not only does SLURM++ outperform 
SLURM in nearly all cases, but the performance slow-
down due to increasingly larger jobs at large scale is bet-
ter for SLURM++; this highlights the better scalability of 
SLURM++. Another fact is that as the scale increases, the 
throughput speedup is also increasing for all of the three 
workloads. This indicates that at larger scales, SLURM++ 
would outperform SLURM even more. Also, we can con-
clude that SLURM++ has great scalability for medium-
size jobs, and there are improvements for large-size jobs. 
We have high hopes that distributed HPC scheduling can 
revolutionize batch-scheduling at extreme scales in the 
support of a wider variety of applications. 

5.4.3 MATRIX Distributed Task Scheduler 
MATRIX is a fully distributed task scheduler for fine-
grained MTC workloads that include loosely coupled 
small (e.g. per-core) tasks with shorter durations (e.g. 
sub-second) and large volumes of data with dependen-
cies. MATRIX uses work stealing [50] to achieve load bal-
ancing, and ZHT to keep the task metadata (data depend-
encies, data localities) in the support of monitoring task 
execution progress and data-aware scheduling. 

Each scheduler in MATRIX maintains four queues (i.e. 
task wait queue, dedicated local task ready queue, shared 
work stealing task ready queue and task complete queue), 
and tasks are moved from one queue to another when 
state changes during execution. The task metadata is 
stored in ZHT, and modified when a task’s state has 
changed. Tasks in the dedicated ready queue are sched-
uled and executed locally, while tasks in the shared work 
stealing queue could be migrated among schedulers for 
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balancing loads. A ready task will be put in either queue 
based on the size and location of the demanded data.  

We evaluate MATRIX with the all-pairs application in 
biometrics [51]. All-Pairs application describes the behav-
ior of a new function on two sets. For example, finding 
the covariance of two gene code sequences. In this work-
load, all the tasks are independent, and each task runs for 
100 ms to compare two 12MB files with one from each set. 
We run strong-scaling experiments up to 200 cores using 
a 500*500 workload size with 250K tasks in total. 

 
Fig 14: MATRIX ran all-pairs applications (200 cores) 

The results are shown in Fig 14 at 200-core scale. We 
see that MATRIX can achieve almost 120K task/min (al-
most 2K task/sec) at the stable stage (after 54 sec) when 
the loads are perfectly balanced. This indicates a nearly 
100% efficiency, as the throughput upper bound is 2K for 
100ms tasks with 200 cores (200 * (1 / 0.01)). This also 
means the task launch time for fine-grained tasks is negli-
gible comparing to the 100ms running time. The overall 
system utilization is about 95% (red area/green area), the 
5% performance loss (100/0.95–100=5.3 ms extra time per 
task) is due to the short ramp up period needed to 
achieve load balancing and the very short task launching 
overhead. This great result attributes to the load balanced 
work stealing technique and the use of the ZHT KVS to 
store the task metadata in a distributed and scalable way. 

5.4.4 Fault Tolerance of SLURM++ and MATRIX 

Both SLURM++ and MATRIX have distributed architec-
tures that apply multiple servers to participate in resource 
allocations and job scheduling. The clients can submit 
workloads to arbitrary server. The server failures would 
have trivial side effects on the functionalities offered to 
the clients, because the clients can easily re-submit work-
loads to another server in the case of server failures. 

In terms of preserving and recovering the system state 
under server failures, since the servers of both SLURM++ 
and MATRIX are stateless (all the data is stored in ZHT), 
they can tolerate failures with a minimum efforts. We 
expect the ZHT to take over the responsibilities of dealing 
with replications, failure and recovery and consistency of 
the stored data. Up to date, ZHT has implemented differ-
ent failure, recovery and consistency mechanisms. 

Both systems demonstrate that KVS is a viable build-
ing block. Relying on KVS for distributed state manage-
ment can not only ease the development of a general sys-
tem software, but can improve the scalability, efficiency 
and fault tolerance of a system software significantly.  

6 RELATED WORK 

Work that is related to the simulation of system software 
includes an investigation of peer-to-peer networks [52], te-
lephony simulations [53], simulations of load monitoring 
[54], and simulation of consistency [55]. However, none of 
the investigations focused on HPC, or combine replication, 
failures and consistency. This survey [56] investigated 6 dis-
tributed hash tables and categorized them in a taxonomy of 
algorithms. The work focused on the overlay networks. In 
[57], p2p file sharing services were traced and used to build 
a parameterized model. Another taxonomy was developed 
for grid computing workflows [58]. The taxonomy was used 
to categorize existing grid workflow managers to find their 
common features and weaknesses. But none of these work 
targeted HPC workloads and system software, and none of 
them use the taxonomy to drive features in a simulation. 

Examples of the types of system software of interest in 
HPC are listed in Table 1. It includes resource manager, 
SLURM [29], which is scalable for clusters. It has a cen-
tralized manager that monitors resources and assigns 
work to compute daemons; I/O forwarding system, 
IOFSL [30], which is a scalable, unified I/O forwarding 
framework for HPC systems; interconnect fabric manag-
ers, OpenSM [59]. OpenSM is an InfiniBand subnet man-
ager; and data aggregation system, such as MRNet, which 
is a software overlay network that provides multicast and 
reduction communications for parallel and distributed 
tools. These are the types of system software that will be 
targeted for design explorations with our simulator. 

Distributed key-value storage system is a building 
block for system software. Dynamo [33] is a highly avail-
able and scalable KVS of Amazon. Data is partitioned, 
distributed and replicated using consistent hashing, and 
eventual consistency is facilitated by object versioning. 
Voldemort is an open-source implementation of Dynamo 
developed by LinkedIn. Cassandra [34] is a distributed 
KVS developed by Facebook for Inbox Search. ZHT [48] is 
a zero-hop distributed hash table for managing the 
metadata of future exascale distributed system software. 
Our simulator is flexible enough to be configured to rep-
resent each of these key-value storage systems. 

7 CONCLUSIONS AND FUTURE WORK 

The goal of this work was to propose a general system soft-
ware taxonomy for exascale HPC system software, and to 
ascertain that a specific HPC system software should be im-
plemented at certain scales with certain levels of replication 
and consistency as distributed systems. We devised a system 
software taxonomy. Four classes of system architectures were 
studied through a key-value store simulator. We conducted 
extreme-scale experiments to quantify the overheads of dif-
ferent recovery, replication and consistency models for these 
architectures. We also showed how KVS could be used as a 
building block for general system software. The motivation 
was that a centralized server architecture doesn’t scale 
and is a single point of failure. Distributed system archi-
tectures are necessary to expose the extreme parallelism, 
to hide latency, to maximize locality, and to build scalable 
and reliable system software at exascale.  
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The conclusions of this work are: (1) KVS is a viable 
building block; (2) when there are a huge amount of client 
requests, dfc scales well under moderate failure frequency, 
with different replication and consistency models, while 
dchord scales moderately with less expensive overhead; (3) 
when the communication is dominated by server messag-
es (due to failure/recovery, replication and consistency), 
dchord will have an advantage; (4) different consistency 
models have different application domains. Strong con-
sistency is more suitable for running read-intensive appli-
cations, while eventual consistency is preferable for ap-
plications that require high availability (shown in Fig 15). 

 
Fig 15: Guide to choose different consistency models 

The tools that are developed allow insights to be made 
in scalable system software design through simulations. 
We show how these insights can be applied in the design 
of real system software, such as SLURM++ and MATRIX, 
by leveraging KVS as a building block to reduce complex-
ity in developing modern scalable system software. 

Future work includes improving the comprehensive-
ness of the taxonomy. For example, the network model 
will consider the latencies and data rates of links of dif-
ferent kinds of interconnections (e.g. Ethernet and Infini-
Band); it should also consider more complicated topolo-
gies, such as Dragonfly, Fat tree, and multi-dimension 
Torus networks. We also plan to evolve the simulator to 
cover more of the taxonomy. Furthermore, we will use 
the simulator to model other system software and vali-
date these at small scale, and then simulate at much larg-
er scales. This work will guide the development of a gen-
eral building block library that can be used to compose 
large scale distributed resilient system software. Besides 
the distributed resource manager (SLURM++) and task 
scheduler (MATRIX), other system software implementa-
tions will be developed to support csingle, ctree, and dchord 
with various properties from the taxonomy. 
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