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Abstract—We evaluate the validity of the fundamental assumption
behind application-specific programmable processors: that applications
differ from each other in key parameters which are exploitable, such as the
available instruction-level parallelism (ILP), demand on various hardware
resources, and the desired mix of function units. Following the tradition of
the CAD community, we develop an accurate chip area estimate and a set
of aggressive hardware optimization algorithms. We follow the tradition of
the architecture community by using comprehensive real-life benchmarks
and production quality tools. This combination enables us to build a
unique framework for system-level synthesis and to gain valuable insights
about design and use of application-specific programmable processors for
modern applications. We explore the application-specific programmable
processor (ASSP) design space to understand the relationship between
performance and area. The architecture model we used is the Hewlett
Packard PA-RISC [1] with single level caches. The system, including all
memory and bus latencies, is simulated and no other specialized ALU
or memory structures are being used. The experimental results reveal
a number of important characteristics of the ASSP design space. For
example, we found that in most cases a single programmable architecture
performs similarly to a set of architectures that are tuned to individual
application. A notable exception is highly cost sensitive designs, which
we observe need a small number of specialized architectures that require
smaller areas. Also, it is clear that there is enough parallelism in the typical
media and communication applications to justify use of high number of
function units. We found that the framework introduced in this paper
can be very valuable in making early design decisions such as area and
architectural configuration tradeoff, cache and issue width tradeoff under
area constraint, and the number of branch units and issue width.

Index Terms—Application-specific programmable processor, instruction
level parallelism, mediabench, mediaprocessor, system-level synthesis.

I. INTRODUCTION

It has been predicted that the “micro-brain boom” (sic) will greatly
increase demand for application-specific microprocessors for media
applications [2]. Sales of handheld computers and personal digital as-
sistants grew almost sixfold from 1994’s total, to 5.6 million units in
1999. The market for programmable DSP chips increased 20% in 1998
to the$3.9 billion level. The new DSP markets, which are beginning
to emerge, including digital cameras, satellite phones, smart antennas,
voice over IP, ac motor control, and even digital TV, is forecast to grow
at a 33% compound rate to the$13.4 billion level in 2002 [3].

This market growth coincides with an interesting technological ad-
vance that will change both the semiconductor business and micropro-
cessor design. Since 1992, microprocessors account for 23% of total
semiconductor sales. In 1998, these chips accounted for 30% of total
value of the semiconductor production. The increasing share of micro-
processors in semiconductor market is due to a new phase of silicon
integration enabled by deep submicron fabrication technology.
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For example, SA-1100 from Intel [4] incorporates many functions
such as a memory controller, color LCD driver, PCMCIA interface,
IrDA and USB communication channels, and extensive power manage-
ment into a single chip along with its core logic, previously available
only through “glue logic” chips. One implication of this technology is
that almost all semiconductor manufacturers are entering the micropro-
cessor business.

As a consequence of this trend, the market will be more crowded
and competitive in spite of increasing demand. This pressure will force
manufacturers to focus on microprocessors that are cheaper and more
aggressively optimized for specific applications. A challenge to micro-
processor designers will be to design a microprocessor that executes a
targeted application very well yet can achieve economy-of-scale. For
example, video-game players such as PlayStation from Sony and Nin-
tendos64 from Nintendo need to employ ever-more powerful proces-
sors for the application and yet remain cheap enough to sell for under
$300.

On the technical side, recent advances in compiler technology
and microprocessor architecture for instruction-level parallelism
(ILP) have significantly increased the ability of a microprocessor to
exploit the opportunities for parallel execution that exist in various
programs. Key ILP compiler technologies, such as trace scheduling
[4], superblock scheduling [5], treegion-scheduling [6], hyperblock
scheduling [8], and software pipelining [9] are in the process of
migrating from research labs to product groups.

At the same time, a number of new microprocessor architectures
have been introduced. These designs present hardware structures that
are well matched to most ILP compilers. Architectural enhancements
found in commercial products include predicated instruction execu-
tion, VLIW execution, and split register files. One of the best examples
that has these features is TMS320C6X from Texas Instruments [9]. Al-
though TI considers the TMS320C6X to be a DSP, the architecture is
almost a copy of the Multiflow Trace [10]. Multi-gauge arithmetic (or
variable-width SIMD) is found in the family of MPACT architectures
from Chromatic [11] and the designs from MicroUnity [12]. Most of
the multimedia extensions of programmable processors also adopt this
architectural enhancement [14].

The arrival of production quality ILP compilers and commercial
DSPs with VLIW and SIMD architectures stimulated the idea of
custom-fit processors [15]. The premise of such an approach is
that applications differ from each other in exploitable measures, for
example the available ILP, demand on various hardware components
(e.g., cache memory units, register files) and the number of function
units. The presumption is that a microprocessor can be designed by
adding hardware components tailored to a specific application so that
it can execute the single application extremely well. Of course, an
obvious drawback of this approach is that it provides no guarantee
that other applications will run as well as the targeted application.
While the current microprocessors for media applications (mediapro-
cessors) are claimed to target general applications in a domain [13], a
custom-fit processor targets a single application (although they remain
programmable).

We report on a method of system-level synthesis of single or multiple
application programmable processors. We use a benchmark suite con-
sisting of complete applications written in a high level language [16].
We use the IMPACT tool suit [18] to collect performance measure-
ments of benchmarks on various machine configurations. The IMPACT
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TABLE I
MACHINE CONFIGURATION EXAMPLES AND THEIR AREA ESTIMATES (mm ): A MACHINE CONFIGURATION CONSISTS OF: ISSUEWIDTH, NUMBER OF ALUS,

NUMBER OF BRANCH UNITS, NUMBER OF MEMORY UNITS, SIZE OF INSTRUCTIONCACHE (KB), SIZE OF DATA CACHE (KB)

TABLE II
APPLICATIONSUSED IN THE EXPERIMENT. DYNAMIC INSTRUCTIONCOUNTS WERE MEASURED ON ASPARC

C compiler is a retargetable compiler with code optimization compo-
nents supporting multiple-instruction-issue processors. The target ma-
chine is described using the high-level machine description language.
A high-level machine description supplied by a user is compiled by the
IMPACT machine description language compiler. IMPACT provides
cycle-level simulation tools.

This paper is organized as follows. The next section briefly sur-
veys related works and summarizes the contributions of this work. Sec-
tion III presents the background materials including machine model,
benchmarks, experiment platform (such as tools), and an example set
of results obtained using the tools. Our approach in this project is ex-
plained in Section IV in detail. Section V formulates the search problem
defined in the previous section in formal terms. The solution space ex-
ploration strategy and algorithm is described in Section VI. Extensive
experimental results are reported in Section VII. Finally, Section VIII
draws conclusions.

II. RELATED WORKS AND OUR CONTRIBUTIONS

The work on synthesis and evaluation of application-specific pro-
grammable processors has been conducted independently in two re-
search communities, computer-aided design and architecture. There is,

however, a strong converging trend of the two areas due to recent tech-
nological advances and application trends. In this section we survey the
related works in these two fields.

There have been a number of efforts related to the design of ap-
plication-specific programmable processors and application-specific
instruction sets. Comprehensive survey of the works on com-
puter-aided design of application-specific programmable processors
have been conducted by Goosens [18], Paulin [19], and Marwedel
[20]. In particular, a great deal of effort has been made in combining
retargetable compilation technologies and design of instruction sets
[22]–[26]. Several research groups have published results on the topic
of selecting and designing instruction set and processor architecture
for a particular application domains [27], [28].

Early work in the area of processor architecture synthesis tended to
employ ad hoc methods on small code kernels, in large part due to the
lack of good retargetable compiler technology. Conte and Mangione-
Smith [29] presented one of the first efforts that focused on large appli-
cation codes (i.e., SPEC) written in a high-level language. While they
had a similar goal to ours, i.e., evaluating performance efficiency by in-
cluding hardware cost, their evaluation approach was substantially dif-
ferent. Conteet al.[29] further refined this approach to consider power
consumption. Both of these efforts were limited by available compiler
technology and used a single applications binary scheduled for a scalar
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TABLE III
DATA SET USED IN THE EXPERIMENT

TABLE IV
RUN-TIME CHARACTERISTICSMEASURED ONHPPA-7100USING IMPACT SUITES

machine for executiononsuperscalar implementations. Fisheret al.[15]
studied the variability of application-specific VLIW processors using a
highly advanced and retargetable compiler. However, their study con-
sidered small program kernels rather than complete applications. They
also focused on finding the best possible architecture for a specific ap-
plication or workload, rather than understanding the difference among
attractive architectures across a set of applications.

We adopt a methodology of system synthesis combining the key
paradigms of both communities. Following the tradition of the CAD
community, we develop an accurate area estimate and aggressive

optimization algorithms. We follow the tradition of the architecture
community by using comprehensive real-life benchmarks and pro-
duction quality compilation and simulation tools. This combination
enables us to build a unique framework of system-level synthesis and
to gain valuable insights about design and use of application-specific
programmable processors for modern applications.

Unlike previous works, we use a set of complete applications written
in a high-level language as benchmarks. We incorporate the role of
cache memory units in machine performance into the machine model,
which is essential for producing meaningful results.
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Fig. 1. Performance measurement flow using IMPACT tools.

TABLE V
AN EXAMPLE SET OF RESULTS

We focus on the number of machine configurations that should be
developed in order to maximize performance for all of the benchmarks
given an area constraint. We understand that it is in the best interest of
a processor designer to understand which architecture and how many
functional units or cache size is best for one particular application.
However, our first goal is to develop a framework for managers to un-
derstand how big the chips portfolio should be in one particular domain.
It is not intended for a single designer to find his best application-spe-
cific system. The objective function of the optimizer is minimization
of selected machine configurations, thereby maximizing the number
of benchmarks that can be run on a processor as though it is optimized
for each individual benchmark. In one extreme case, we end up with as
many machine configurations as the number of individual benchmarks.
On the other extreme, we need only one machine. Clearly, the most in-
teresting solutions lie somewhere in the middle.

Power consumption evaluation and optimization is very often an
important aspect in multimedia processors; however, it is beyond the
scope of this paper. We have published a thorough investigation of
power consumption using similar framework and tools in another paper
[30].

III. PRELIMINARY DISCUSSION

In this section we discuss the experimental environment that has been
adapted and developed for the investigation. First, we describe the ma-
chine model used to estimate the area of a machine configuration. The
benchmark suite is introduced along with the characteristics of its com-
ponents. Finally, we explain the experimental platform, including tools
and their example outputs.

A. Machine Model

To estimate the cost of a machine configuration, we adopt a simple
model developed by Argyres [31]. Given the area of the issue unit, the
cost of any scalar machine configuration is a linear function of the num-
bers of branch, memory, and arithmetic units. A machine may include
any number of each function unit. For a superscalar machine, the issue
unit area cannot be estimated using a simple linear model since it re-
quires more complex logic for runtime code scheduling. We assume
that the issue unit area will takeO(n2) space since the complexity of
dependency checking algorithm isO(n2). When a VLIW machine is
considered, the issue unit area is known to be of complexityO(n) or



478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

TABLE VI
CONFIGURATIONS OF THEMACHINES USED IN TABLE V

Fig. 2. System model being simulated.

sublinear. The cost function of arbitrarily configured superscalar ma-
chines is given by

Area= (AB � AE � AC � AU ) +Au

+ nbAb + nmAm + niAi +Adc +Aic (1)

where
AB area of a baseline machine;
AE area of a baseline machine execution unit;
AC baseline machine cache area;
AU baseline machine issue unit area;
Au issue unit area;
nb number of branch units;
Ab area of branch units;
nm number of memory units;
Am area of memory units;
ni number of ALU;
Ai area of an ALU;
Adc data cache area;
Aic instruction cache area.
The baseline architecture chosen for the analysis is the PowerPC 604

[32], a four-issue processor. The 604 has two simple integer ALUs and
one complex integer ALU, one floating-point unit, one branch unit, and
one memory unit. We assume that machine configurations that have an

Fig. 3. An example high-level machine description (HMDES).

issue unit smaller than the baseline machine have at least one com-
plex integer ALU. The area of the complex integer unit is assumed
to be half of the baseline integer unit (two simple integer units and
one complex integer unit). The area of issue unit is scaled based on
the area complexity(O(n2)). We did not include floating-point units
in any machine configurations because the benchmarks we used have
mostly integer (or fixed-point) operations. Finally, we scaled the area
for 0.35�m technology rather than the original 0.5� technology used
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Fig. 4. Global design flow.

by Argyres. A set of example machine configurations and their respec-
tive area estimates are shown in Table I.

B. Benchmarks

The set of benchmarks used in this work is composed of complete ap-
plications which are publically available and coded in a high-level lan-
guage. The collection is composed of 21 applications culled from avail-
able image processing, communications, cryptography, and DSP appli-
cations. Brief summaries of benchmarks and data used are shown in
Tables II and III, respectively. More detailed descriptions of the bench-
marks can be found in a previous publication [16].

As discussed in the Introduction, the idea that a programmable pro-
cessor can be tuned to a target application is based on the assumption
that applications differ from each other in exploitable features. As an il-
lustration, Table IV shows measured characteristics of the benchmarks
used in the experiment. Note that the combination of the instructions
per cycle (IPC), bus utilization, branch issue, and ALU issue exhibit
distinctive characteristics for each benchmark. Although the target was
a single-issue machine, we found that there was strong evidence that
performance tuning for an individual application could be beneficial.
Note that in order to reduce the effect of memory operations on other
measurements, the target machine has 32 KB instruction cache and 32
KB data cache, resulting in high cache hit rates.

C. Experimental Tools

We use the IMPACT tool suit [18] to automatically tune application
codes and collect performance measurements of benchmarks on
various machine configurations. The IMPACT C compiler is a retar-
getable compiler with code optimization components developed for
multiple-instruction-issue processors. It incorporates code improving
techniques such as function inline expansion, instruction placement,
loop unrolling, loop peeling, memory disambiguation, register
renaming, branch prediction, critical path depth reduction, and an
integrated register allocation and code scheduling algorithm for both
VLIW and Superscalar architectures. The target machine for IMPACT
C is described using a high-level machine description (HMDES) (see
Section IV for an example) supplied by a user. IMPACT provides
cycle-level simulation of the processor implementation. Fig. 1 shows
the flow of simulation using the IMPACT tools.

We collect run-times (expressed as a number of cycles) of the bench-
marks on 175 different machine configurations. First we build executa-
bles of the benchmarks for seven different processor configurations.
They are machines with a single branch unit and one of the one-, two-,
four-, and eight-issue units, machines with two branch units and one
of the four- and eight-issue units, and machines with four branch units
and a eight-issue unit. The IMPACT compiler generates aggressively
optimized code to increase ILP for each configuration. All the machine
configurations have the same number of ALU and memory units as the
issue width. The optimized code is consumed by the Lsim simulator.
We simulate the benchmarks for a number of different cache configu-
rations. For each executable of a benchmark, we simulate 25 combina-

Fig. 5. Performance versus number of selected processors: Area constraint 84
mm .

Fig. 6. A search space and a selected path(X;Y ) indicated by think lines.

tions of instruction cache and data cache ranging from (512 bytes, 512
bytes) to (8 KB, 8 KB).

Measured run-times of benchmarks through simulations are normal-
ized with respect to a baseline machine. We selected as a baseline con-
figuration a machine with one branch unit, one-issue unit, 512 bytes
of instruction cache, and 512 bytes of data cache. An example set
of results is shown in Table V. There are 128 different machine con-
figurations that satisfy the illustrated area constraint, 16 mm2. After
run-times are measured, we eliminate machines that are dominated by
at least one other machine. By dominated, we mean a machine runs
slower than or equal to the speed of another machine forall bench-
marks. In this particular example, there are seven machines left after
dominated machine configurations are eliminated. The areas of the ma-
chine configurations are shown in Table VI.

IV. A PPROACH

Our hypothesis is that a set of machine configurations that run a given
set of benchmarks equally well with respect to a baseline machine can
be found. In other words, there is at least one machine from the set that
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Fig. 7. An example of speed-up numbers and machine selection.

can be used to build an application-specific system. Effectively, we can
say that the machine is optimized to run the specific application. In this
section, we describe our approach to the selection problem. First we
show the global flow of the design process. We describe the combina-
torial nature of the search space by showing an example search tree.

A. Global Design Flow

The experiment is carried out by first selecting a set of machine
models. A portion of an example high-level machine description file
(HMDES) used by the IMPACT tool suite is shown in Fig. 3. Machines
are described using HMDES. The HMDES files are compiled by the
HMDES compiler [34], [35]. Detailed and precise descriptions of the
execution constraints for the HP PA7100, PLAYDOH, Intel Pentium,
EPIC, and Sun SPARC have been ported and widely used by IMPACT
C compiler and Lsim simulator. The benchmarks are compiled by the
IMPACT C compiler for the machines described in HMDES. The ar-
chitecture model we used in the experiment is the Hewlett Packard
PA-RISC (HPPA) [1]. All the executables are simulated using the IM-
PACT simulator, Lsim. At simulation time, we specify cache config-
urations for the simulator. Lsim simulates everything from different
branch prediction scheme, reorder buffer, caches and memory. Memory
latency, misprediction penalty and ALU latency are specified as Lsim
parameters (Fig. 2) in the system model being simulated. We did not
incorporate a second level cache or specialized ALU; however, adding
one and changing ALU latency is possible in Lsim. Through simula-
tions we measure run-times of all the benchmarks. The run-times are
normalized with respect to a baseline machine run-time for each bench-
mark to obtain speed-up numbers. After all the simulations are com-
pleted, we begin searching for the best machine configuration sets for
specific area constraints. For each area limit, we eliminate all machines
that do not satisfy the area bound. From the machines that satisfy the
area bound, we eliminate all the dominated machines (refer to Sec-
tion III). Finally, we apply theK-selection algorithm (see Section V),
to select a set of machine configurations that run the benchmark set
best. Fig. 4 shows the global flow of design process.

B. Selection Problem Search Space

The search space is relatively small due to the area constraint and the
number of dominated implementations. Nevertheless, there is a possib-
lity that the search space explodes due to its combinatorial nature. The
likelihood of this phenomenon occuring appears to be a strong func-
tion of the area models used. Fig. 6 shows an example search space
with three machine configurations. The search starts with an empty set
(indicated by the root node in the diagram) and follows one of the pos-
sible path in the search tree. Each node in the search tree is an instance
of selection completed.

Fig. 5 shows an example measurement on performance versus
number of selected processors. We are looking for the break point of
diminishing returns for adding configurations to a set. This goal will
be elaborated in more detail in the next section.

V. SELECTION PROBLEM FORMULATION

In this section we formulate the problem of finding the minimum
number of machine configurations for a given set of benchmarks in
such a way that all the benchmarks execute well on at least one of the
selected machines.

A. Informal Description of Problem

Informally, the problem can be stated as follows: Given an area con-
straint and speed-up numbers of benchmarks on machines that fit into
the given area, we want to select a subset of the machine configura-
tions in such a way that the geometric mean of speed-ups across all the
benchmark is maximized and the subset size is kept small.

We normalize the run time with respect to a baseline since we are not
interested in the sum of run-times [36]. The sum of run-times does not
reflect the performance effect of shorter benchmarks in the presence of
longer benchmarks. In some cases, a benchmark that takes a long time
to complete due to large data sets dominates the sum of run-times.

We use the geometric mean to summarize the selected machines
since we normalize the measurements [36]. In general, the geometric
mean is not a good method of summarizing performance numbers [37]
as it does not show the nature of the workload. For example, consider
a workload consisting of two applications. On a baseline machine one
application takes 5000 s to complete and the other 2 s. We compare
two machines based on a set of normalized numbers. Assume that one
machine improves the performance of the first application by a factor
of two and the other the second application by the same factor. Then
the geometric mean indicates that the performance of the two machines
is the same although the first machine cuts the running time by 2500 s
while the second machine by only 1 s. This is a problem when we sum-
marize normalized performance numbers for amix of workload. As
indicated earlier, however, we are not interested in the machine perfor-
mance on amix of workload. Instead, we are interested in predicting
the performance of one of the selected machines on each individual
benchmarks. As an illustration, consider the speed-up numbers given
in Fig. 7. While the arithmetic mean suggests that there is no difference
between m1 and m2, the geometric mean provides more useful insight.

We want to see how many machine configurations are necessary in
order to achieve high performance for all the benchmarks. The ob-
jective function of the optimization problem is minimization of the
number of selected machine configurations, thereby, on average, max-
imizing the number of benchmarks that can be run on a processor as
though it is optimized for each individual benchmark. In one extreme
case, we might end up with machine configurations for each individual
benchmark. On the other extreme, we might need only one processor
solution for all applications.

B. Formal Description of Problem

We now define the problem using more formal Garey–Johnson
format [39].

Selection problem:

Instance: Given a set ofn benchmarks,ai; i = 1; 2; . . . ; n; k

machine configurations,mj ; j = 1; 2; . . . ; k, the
speed-up factorsEij of the benchmarksai; i =

1; 2; . . . ; n on the machinesmj ; j = 1; 2; . . . ; k with
respect to a baseline machine and constantsK andC.

Question: Is there a setM ofK machine configurations,cp; p =
1; 2; . . . ; K, such that n

i=1
maxj2M Eij � C?

To determine the constantK we divide the problem into two sub-
problems, namely, a!-selection problem andK-selection problem.
Starting from! = 1 we iteratively increase! until the benefit of in-
creasing! is less than a given threshold�. Formally the subproblems
are stated as follows.
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Fig. 8. System-level synthesis of application-specific programmable
machines.

!-selection problem:Given a set ofn benchmarks,ai; i =

1; 2; . . . ; n; k machine configurations,mj ; j = 1; 2; . . . ; k, the
speed-up factorsEij of the benchmarksai; i = 1; 2; . . . ; n on the
machinesmj ; j = 1; 2; . . . ; k with respect to a baseline machine and
constants!

Maximize: D! =

n

i=1

max
j2p

Eij (2)

whereP is the selected machine set of size!.

(a)

(a)

Fig. 9. Quadratic complexity issue unit area model. Selected processor
configurations (cutoff value: 0.05): (a) processor configurations and (b)
performance.

The size of the machine set is determined by an iterative test of com-
paringD! andD!+1. Since theD is monotonic, we continue to eval-
uateD and compare them using (3) until we reach a point where the
benefit of the set size increase drops below a certain limit.
K-selection problem:

min ! � �
D!+1 �D!

D!

; ! = 1; 2; . . . ; k � 1 (3)

whereD! is given by (2) and� is a cutoff ratio.

VI. SOLUTION SPACEEXPLORATION: STRATEGY AND ALGORITHMS

The algorithm for system-level synthesis of application-specific pro-
grammable processor is given in Fig. 8. Considering that the run-time
of simulations for 20 benchmarks on 175 machine configurations is
about a week, we can tolerate a longer search time to find the op-
timal result. Generally, the size of the search problem is dramatically
reduced by eliminating machine configurations that do not satisfy a
given area constraint and those that are dominated by at least one other
machine. Consequently, a smaller number of machines needs to be con-
sidered. The machine configurationA dominates the configurationB
if no benchmarks have longer execution times on the machineA than
on machineB.

The search for an optimum solution is organized using an implicit
enumeration method. In particular, we adopt a branch-and-bound al-
gorithm shown in Fig. 8 to speed up the selection.

The branch-and-bound algorithm consists of two major components:
branching and evaluation. The branching step takes the current state of
selection (a node in the search tree) and generates a number of new
nodes by adding an available (still not considered in particular search
path of the search tree) machine to the current state of selection (refer
to Fig. 6). As shown in Fig. 8, it examines to see if adding a machine
to the current state of selection can result in a better solution than the
current best solution found. Initially, the current best solution is set to
the previous best solution. The previous best solution is the best solu-
tion found for the machine set size less than the current search size by
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(a) (b)

Fig. 10. Quadratic complexity issue unit area model: Selected processor configurations: (a) processor configurations and (b) performance.

TABLE VII
SNAPSHOTS OFSPEED-UPS OFBENCHMARKS AT VARIOUS CUT-OFF VALUES FOR THEGIVEN AREA CONSTRAINT (84 mm , 100 mm , 169 mm ) (NOTE:

ACTUAL AREA UNDER THE AREA CONSTRAINTSARE GIVEN IN TABLE VIII)

one. The branching is bounded by the bounding function. The bounding
function compares the current node and a candidate processor with the
best node of the same size found. The node size is the number of pro-
cessors. If the current node and the candidate are dominated by the
best node, then we cut the path off from search. We compute the lower
bound of the geometric mean of the maximum speed-up factors of each
benchmark. The lower bound is obtained by using a steepest descent
algorithm. The steepest descent algorithm selects machines in the order
that the biggest improvement can be achieved. If the estimate is greater
or equal to the current best solution, we have an opportunity to find a
better solution than the current best solution by exploring the search
path. Otherwise, there is less of a chance of obtaining a better solution.
We sort the search order based on the lower bound so to increase the
bounding rate.

VII. EXPERIMENTAL RESULTS

We evaluated the tools and algorithms by running extensive experi-
ments ranging from the area constraint of 30 to 200 mm2. The imple-
mentation technology is assumed to be 0.35�m. For each area con-
straint, we obtain an optimum set of machine configurations for cutoff

values 0.1, 0.05, 0.01, and 0.005. The cutoff values are�’s as defined
in (3) (see Section V).

Fig. 9(a) shows an experimental result using the cutoff value of 0.05.
The thicker line shows the number of machines that are left after elim-
inations. The thinner line in the figure indicates the number of se-
lected machines to cover all the benchmarks under area constraints. We
clearly see that we need more machine configurations when less area
is available. On the other hand, the more area we have, the more gen-
eral the processor we can design. The results suggest that when more
than 100 mm2 of area is available, there is no advantage in having more
than one architecture to be able to build application-specific systems for
all the benchmarks. Moreover, for the given compiler technology and
benchmarks, there is no need to have more than 100 mm2 of area since
the speed-up increase achieved by machines greater than 100 mm2 are
minimal.

The overall performance comparison between all configurations and
selected configurations are shown in Fig. 8(b). There are three distinc-
tive points where the speed-up increase rate changes. Up to the area 57
mm2, we see rapid performance increase, which is mainly due to in-
creased amount of cache memories. From 57 to 101 mm2 the measure-
ment shows modest increase of performance. The performance increase
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TABLE VIII
SELECTEDPROCESSORSTHAT RUN BENCHMARK BEST FOR THESNAPSHOTCASES INTABLE VII: T HE LAST COLUMN SHOWSBENCHMARKS THAT RUN BEST ON

PROCESSORSGIVEN IN COLUMN 3. COLUMN 4 SHOWS MACHINE CONFIGURATIONS IN THEFORM OF: ISSUEWIDTH, NUMBER OF ALUS, NUMBER OF BRANCH

UNITS, NUMBER OFMEMORY UNITS, SIZE OF INSTRUCTIONCHACHE (KB), SIZE OF DATA CACHE (KB). ACTUAL AREASARE GIVEN IN THE FIFTH COLUMN

shown in this interval is mainly due to increased issue width. For the
processors larger than 101 mm2, the performance increase is minimal.
One of the underlying reasons that causes the phenomenon is that the
ILP found by the compiler and hardware scheduler is fully exploited
by having a certain amount of hardware, thereby performance increase
possibility is exhausted. The limitation of performance increase in the
face of increased area illustrates either the limitation of the current com-
piler technology or the inherent lack of ILP in the benchmarks. Note,
however, that the measurement is not for a single processor. Smaller
area cases tend to have more than one architectures which are more ap-
plication specific.

Experimental results for the cutoff values 0.1, 0.05, 0.01, and 0.005
are given in Fig. 10. Smaller cutoff values result in machine configura-
tion sets that are more tuned to each application. In general, however, a
smaller cutoff value does not result in dramatic performance increase.
In most cases, the cutoff value of 0.05 appears to give a good tradeoff
between the number of machine configurations and performance.

Speed-up factors of each benchmark are shown in Table VII. They
are snapshots of experimental results summarized by the line graphs
in Fig. 10. The table contains maximum speed-up factors for three

cutoff values (0.05, 0.01, and 0.005) and three area constraints (85, 100,
and 169 mm2). Note that the area constraints are not actual areas but
rather bounds. We consider machines under the given area constraints.
Table VIII gives the number of machine configurations selected and the
best performing machine configuration for each benchmark. The actual
areas of the selected machines are given in column 5 of the table. The
combinations of components for the selected machines are shown in
column 4.

Fig. 11 shows the results when the liner complexity issue unit area
model is assumed. The results suggest that the machine configuration
selection problem has no strong dependence to an issue area model
used. Although we observe that there is shift to smaller areas, essen-
tially the results are identical to the results based on the quadratic com-
plexity issue unit area model.

In summary, we found that under the machine models and machine
configuration choices described in this paper, when more than 100 mm2

of area is available, there is little advantage in having more than one
architecture to be able to build application-specific systems for all the
benchmarks. Moreover, for the given compiler technology and bench-
marks, there is little need to have more than 100 mm2 of area since
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Fig. 11. Linear complexity issue unit area model: selected processor configurations: (a) processor configurations and (b) performance.

the speed-up increase achieved by machines greater than 100 mm2 are
minimal. One notable exception is that for highly cost sensitive designs
we observe a need for small number of specialized architectures which
achieve smaller areas.

VIII. C ONCLUSION

The arrival of production quality ILP compilers and commercial
DSPs with VLIW architecture stimulated the idea of programmable
processors that are aggressively tuned to specific applications. The
assumption behind the idea is that there are ways of designing
programmable processors that can exploit the run-time characteristics
of specific applications. The run-time characteristics include the
available ILP, demand on various hardware components such as cache
memory units, register files, and the number of function units. It is
assumed that a microprocessor can be designed by adding hardware
components tailored to a specific application so that it can execute the
single application extremely well. We ran extensive experiments on
a framework based on the key paradigms of CAD and architecture
communities. This combination enabled us to gain valuable insights
about design and use of application-specific programmable processors
for modern applications. We evaluated 175 machine configurations
on 20 benchmarks under the area constraint ranging from 30 to 200
mm2. For each area constraint, we obtain an optimum set of machine
configurations for a number of cutoff values. The run time of the entire
synthesis process was about a week. It is well known that when the
area constraint is tight, more machine configurations are needed for
application specific designs. In the figures, we found out that even with
more area, there still exists a fair number of different configurations
due to the introduction of different functional units (branch unit and
ALU) with the tradeoff of cache size.

In the system level integration market, we believe a standard design
solution means a quick time to market and guaranteed functionality.
We develop this framework to ease design managers finding their chips
portfolio in their particular interested domains.

We have found that the framework introduced in this paper can be
very valuable in making early design decisions such as area and archi-
tectural configuration tradeoff, cache and issue width tradeoff under
area constraint, and the number of branch units and issue width.
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