474 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

Transactions Briefs

Exploring the Diversity of Multimedia Systems For example, SA-1100 from Intel [4] incorporates many functions
such as a memory controller, color LCD driver, PCMCIA interface,
Johnson Kin, Chunho Lee, William H. Mangione-Smith, and |rDA and USB communication channels, and extensive power manage-
Miodrag Potkonjak ment into a single chip along with its core logic, previously available
only through “glue logic” chips. One implication of this technology is
.) that almost all semiconductor manufacturers are entering the micropro-
Abstract—We evaluate the validity of the fundamental assumption

behind application-specific programmable processors: that applications cessor business.

differ from each other in key parameters which are exploitable, suchasthe ~ As a consequence of this trend, the market will be more crowded
available instruction-level parallelism (ILP), demand on various hardware and competitive in spite of increasing demand. This pressure will force
resources, and the desired mix of function units. Following the tradition of manufacturers to focus on microprocessors that are cheaper and more
the CAD community, we develop an accurate chip area estimate and a set . - i L .

of aggressive hardware optimization algorithms. We follow the tradition of aggressively o.ptlmlzed.for SpeCIfIC.app|Ica.lI0nS. A challenge to micro-
the architecture community by using comprehensive real-life benchmarks Processor designers will be to design a microprocessor that executes a
and production quality tools. This combination enables us to build a targeted application very well yet can achieve economy-of-scale. For
unique framework for system-level synthesis and to gain valuable insights example, video-game players such as PlayStation from Sony and Nin-

about design and use of application-specific programmable processors for . g _
modern applications. We explore the application-specific programmable tendos64 from Nintendo need to employ ever-more powerful proces

processor (ASSP) design space to understand the relationship betweenSOrs for the application and yet remain cheap enough to sell for under
performance and area. The architecture model we used is the Hewlett $300.
Packard PA-RISC [1] with single level caches. The system, including all On the technical side, recent advances in compiler technology

memory and bus latencies, is simulated and no other specialized ALU : . - . .
or memory structures are being used. The experimental results reveal and microprocessor architecture for instruction-level parallelism

a number of important characteristics of the ASSP design space. For (ILP) have significantly increased the ability of a microprocessor to
example, we found that in most cases a single programmable architecture exploit the opportunities for parallel execution that exist in various
perft_)rm§ similarly to a set of .arch_itec_tures that are tl_.l!’led to i‘ndividua! programs. Key ILP compiler technologies, such as trace scheduling
application. A notable exception is highly cost sensitive designs, which [4], superblock scheduling [5], treegion-scheduling [6], hyperblock
we observe need a small number of specialized architectures that require * -/ . A . ’

smaller areas. Also, it is clear that there is enough parallelism in the typical SCheduling [8], and software pipelining [9] are in the process of
media and communication applications to justify use of high number of Mmigrating from research labs to product groups.

function units. We found that the framework introduced in this paper At the same tlme’ a number of new m|Cr0processor architectures
can be very valuable in making early design decisions such as area and 5,6 peen introduced. These designs present hardware structures that
architectural configuration tradeoff, cache and issue width tradeoff under . .
area constraint, and the number of branch units and issue width. are well matched to most ILP compilers. Architectural enhancements
found in commercial products include predicated instruction execu-
tion, VLIW execution, and split register files. One of the best examples
that has these features is TMS320C6X from Texas Instruments [9]. Al-
though TI considers the TMS320C6X to be a DSP, the architecture is
I. INTRODUCTION almost a copy of the Multiflow Trace [10]. Multi-gauge arithmetic (or

. e . s variable-width SIMD) is found in the family of MPACT architectures

It has been predicted that the “micro-brain boorsit) will greatly &gm Chromatic [11] and the designs from MicroUnity [12]. Most of

increase demand for application-specific microprocessors for me
L L € multimedia extensions of programmable processors also adopt this
applications [2]. Sales of handheld computers and personal digital as-, .
; . , o ... architectural enhancement [14].
sistants grew almost sixfold from 1994’s total, to 5.6 million units in) i) .)
1999. The market for programmable DSP chips increased 20% in 199§-he arnval of production quahty. ILP compl!ers and commerC|aI
to the$3.9 billion level. The new DSP markets, which are beginnin SPs with VLIW and SIMD architectures stimulated the idea of

to emerge, including digital cameras, satellite phones, smart anten é@tom'f't processors [15]. The premise of such an approach is

voice over IP, ac motor control, and even digital TV, is forecast to growa‘t applications differ from each other in exploitable measures, for

at a 33% compound rate to t§&3.4 billion level in 2002 [3]. example the available ILP, demand on various hardware components

This market growth coincides with an interesting technological a&‘?'_g" cache memory unl_ts, reglster_ files) and the number of functlon
vance that will change both the semiconductor business and micropHB'—t,S' The presumption is that a microprocessor can b.e d§5|gned by
cessor design. Since 1992, microprocessors account for 23% of t¢ gmg hardware components t_a|lo_red to a specific application so that
semiconductor sales. In 1998, these chips accounted for 30% of téttaﬁ"?m execute the single application extremely well. Of course, an

value of the semiconductor production. The increasing share of mic vious drawback of this approach is that it provides no guarantee

processors in semiconductor market is due to a new phase of siliégﬁt_ other appllcathns will run as well as_the ta_rget_ed apphcgtlon.
integration enabled by deep submicron fabrication technology. While the current microprocessors for media applications (mediapro-
cessors) are claimed to target general applications in a domain [13], a

Manuscript received July 16, 1998; revised October 22, 1999. custom-fit processor targets a single application (although they remain
J. Kin and W.-H. Mangione-Smith are with the Electrical Engineering Ddfogrammable).

partment, University of California, Los Angeles, CA 90095 USA (e-mail: john- We report on a method of system-level synthesis of single or multiple

Sogkcli@ézsggglme%udtggw:gf:mfgiﬁg@omputer Science Department U&u?p.lication programmaple process_ors. \.Ne us_e a benchmark suite con-

vers.ity of Califorhia, Los Angeles, CA 90095 USA (e-mail: Ieec@cs.ucla.yedgisnng of complete applications written in a high level language [16].

miodrag@cs.ucla.edu). We use the IMPACT tool suit [18] to collect performance measure-

Publisher Item Identifier S 1063-8210(01)00703-X. ments of benchmarks on various machine configurations. The IMPACT

Index Terms—Application-specific programmable processor, instruction
level parallelism, mediabench, mediaprocessor, system-level synthesis.

1063-8210/01$10.00 © 2001 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

TABLE |
MACHINE CONFIGURATION EXAMPLES AND THEIR AREA ESTIMATES (Mm?): A MACHINE CONFIGURATION CONSISTS OF ISSUEWIDTH, NUMBER OF ALU S,
NUMBER OF BRANCH UNITS, NUMBER OF MEMORY UNITS, SZE OF INSTRUCTION CACHE (KB), SizE OF DATA CACHE (KB)

475

Configuration | Issue unit | TALU | Branch unit | Memory unit | Other | Cache memory | Total

(1,1,1,1,0.5,0.5) 0.74 3.67 6.13 5.52 13.98 1.53 31.56
2,2,1,2,1, 1) 2.96 7.33 6.13 11.03 13.98 2.54 43.95
4.4,1,4,2,2) 11.76 1466 | - 6.13 22.07 13.98 4.55 73.15
(8,8,1,8,4,4) 47.04 29.32 6.13 44.14 13.98 8.56 149.17
4,4,2,4,8,8) 11.76 14.66 12.26 22.07 13.98 16.55 91.28
(8,8,2,8,4,4) 47.04 29.32 12.26 44.14 13.98 8.56 155.30
8,8,4,8,8,8) 47.04 29.32 24.52 44.14 13.98 16.55 175.55

TABLE I
APPLICATIONS USED IN THE EXPERIMENT. DYNAMIC INSTRUCTION COUNTS WERE MEASURED ON ASPARC
No. | Benchmark [Dynamic Instructions | Source | Description
1 JPEG encoder 13.9 million Independent JPEG image
2 JPEG decoder 3.8 million JPEG Group encoding/decoding
3 MPEG encoder 1121.3 million MPEG Simulation MPEG-2 movie
4 MPEG decoder 175.5 million Group encoding/decoding
5 GSM encoder 184.2 million Technische European wireless voice
6 GSM decoder 73 million Universitat, Berlin coding standard
7 G.721 encoder 274.1 million Sun Microsystems, CCITT voice
8 G.721 decoder 511.7 million Inc. coding standard
9 PGP encryption 169.9 million Massachusetts Institute | Encryption/
10 | PGP decryption 155.3 million of Technology decryption
11 [Pegwit encryption 34.0 million George Barwood Encryption/
12 | Pegwit decryption 18.5 million decryption
13 Mipmap 47.6 million University of 3-D rendering examples
14 0OS-demo 9.0 million Wisconsin using MESA graphics
15 Texgen 83.8 million library
16 Rasta 24.4 million ICSI at UC Berkeley Voice recognition
17 EPIC encoder 50.3 million University of Wavelet image
18 EPIC decoder 7.2 million Pennsylvania encoding/decoding
19 | ADPCM encoder 6.8 million Jack Jansen Speech compression
20 | ADPCM decoder 5.9 million and decompress

C compiler is a retargetable compiler with code optimization comptowever, a strong converging trend of the two areas due to recent tech-
nents supporting multiple-instruction-issue processors. The target matogical advances and application trends. In this section we survey the
chine is described using the high-level machine description languagsated works in these two fields.
A high-level machine description supplied by a user is compiled by theThere have been a number of efforts related to the design of ap-
IMPACT machine description language compiler. IMPACT provideplication-specific programmable processors and application-specific
cycle-level simulation tools. instruction sets. Comprehensive survey of the works on com-
This paper is organized as follows. The next section briefly suputer-aided design of application-specific programmable processors
veys related works and summarizes the contributions of this work. Séave been conducted by Goosens [18], Paulin [19], and Marwedel
tion Il presents the background materials including machine modg0]. In particular, a great deal of effort has been made in combining
benchmarks, experiment platform (such as tools), and an examplers¢drgetable compilation technologies and design of instruction sets
of results obtained using the tools. Our approach in this project is §22]-[26]. Several research groups have published results on the topic
plained in Section IV in detail. Section V formulates the search probleof selecting and designing instruction set and processor architecture
defined in the previous section in formal terms. The solution space d&r a particular application domains [27], [28].
ploration strategy and algorithm is described in Section VI. Extensive Early work in the area of processor architecture synthesis tended to
experimental results are reported in Section VII. Finally, Section VIBmploy ad hoc methods on small code kernels, in large part due to the
draws conclusions. lack of good retargetable compiler technology. Conte and Mangione-
Smith [29] presented one of the first efforts that focused on large appli-
cation codes (i.e., SPEC) written in a high-level language. While they
had a similar goal to ours, i.e., evaluating performance efficiency by in-
cluding hardware cost, their evaluation approach was substantially dif-
The work on synthesis and evaluation of application-specific préerent. Conteet al.[29] further refined this approach to consider power
grammable processors has been conducted independently in twocossumption. Both of these efforts were limited by available compiler
search communities, computer-aided design and architecture. Therésishnology and used a single applications binary scheduled for a scalar

1. RELATED WORKS AND OUR CONTRIBUTIONS

476

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

TABLE Il
DATA SET USED IN THE EXPERIMENT
No. | Benchmark | (Filesize | Format [Description

1 JPEG encoding 101,484 bytes PPM an uncompressed bit map

2 JPEG decoding 5,756 bytes JPG a JPEG compressed

3 MPEG encoding | 506,880 bytes | YUV components | 4 frames

4 MPEG decoding 34,906 bytes MPEG-2 MPEG-2 archive (http://www.mpeg2.dec/)

5 GSM encoding 295,040 bytes 16 bit PCM Clinton speech

6 GSM decoding 30,426 bytes GSM encoded Clinton speech

7 G.721 encoding | 295,040 bytes 16 bit PCM Clinton speech

8 G.721 decoding 147,520 bytes G.721 encoded | Clinton speech

9 PGP encryption 91,503 bytes plain ASCII text file

10 PGP decryption 20,163 bytes PGP encrypted text file

11 | Pegwitencryption | 91,503 bytes plain ASCII text file

12 | Pegwitdecryption | 91,537 bytes | Pegwit encrypted | text file

13 Mipmap N/A mipmap texture mapping example

14 0OS-demo N/A 3-D rendering pipeline example

15 Texgen N/A texture mapped Utah teapot

16 Rasta 17,024 bytes SHPERE format | package with SPHERE

17 EPIC encoding 65,595 bytes PGM Gray scale 256 x 256

18 EPIC decoding 7,432 bytes EPIC encoded Gray scale 256 x 256

19 | ADPCM encoding | 295,040 bytes 16 bit PCM Clinton speech

20 | ADPCM encoding | 73,760 bytes | ADPCM encoded | Clinton speech

TABLE IV
RUN-TIME CHARACTERISTICSMEASURED ONHPPA-7100USING IMPACT SUITES
No.| Benchmark [IPC| BTB | Thit | Dread | Dwrte | Dhit [Bus | Branch [IALU

1 JPEG encoder | 0.89 | 91.96 99.97 98.30 83.42 94.52 3.14 15.25 53.74
2 JPEG decoder [0.95 | 91.67 99.97 98.69 53.10 84.25 5.48 5.06 66.83
3 MPEG encoder | 0.87 | 80.38 99.99 97.30 81.91 96.33 5.35 19.11 41.10
4 MPEG decoder | 0.91 | 89.83 99.96 99.41 87.13 95.81 2.01 11.73 39.59
5 GSM encoder 0.86 | 86.80 99.58 99.98 99.89 99.94 2.93 8.67 43.66
6 GSM decoder 092 | 97.15 99.97 99.99 99.75 99.90 0.27 15.82 67.63
7 G.721 encoder | 0.93 | 89.74 | 100.00 § 100.00 99.50 99.85 0.03 20.23 55.91
8 G.721 decoder | 0.94 [91.90 [100.00 { 100.00 99.99 100.00 0.01 20.64 56.01
9 PGP encryption | 0.93 | 79.93 | 100.00 98.69 99.44 98.94 1.32 13.51 63.42
10 | PGP decryption | 0.92 | 79.53 99.99 96.93 97.30 97.05 2.89 13.21 63.16
11 Pegwit 0.71 | 95.77 99.07 98.12 79.32 88.72 11.54 14.24 21.62
12 Pegwit 0.61 | 86.15 97.02 95.06 77.78 86.42 23.64 12.36 19.27
13 Mipmap 074 | 99.24 98.23 98.55 82.98 91.89 13.85 11.71 24.92
14 0OS-demo 0.82 | 94.82 99.86 96.21 45.58 80.47 7.64 '13.64 46.43
15 Texgen 0.76 | 89.47 98.42 98.31 88.16 94.40 13.24 9.06 29.39
16 Rasta 075 | 91.28 99.77 94.99 81.46 90.45 10.82 12.31 20.64
17 EPIC encoder 0.87 | 95.55 | 100.00 97.44 42.32 90.48 3.93 16.20 37.15
18 EPIC decoder 0.70 | 92.03 | 100.00 93.51 44.88 71.72 11.51 13.36 32.63
19 ADPCM 0.89 | 82.67 | 100.00 99.98 0.40 85.72 0.92 27.26 55.11
20 ADPCM 0.92 | 83.49 | 100.00 99.99 0.20 71.46 1.93 23.20 62.39

machine for execution on superscalarimplementations. Féshef15] optimization algorithms. We follow the tradition of the architecture
studied the variability of application-specific VLIW processors using@ommunity by using comprehensive real-life benchmarks and pro-
highly advanced and retargetable compiler. However, their study catuction quality compilation and simulation tools. This combination
sidered small program kernels rather than complete applications. Tleables us to build a unique framework of system-level synthesis and
also focused on finding the best possible architecture for a specific &p-gain valuable insights about design and use of application-specific
plication or workload, rather than understanding the difference amopghgrammable processors for modern applications.
attractive architectures across a set of applications. Unlike previous works, we use a set of complete applications written
We adopt a methodology of system synthesis combining the kieya high-level language as benchmarks. We incorporate the role of
paradigms of both communities. Following the tradition of the CARache memory units in machine performance into the machine model,
community, we develop an accurate area estimate and aggressitch is essential for producing meaningful results.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001 477

Source program writlen
im [

IMPACT compiler lcache & Dicache

configuration
Peodde, Hende, |onde

. . il L imupasct + L supsersealnr IMPACT sinuudnior —_ ‘-

High-level Machine description _ - 1 | Cwcle Hime
L3 = > - cle
{HAIFES) T execuinbles Lsim |
IMPACT HMDES compller |
MDES
Fig. 1. Performance measurement flow using IMPACT tools.
TABLE V
AN EXAMPLE SET OF RESULTS
No.| Benchmark | ml | m2 | m3 | méd | m5 [m6 [m7

1 JPEG encoding | 3.64594 | 2.82103 | 2.99120 | 3.84738 { 2.20971 | 2.63822 | 2.55203
3 JPEG decoding | 4.23373 | 3.27552 | 2.98682 | 4.26518 | 2.30956 | 2.62019 | 2.71783
10 | MPEGencoding | 2.47749 | 1.42038 | 1.92456 | 2.56567 | 1.09295 | 1.37050 | 1.77085
9 MPEG decoding | 1.93998 | 1.96280 | 1.60252 | 3.67821 | 3.44580 | 3.61907 | 3.35929
7 GSM encoding 2.25379 | 2.27273 | 2.29321 | 2.30589 | 1.99094 | 2.28716 | 2.28159
6 GSM decoding 2.93745 | 2.93340 | 2.97611 | 3.00388 | 1.67255 | 3.12961 [3.14519
4 G.721 encoding | 3.07744 | 2.02068. | 2.47258 | 3.37837 | 1.66267 | 2.02378 | 2.53573
2 G.721 decoding | 3.11276 | 1.96270 | 2.36477 | 3.44207 | 1.67080 | 2.08472 | 2.48196
15 PGP encryption | 3.14815 | 2.73464 | 2.97603 | 3.20877 | 2.46403 | 2.71223 | 2.93360
14 PGP decryption | 3.28457 | 2.80132 | 2.93317 | 3.37517 | 2.50223 | 2.7617 | 2.84765
13 | Pegwit encryption | 2.78988 | 2.11644 | 2.17627 | 2.82412 | 1.98262 | 1.91087 | 2.02120
12 | Pegwit decryption | 2.82299 | 2.25366 | 2.23790 | 2.84193 | 2.03881 | 1.93049 | 2.03430

8 Mipmap 2.94320 | 2.90037 | 2.91227 | 2.78862 | 2.28356 | 2.75903 | 2.69301
i1 0S-demo 2.42271 | 2.19599 | 2.28499 | 2.46821 | 2.01700 | 2.21351 | 2.30880
19 Texgen 2.40340 | 1.94311 | 2.04235 | 2.39706 | 1.76382 | 1.86625 | 1.95847
16 Rasta 2.26343 | 2012603 | 2.14634 | 2.27230 | 2.00360 | 2.08559 | 2.09685

5 EPIC encoding 2.06328 | 1.78115 | 1.69603 | 2.17036 | 1.85368 | 1.77016 | 1.72495
20 EPIC decoding 1.69781 | 1.73186 | 1.67798 | 1.76916 | 1.78700 | 1.73074 | 1.64389
17 | ADPCM encoding | 2.08063 | 2.10912 [2.07475 | 2.30649 | 2.42662 | 2.38234 | 2.30367
18 | ADPCM encoding | 2.20944 | 2.22268 | 2.2268 | 2.41923 | 2.54383 | 2.51963 | 2.54963

We focus on the number of machine configurations that should be Ill. PRELIMINARY DISCUSSION
developed in order to maximize performance for all of the benchmarks

given an area constraint. We understand that it is in the best |ntere558apted and developed for the investigation. First, we describe the ma-

a processor designer to understand which architecture and how M Me model used to estimate the area of a machine configuration. The

Egvité?/gfl ouunrlzisrs(:rgEZIC?setc?Iczi:vleslot:)eztf:z:ng\?v%ria:‘glrcrw;rr\%%e!ctitfﬁ?nChmark suite is introdu_ced along vx_/ith the characteri_stics o_f its com-
derstandlhow big the chips portfolio should be in one particular doma&onents. Finally, we explain the experimental platform, including tools
: - 9 PSP :) . P L and their example outputs.
It is not intended for a single designer to find his best application-spe-
cific system. The objective function of the optimizer is minimization .
of selected machine configurations, thereby maximizing the numter Machine Model
of benchmarks that can be run on a processor as though it is optimizedo estimate the cost of a machine configuration, we adopt a simple
for each individual benchmark. In one extreme case, we end up withrasdel developed by Argyres [31]. Given the area of the issue unit, the
many machine configurations as the number of individual benchmarksst of any scalar machine configuration is a linear function of the num-
On the other extreme, we need only one machine. Clearly, the mostlers of branch, memory, and arithmetic units. A machine may include
teresting solutions lie somewhere in the middle. any number of each function unit. For a superscalar machine, the issue
Power consumption evaluation and optimization is very often amit area cannot be estimated using a simple linear model since it re-
important aspect in multimedia processors; however, it is beyond theires more complex logic for runtime code scheduling. We assume
scope of this paper. We have published a thorough investigationtbét the issue unit area will take(n?) space since the complexity of
power consumption using similar framework and tools in another papgpendency checking algorithmd»?). When a VLIW machine is

[30]. considered, the issue unit area is known to be of compleéXity) or

lP this section we discuss the experimental environment that has been

478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

TABLE VI
CONFIGURATIONS OF THEMACHINES USED IN TABLE V

I mi | m2 | m3 [md [m5 | m6 | M7

Area 94.58 | 15545 | 15545 | 100.71 | 159.19 | 156.82 | 159.19
Issue width 4 8 8 4 8 8 8
No. ALU 4 8 8 4 8 8 8
No. branch unit 1 1 1 2 2 2 2
No. memory unit 4 8 8 4 8 8 8
Icache (KB) 8 2 4 8 1 2 4
Dcache (KB) 8 4 2 8 4 2 1
Main Memory
I Cache D Cache
Branch
Predictio
n |
Unit
n Issue Units
| n number of | 1 number of
Branch | Branchunis | Brapch AL it AL
unit EmmEmans unit U amsmmEma U
Fig. 2. System model being simulated.
sublinear. The cost function of arbitrarily configured superscalar ma- $define ISSUE 1

$define IALU 1

chines is given by $define FALU 1

$define FMUL 1
preas(du =y = do = dv)+ A iﬂiﬁﬁi BRANCH |
+npAp + A + 1 As + Aae + Aic) $define MODEL superscalar
Enumerate resources
where (Resources declaration
Agp area of a baseline machine; slot[0..$ISSUE$]
Ar area of a baseline machine execution unit; falu_0[0. SIALUS]
% ' falu_0[0..$FALUS$]
Ac baseline machine cache area; fmul_0[0..$FMULS]
Ay baseline machine issue unit area; fdiv_0306$§lglsg$
Au Issue unit area, . EI'Z?c_h[[O.:.SSBRANCI]%]
o number of branch units; end)
Ap area of branch units;
N number of memory units; Fig. 3. An example high-level machine description (HMDES).
A,, area of memory units;
n; number of ALU; issue unit smaller than the baseline machine have at least one com-
A4; areaof an ALU; plex integer ALU. The area of the complex integer unit is assumed
Ag4. data cache area; to be half of the baseline integer unit (two simple integer units and
Aic instruction cache area. one complex integer unit). The area of issue unit is scaled based on

The baseline architecture chosen for the analysis is the PowerPC @@#tarea complexityO(n?)). We did not include floating-point units
[32], a four-issue processor. The 604 has two simple integer ALUs aimdany machine configurations because the benchmarks we used have
one complex integer ALU, one floating-point unit, one branch unit, andostly integer (or fixed-point) operations. Finally, we scaled the area
one memory unit. We assume that machine configurations that have@n0.35:m technology rather than the original p.%echnology used

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001 479

Mlachime maikels and .
2 Area constraings
cachie canliguralions

L] L)

= : e ; Ebimninaie machinss s ; ; i
Compile & Simulation — ghat 40 ol satisdy —— Eliminale dominabed — K sdection alpérillan

Nl ares comsirain S
Fig. 4. Global design flow.
by Argyres. A set of example machine configurations and their respe 2.6
tive area estimates are shown in Table I. 255

mean of speedups

B. Benchmarks 2.5 /
The set of benchmarks used in this work is composed of complete i § 2.45
plications which are publically available and coded in a high-level lar 5 /
o - g8 24
guage. The collection is composed of 21 applications culled from ave § /
able image processing, communications, cryptography, and DSP ap § 2.35
cations. Brief summaries of benchmarks and data used are showi®
Tables Il and Ill, respectively. More detailed descriptions of the benc 23
marks can be found in a previous publication [16]. 0 2 4 6 8 10
As discussed in the Introduction, the idea that a programmable p No. of processors selected

cessor can be tuned to a target application is based on the assumption
that applications differ from each other in exploitable features. As an fiig. 5. Performance versus number of selected processors: Area constraint 84
lustration, Table IV shows measured characteristics of the benchmalrks -
used in the experiment. Note that the combination of the instructions
per cycle (IPC), bus utilization, branch issue, and ALU issue exhibit
distinctive characteristics for each benchmark. Although the target was
a single-issue machine, we found that there was strong evidence that
performance tuning for an individual application could be beneficial.
Note that in order to reduce the effect of memory operations on other
measurements, the target machine has 32 KB instruction cache and 32
KB data cache, resulting in high cache hit rates.

C. Experimental Tools ¥
We use the IMPACT tool suit [18] to automatically tune application

codes and collect performance measurements of benchmarks on

various machine configurations. The IMPACT C compiler is a retar-

getable compiler with code optimization components developed for

multiple-instruction-issue processors. It incorporates code improvipg. 6. A search space and a selected pafhy”) indicated by think lines.
technigues such as function inline expansion, instruction placement,

loop l_mrolllng, loop p_ee_rllng, memory dlsamblguatlon, regIStetfonsofinstruction cache and data cache ranging from (512 bytes, 512
renaming, branch prediction, critical path depth reduction, and ol tes) to (8 KB, 8 KB)

integrated register aIIocatio_n and code scheduling algorithm for bot Measured run-times of benchmarks through simulations are normal-
VL.IW and _Supers_calar a_rchltectures. The target _me_u:hlne for IMPACEIed with respect to a baseline machine. We selected as a baseline con-
C is described using a high-level machine description (HMDES) (s

ﬁSuration a machine with one branch unit, one-issue unit, 512 bytes
instruction cache, and 512 bytes of data cache. An example set

figurations that satisfy the illustrated area constraint, 16*mter

We collect r“r."“mes (exprt_assed asa number O_f cycles) qf the benFu n-times are measured, we eliminate machines that are dominated by
marks on 175 different machine configurations. First we build execut,

They are machines with a single branch unit and one of the one-, tV"F?farks. In this particular example, there are seven machines left after

four-, and elght-|§sue_ units, m_achlnes Wlth.two br_anch uniis and O4&minated machine configurations are eliminated. The areas of the ma-
of the four- and eight-issue units, and machines with four branch un&tﬁine configurations are shown in Table VI

and a eight-issue unit. The IMPACT compiler generates aggressively
optimized code to increase ILP for each configuration. All the machine
configurations have the same number of ALU and memory units as the
issue width. The optimized code is consumed by the Lsim simulator.Our hypothesis is that a set of machine configurations that run a given
We simulate the benchmarks for a number of different cache configeet of benchmarks equally well with respect to a baseline machine can
rations. For each executable of a benchmark, we simulate 25 combibe-found. In other words, there is at least one machine from the set that

IV. APPROACH

480 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

| Machine [Application 1 | Application 2 | Arithmetic mean | Geometric mean |

ml 1 6 35 2.65
m2 3 4 35 3.46

Fig. 7. An example of speed-up numbers and machine selection.

can be used to build an application-specific system. Effectively, we can Informal Description of Problem
say that the machine is optimized to run the specific application. In thislnformally, the problem can be stated as follows: Given an area con-

section, we describe our approach to the selection problem. First We,ins and speed-up numbers of benchmarks on machines that fit into
show the global flow of the design process. We describe the combings given area, we want to select a subset of the machine configura-
torial nature of the search space by showing an example search tref,n'in such a way that the geometric mean of speed-ups across all the

benchmark is maximized and the subset size is kept small.

We normalize the run time with respect to a baseline since we are not
The experiment is carried out by first selecting a set of machingterested in the sum of run-times [36]. The sum of run-times does not
models. A portion of an example high-level machine description fileflect the performance effect of shorter benchmarks in the presence of
(HMDES) used by the IMPACT tool suite is shown in Fig. 3. Machinefnger benchmarks. In some cases, a benchmark that takes a long time

are described using HMDES. The HMDES files are compiled by thg complete due to large data sets dominates the sum of run-times.
HMDES compiler [34], [35]. Detailed and precise descriptions of the we use the geometric mean to summarize the selected machines
execution constraints for the HP PA7100, PLAYDOH, Intel Pentiur%ince we normalize the measurements [36] In generaL the geometric
EPIC, and Sun SPARC have been ported and widely used by IMPA@kan is not a good method of summarizing performance numbers [37]
C compiler and Lsim simulator. The benchmarks are compiled by tag it does not show the nature of the workload. For example, consider
IMPACT C compiler for the machines described in HMDES. The aigz workload consisting of two applications. On a baseline machine one
chitecture model we used in the experiment is the Hewlett Packaf@plication takes 5000 s to complete and the other 2 s. We compare
PA-RISC (HPPA) [1]. All the executables are simulated using the IMwo machines based on a set of normalized numbers. Assume that one
PACT simulator, Lsim. At simulation time, we specify cache configmachine improves the performance of the first application by a factor
urations for the simulator. Lsim simulates everything from diﬁeremf two and the other the second application by the same factor. Then
branch prediction scheme, reorder buffer, caches and memory. Memgiy geometric mean indicates that the performance of the two machines
latency, misprediction penalty and ALU latency are specified as Lsi@the same although the first machine cuts the running time by 2500 s
parameters (Fig. 2) in the system model being simulated. We did Rgile the second machine by only 1 s. This is a problem when we sum-
incorporate a second level cache or specialized ALU; however, addif@rize normalized performance numbers fomix of workload. As
one and changing ALU latency is possible in Lsim. Through simulgndicated earlier, however, we are not interested in the machine perfor-
tions we measure run-times of all the benchmarks. The run-times @fgnce on anix of workload. Instead, we are interested in predicting
normalized with respect to a baseline machine run-time for each bengfe performance of one of the selected machines on each individual
mark to obtain speed-up numbers. After all the simulations are cofenchmarks. As an illustration, consider the speed-up numbers given
pleted, we begin searching for the best machine configuration sets f9fig. 7. While the arithmetic mean suggests that there is no difference
specific area constraints. For each area limit, we eliminate all machinggween m1 and m2, the geometric mean provides more useful insight.
that do not Satisfy the area bound. From the machines that Satisfy thWe want to see how many machine Conﬁguraﬂons are necessary in
area bound, we eliminate all the dominated machines (refer to Segder to achieve high performance for all the benchmarks. The ob-
tion I1I). Finally, we apply thels'-selection algorithm (see Section V), jective function of the optimization problem is minimization of the
to select a set of machine Configurations that run the benchmark ﬁgfnber of selected machine Conﬁgurations7 thereby, on average, max-
best. Fig. 4 shows the global flow of design process. imizing the number of benchmarks that can be run on a processor as
though it is optimized for each individual benchmark. In one extreme
case, we might end up with machine configurations for each individual
The search space is relatively small due to the area constraint andidbechmark. On the other extreme, we might need only one processor
number of dominated implementations. Nevertheless, there is a possitiution for all applications.
lity that the search space explodes due to its combinatorial nature. The
likelihood of this phenomenon occuring appears to be a strong furls- Formal Description of Problem
tion of the area models used. Fig. 6 shows an example search spagfe now define the problem using more formal Garey—Johnson
with three machine configurations. The search starts with an empty &&nat [39].
(indicated by the root node in the diagram) and follows one of the pos-ge|ection problem:
sible path in the search tree. Each node in the search tree is an instance
of selection completed.

A. Global Design Flow

B. Selection Problem Search Space

Instance: Given a set oft benchmarksg;,i = 1,2,...,n,k

Fia. 5 shows an examole m rement on performance ver machine configurationsy;,j = 1,2,...,k, the
%‘ fs OI Stad example sjsu € Ie ki 0 fpetho ba cke _etsufs speed-up factorsr;; of the benchmarks:;,i =
number of selected processors. We are looking for the break point o 1,2,....n onthe machines:,, j = 1,2, ..., k with

diminishing returns for adding configurations to a set. This goal will

- -) respect to a baseline machine and constangndC'.
be elaborated in more detail in the next section.

Question: Isthere aset! of K" machine configurations,,,p =
1.2,...,K,suchthaty/]["_, maxjen Ei; < C?
To determine the constaif we divide the problem into two sub-
In this section we formulate the problem of finding the minimunproblems, namely, a-selection problem and -selection problem.
number of machine configurations for a given set of benchmarks $tarting fromw = 1 we iteratively increase until the benefit of in-
such a way that all the benchmarks execute well on at least one of theasingw is less than a given threshald Formally the subproblems
selected machines. are stated as follows.

V. SELECTION PROBLEM FORMULATION

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001 481

for a set of machine configurations { .]
for a set of benchmarks { g€ ol ———Maimumavailable
generate an executable of a benchmark for the target machine; '§ 0.05 cutoff
measure speed-up factors with respect to the baseline machine; % 81 N ’ I
} £
| s 6 A
eliminate all machines that donjf saisfy area constra it £ 4 ’ l” v‘\.
eliminate all machines that are dominated by at least one other machine; § \ IJ
R=1; 5 5l A
’ 2 | \
i=1; Z
Dii=1; 0 : " .
while ((R2p) && (i<k)){ 30 80 1_30 180
D; = branch-and-bound(D;.i, i); Area Constraint (mn?)
(@
Di-Dp
= : 35
D; £ 3 _
D.1=D; 32
iJ'r:L; ‘ g_ 25 e
} T 2 ya
=
g
branch-and-bound(D;.;, w) { g 15 /_]/)) B
Stack s; 2) ’ wmennes Maximum available
Node c; é ——0.05 cutoff |
Dpeq =Dy 3 g o5 .05 cuto]
Generate_new_nodes(¢, Dpess , 8); 0
while(s is not empty) { '
¢ = take a node out of s; 30 80 ‘130 180
If(bound() == FALSE) then continue; Area Constraint (mrt)
else { @

if the number of selected machines is less than w then

Generate,_new_nodes(c, s); Fig. 9. Quadratic complexity issue unit area model. Selected processor

configurations (cutoff value: 0.05): (a) processor configurations and (b)

else {
performance.
D= '{/Hf’zl manEP E!']' N
If(D > Dyest) then Dyesy = D; The size of the machine setis determined by an iterative test of com-
} paringD,., andD..4 . Since theD is monotonic, we continue to eval-
}) uate D and compare them using (3) until we reach a point where the
return Dyeg benefit of the set size increase drops below a certain limit.
} K -selection problem:
Generate_new_nodes(¢, s) { D D
fora et of possible choices | {w p< TS w=L2 k- } ©)
insert the new choice and sort s based on est;
} } whereD,, is given by (2) ang is a cutoff ratio.
CS"f‘f,'ffjﬁ ;eg’;ﬁﬁf,‘;)ki I VI. SOLUTION SPACE EXPLORATION: STRATEGY AND ALGORITHMS

The algorithm for system-level synthesis of application-specific pro-
grammable processor is given in Fig. 8. Considering that the run-time

speedup; = max jee{choice} Eif’

r}t=lallbenchmarksl- I c U { choice }I; of simulations for 20 benchmarks on 175 machine configurations is
for all the machines not selected j about a week, we can tolerate a longer search time to find the op-
improve; = 2:;] speedup; - Ej;; timal result. ng_eral_ly, the siz_e of the_searc_h problem is drama?ically
Sort(improve); rgduced by ellmlngtlng machine conflguratlgns that do not satisfy a
greedy = n best machines based on improve given area constraint and those that are dominated by at least one other
for all benchmarks I { machine. Consequently, a smaller number of machines needs to be con-

speedup; = max . hoi. E..: _sidered. The machine configuratiehdqminates the configura_ltiOB
o JeteAchoice)greedy} = if no benchmarks have longer execution times on the machittean
return { geometric mean of speedup); on machineB
} .
The search for an optimum solution is organized using an implicit

Fig. 8. System-level synthesis of application-specific programmabig,;meration method. In particular, we adopt a branch-and-bound al-

machines. gorithm shown in Fig. 8 to speed up the selection.

w-selection problem:Given a set ofn benchmarks,;.i = The branch-and-bound algorithm consists of two major components:
1.2,....n,k machine configurationsmj,,j = 1,2,....k, the branching and eval_uation. The branching step takes the current state of
speed-up factor€;; of the benchmarks,,i = 1,2,....n on the selection (a node in the search tree) and generates a number of new
machinesn ;. j = 1,2,.. .,k with respect to a baseline machine andiodes by adding an available (still not considered in particular search
constantss path of the search tree) machine to the current state of selection (refer

to Fig. 6). As shown in Fig. 8, it examines to see if adding a machine
@) to the current state of selection can result in a better solution than the

current best solution found. Initially, the current best solution is set to

the previous best solution. The previous best solution is the best solu-
whereP is the selected machine set of size tion found for the machine set size less than the current search size by

Maximize:

482 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

12 35
2 (I;/l&))(gmultn available 2 3
005 cuto,
I E—— - —=
= .05 cu
B 8 e =+ =.-0.Icutoff] & 25
£ g ﬁ_,ndﬂ—/
: R e 2
s 6 g /
£ ¥ 1.5 _
£ 2 - ~——— Maximum available
E 4 t g 1 e 0.005 cutoff L
< I”L u \ g ——0.01 cutoff
5 L0 [£ o5 —— 005 cutoff
g 1])\ [T c - — 0.1 cutoff -
0 0
30 80 130 180 30 80 130 180
Area Constraint (mn?) Area Constraint (mn¥)

(@ (b)
Fig. 10. Quadratic complexity issue unit area model: Selected processor configurations: (a) processor configurations and (b) performance.
TABLE VII

SNAPSHOTS OFSPEED-UPS OFBENCHMARKS AT VARIOUS CUT-OFF VALUES FOR THEGIVEN AREA CONSTRAINT (84 mn¥, 100 mn¥, 169 mn¥) (NOTE:
ACTUAL AREA UNDER THE AREA CONSTRAINTSARE GIVEN IN TABLE VIII)

cut-off:0.05 cut-off:0.01 cut-off:0.005
No. Benchmark 84mm” | 100mm® | 169mm’ | 84mm> | 100mm> | 169mm’ | 84mm® | 100mm® | 169mm’
1 JPEG encoder 3.02 3.51 3.87 3.02 3.65 3.87 3.02 3.65 3.87
2 JPEG decoder 3.56 3.91 4.27 3.56 4.23 4.27 3.56 4.23 4.27
3 | MPEGencoder | 245 2.56 2.57 2.45 2.56 2.57 2.45 2.42 2.57
4 | MPEGdecoder | 3.05 3.55 3.68 3.05 3.55 3.95 3.05 2.56 3.95
5 GSM encoder 2.22 2.30 2.31 2.22 2.30 2.32 2.24 2.94 2.32
6 GSM decoder 2.89 2.99 3.00 2.89 2.99 3.19 2.91 2.99 3.19
7 G.721 encoder 2.68 3.38 3.38 2.88 3.38 3.38 2.88 3.38 3.38
8 G.721 decoder 2.71 3.44 3.44 3.04 3.44 3.44 3.04 3.44 3.44
9 | PGPencryption | 2.78 3.08 3.21 2.83 3.15 3.21 2.83 2.26 3.21
10 | PGP decryption | 2.88 3.22 3.38 3.02 3.28 3.38 3.02 2.15 3.46
11 | Pegwit encryption | 2.64 2.66 2.82 2.64 2.79 2.82 2.64 3.28 2.82
12| Pegwit decryption | 2.63 2.68 2.84 2.63 2.82 2.84 2.62 2.79 2.84
13 Mipmap 2.81 2.69 2.79 2.81 2.94 3.10 2.81 3.56 3.10
14 0S-demo 2.22 2.40 2.47 2.25 2.42 247 2.25 2.82 2.47
15 Texgen 2.11 2.31 2.40 2.11 2.40 2.40 2.11 2.42 2.40
16 Rasta 2.13 2.22 2.27 2.12 2.26 2.31 2.13 2.31 2.31
17 | EPIC encoder 1.93 1.78 2.17 1.93 2.06 2.17 2.04 2.17 2.30
18 | EPIC decoder 1.70 1.76 1.77 1.70 1.76 1.83 1.70 1.76 1.83
19 | ADPCM encoder | 2.30 2.31 2.31 2.30 2.31 2.43 2.30 2.42 2.44
20 | ADPCM encoder | 2.33 2.34 2.42 2.33 2.34 2.55 2.34 2.40 2.65

one. The branching is bounded by the bounding function. The boundivejues 0.1, 0.05, 0.01, and 0.005. The cutoff valuegp&as defined
function compares the current node and a candidate processor withith€8) (see Section V).
best node of the same size found. The node size is the number of prd=ig. 9(a) shows an experimental result using the cutoff value of 0.05.
cessors. If the current node and the candidate are dominated by The thicker line shows the number of machines that are left after elim-
best node, then we cut the path off from search. We compute the lowsations. The thinner line in the figure indicates the number of se-
bound of the geometric mean of the maximum speed-up factors of edetted machines to cover all the benchmarks under area constraints. We
benchmark. The lower bound is obtained by using a steepest desaiearly see that we need more machine configurations when less area
algorithm. The steepest descent algorithm selects machines in the orslawvailable. On the other hand, the more area we have, the more gen-
that the biggest improvement can be achieved. If the estimate is great@l the processor we can design. The results suggest that when more
or equal to the current best solution, we have an opportunity to findtsan 100 mr of area is available, there is no advantage in having more
better solution than the current best solution by exploring the seatbian one architecture to be able to build application-specific systems for
path. Otherwise, there is less of a chance of obtaining a better solutiaththe benchmarks. Moreover, for the given compiler technology and
We sort the search order based on the lower bound so to increasebiiechmarks, there is no need to have more than 100 ofiarea since
bounding rate. the speed-up increase achieved by machines greater than 1b@nmam
minimal.

The overall performance comparison between all configurations and
selected configurations are shown in Fig. 8(b). There are three distinc-

We evaluated the tools and algorithms by running extensive expdiie points where the speed-up increase rate changes. Up to the area 57
ments ranging from the area constraint of 30 to 200°mifine imple- mn¥, we see rapid performance increase, which is mainly due to in-
mentation technology is assumed to be 0u38. For each area con- creased amount of cache memories. From 57 to 101 theimeasure-
straint, we obtain an optimum set of machine configurations for cutafient shows modestincrease of performance. The performance increase

VIl. EXPERIMENTAL RESULTS

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001 483

TABLE VIl
SELECTED PROCESSORSIHAT RUN BENCHMARK BEST FOR THESNAPSHOT CASES IN TABLE VII: T HE LAST COLUMN SHOWS BENCHMARKS THAT RUN BEST ON
PROCESSORSGIVEN IN COLUMN 3. COLUMN 4 SHOWS MACHINE CONFIGURATIONS IN THEFORM OF. ISSUEWIDTH, NUMBER OF ALU S, NUMBER OF BRANCH
UNITS, NUMBER OF MEMORY UNITS, SIZE OF INSTRUCTION CHACHE (KB), SIzE OF DATA CACHE (KB). ACTUAL AREAS ARE GIVEN IN THE FIFTH COLUMN

Cut-off | Max [No. | Configuration | Actual : Benchmarks that run best
area area

ml | (2,2,1,2,8,8) | 61.11 | decode, encode, epic, mpeg2enc, pegwitdec, pegwitenc
0.05 84 [m2 | 4,4,1,4,4,4) | 81.89 | cjpeg, dipeg, gsmdecode, gsmencode, mipmap, osdemo,
pgpdecode, pgpencode, rasta, texgen

m3 | (4,4,2,4,1,4) | 83.24 | mpeg2dec rawcaudio rawdaudio unepic

100 | m4 | (4,4,2,4,8,4) | 94.36 | all applications

169 | m5 | 4,4,2,4,8,8) | 100.71 | all applications

m6 | (2,2,1,2,8,8) | 61.11 | epic, mpeg2enc, pegwitdec pegwitenc

0.01 84 | m7 | 4,4,1,4,4,4) | 81.89 | cjpeg djpeg gsmdecode gsmencode mipmap rasta texgen
m8 | (4,4,1,4,8,1) | 83.46 | decode, encode, osdemo, pgpdecode, pgpencode

m9 | (4,4,2,4,1,4) | 83.24 | mpeg2dec, rawcaudio, rawdaudio, unepic

ml0 | (4,4,1,4,8,8) | 94.58 | cjpeg, djpeg, epic, mipmap, osdemo, pegwitdec, pegwitenc,
100 pgpdecode, pgpencode, rasta, texgen

mll | (4,4,2,4,8,4) | 94.36 | decode, encode, gsmdecode, gsmencode, mpeg2dec,
mpeg2enc, rawcaudio, rawdaudio, unepic

mi2 | 4,4,2,4,8,8) | 100.71 | cjpeg, decode, djpeg, encode, epic, mpeg2enc, osdemo, pegwitdec,
169 pegwitenc, pgpdecode, pgpencode, texgen ,
mil3 | (8,8,2,8,4,4) | 166.33 | gsmdecode, gsmencode, mipmap, mpeg2dec, rasta,
rawcaudio, rawdaudio, unepic

mi4 | (2,2,1,2,8,8) | 61.11 | mpeg2enc, pegwitdec, pegwitenc

0.005 84 [mi5] 4,4,1,4,1,8) | 8346 | epic

ml6 | (4,4,1,4,4,4) | 81.89 | cjpeg, djpeg, mipmap, rasta, texgen

mi7 | (4,4,1,4,8,1) | 83.46 [decode, encode, osdemo, pgpdecode, pgpencode

ml8 | (4,4,2,4,1,4) | 83.24 | mpeg2dec, rawcaudio, unepic

ml9 | (4,4,2,4,4,1) | 83.24 | gsmdecode, gsmencode, rawdaudio

m20 | (4,4,1,4,8,8) | 94.58 | cjpeg, djpeg, mipmap, osdemo, pegwitdec, pegwitenc,

100 pgpdecode, pgpencode, rasta, texgen

m2l | (4,4,2,4,4,8) | 94.36 | epic, mpeg2dec, rawcaudio, rawdaudio

m22 | (4,4,2,4,8,4) | 9436 | decode, encode, gsmdecode, gsmencode, mpeg2enc, unepic
m23 | (4,4,2,4,8,8) | 100.71 § cjpeg, decode, djpeg, encode, mpeg2enc, osdemo, pegwitdec,
169 pegwitenc, pgpdecode, texgen

m24 | (8,8,2,8,1,8) | 168.68 | epic, rawdaudio

m25 | (8,8,2,8,4,4) | 166.33 | gsmdecode, gsmencode, mipmap, mpeg2dec, unepic

m26 | (8,8,4,8,1,2) [166.70 | pgpdecode, rawcaudio

shown in this interval is mainly due to increased issue width. For tleeitoff values (0.05, 0.01, and 0.005) and three area constraints (85, 100,
processors larger than 101 mnthe performance increase is minimaland 169 mm). Note that the area constraints are not actual areas but
One of the underlying reasons that causes the phenomenon is thattieer bounds. We consider machines under the given area constraints.
ILP found by the compiler and hardware scheduler is fully exploite@iable VIl gives the number of machine configurations selected and the
by having a certain amount of hardware, thereby performance increagsst performing machine configuration for each benchmark. The actual
possibility is exhausted. The limitation of performance increase in tlaeeas of the selected machines are given in column 5 of the table. The
face of increased areaillustrates either the limitation of the current cooombinations of components for the selected machines are shown in
piler technology or the inherent lack of ILP in the benchmarks. Noteplumn 4.
however, that the measurement is not for a single processor. Smallgfig. 11 shows the results when the liner complexity issue unit area
area cases tend to have more than one architectures which are moreregulel is assumed. The results suggest that the machine configuration
plication specific. selection problem has no strong dependence to an issue area model
Experimental results for the cutoff values 0.1, 0.05, 0.01, and 0.005ed. Although we observe that there is shift to smaller areas, essen-
are given in Fig. 10. Smaller cutoff values result in machine configuréally the results are identical to the results based on the quadratic com-
tion sets that are more tuned to each application. In general, howeveslexity issue unit area model.
smaller cutoff value does not result in dramatic performance increaseln summary, we found that under the machine models and machine
In most cases, the cutoff value of 0.05 appears to give a good trademfhfiguration choices described in this paper, when more than 160 mm
between the number of machine configurations and performance. of area is available, there is little advantage in having more than one
Speed-up factors of each benchmark are shown in Table VII. Thaschitecture to be able to build application-specific systems for all the
are snapshots of experimental results summarized by the line grapbachmarks. Moreover, for the given compiler technology and bench-
in Fig. 10. The table contains maximum speed-up factors for threwarks, there is little need to have more than 100’nuharea since

484

12 35
s Maximum available
0.005 cutotf
2 10— 0.01 cutoff . 3
g 0.05 cutoff &
E o = 0.1 cutoff '§. 25
=
o0 3
b \ T 2
=3
© 8
L
E fh £ 15
3 [] £
=z g
=
S ! g 05
0 - v 0
30 50 70 90 110 130 150 170 190 210
Area Constraint (mn?)
(@)

Fig. 11.

the speed-up increase achieved by machines greater than 10@nam

minimal. One notable exception is that for highly cost sensitive designs
we observe a need for small number of specialized architectures whic 6
achieve smaller areas. 7]

(8]

The arrival of production quality ILP compilers and commercial [9]
DSPs with VLIW architecture stimulated the idea of programmable
processors that are aggressively tuned to specific applications. THE!
assumption behind the idea is that there are ways of designingi1
programmable processors that can exploit the run-time characteristics
of specific applications. The run-time characteristics include thg12]
available ILP, demand on various hardware components such as cache

. -) . . - [13]
memory units, register files, and the number of function units. It is
assumed that a microprocessor can be designed by adding hardwaig,
components tailored to a specific application so that it can execute the
single application extremely well. We ran extensive experiments ofl5]
a framework based on the key paradigms of CAD and architecturEm]
communities. This combination enabled us to gain valuable insight
about design and use of application-specific programmable processors
for modern applications. We evaluated 175 machine configuration§l7]
on 20 benchmarks under the area constraint ranging from 30 to 200
mn . For each area constraint, we obtain an optimum set of machinﬁgl
configurations for a number of cutoff values. The run time of the entire
synthesis process was about a week. It is well known that when the
area constraint is tight, more machine configurations are needed ¢!
application specific designs. In the figures, we found out that even with
more area, there still exists a fair number of different configurations[ZO]
due to the introduction of different functional units (branch unit and
ALU) with the tradeoff of cache size.

In the system level integration market, we believe a standard desigd1]
solution means a quick time to market and guaranteed functionalit)fZZ]
We develop this framework to ease design managers finding their chips
portfolio in their particular interested domains.

We have found that the framework introduced in this paper can b&3]
very valuable in making early design decisions such as area and archi-
tectural configuration tradeoff, cache and issue width tradeoff undep,y
area constraint, and the number of branch units and issue width.

(5]

VIIl. CONCLUSION

REFERENCES [25]

[1] M. J. Mahonet al, “Hewlett-packard precision architecture: The pro- [26]
cessor,"Hewlett-Packard J.vol. 37, no. 8, 1996.

[2] R.D.Hofand O. Port, “Silicon dreams,” Business Week Int. Eday
13, 1996.

[3] W. StraussPSP Strategies 2002. Forward Conceit§98.

[4] J. Turley, “SA-1100 puts PDA on a chipMicroprocessor Repvol. 11,
no. 12, Sept. 1997.

[27]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001

/ e Maximum available _|
7 wamm— 0.005 cutoff
——0.01 cutoff
——0.05 cutoff -
e 0.1 cutoff
30 50 70 90 110 130 150 170 190 210
Area constraint (mnf)
(b)

Linear complexity issue unit area model: selected processor configurations: (a) processor configurations and (b) performance.

J. A. Fisher, “Trace scheduling: A technique for global microcode com-
paction,”|EEE Trans. Computingvol. 30, pp. 478-490, 1981.

] W. M. W. Hwu et al,, “The superblock: An effective technique for VLIW

and superscalar compilation]” Supercomputing993.

S. Banerjia, W. A. Havanki, and T. M. Conte, “Treegion scheduling for
highly parallel processors,” iBuro-Par, Passau, Germany, 1997.

S. A. Mahlke, “Effective compiler support for predicated execution
using the hyperblock,” ifProc. Int. Symp. Microarchitecturd 992.

P. Y. Hsu, “Highly concurrent scalar processing,Tieach. Rep. CSG-49
Coordinated Science Lab., Univ. lllinois at Urbana-Champaign, 1986.
J. Turley and H. Hakkarainen, “TI's new 'C6x DSP screams at 1600
MIPS,” Microprocessor Repvol. 11, pp. 14-17, 1997.

] R. P. Colwellet al, “A VLIW architecture for a trace scheduling com-

piler,” in Proc. ASPLOS-|11982.

P. Kalapathy, “Hardware-software interaction on MPACTEEE
Micro., vol. 17, pp. 20-26, 1997.

C. Hansen, “MicroUnity’s mediaprocessor architectut&EE Micro,,

vol. 17, pp. 34-41, 1997.

R. B. Lee and M. D. Smith, “Media processing: A new design target,”
IEEE Micro,, vol. 17, pp. 6-9, 1997.

A. Peleg and U. Weiser, “MMX technology extension to the Intel archi-
tecture,”|EEE Micro,, vol. 16, no. 4, pp. 42-50, Aug. 1996.

J. A. Fisher, P. Faraboschi, and G. Desoli, “Custom-fit processors: Let-
ting applications define architectures,”limt. Symp. Microarchitectures
Paris, France, 1996.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems,” inProc. Int. Symp. Microarchitecture4997.

P. P. Changet al, “IMPACT: An architectural framework for mul-
tiple-instruction-issue processors,’litt. Symp. Computer Architectyre
1991.

G. Goossenst al,, “Embedded software in real-time signal processing
systems: Design technologie®foc. IEEE vol. 85, pp. 436—454, Mar.
1997.

P. G. Pauliret al, “Embedded software in real-time signal processing
systems: Application and architecture trendrdc. IEEE vol. 85, pp.
419-435, Mar. 1997.

P. Marwedel, “Processor-core based design and tes®fdn. Asia and
South Pacific Design Automation Carf997.

G. Araujo, A. Sudarsanam, and S. Malik, “Instruction set design and
optimizations for address computation in DSP architecturesPrac.

Int. Symp. Syst. Synthesi®96.

C. Liem, T. May, and P. Paulin, “Instruction-set matching and selection
for dsp and asip code generation,'Rroc. European Design Test Canf.
1994.

A. Sudarsanam and S. Malik, “Memory bank and register allocation in
software synthesis for ASIPs,” iaroc. Int. Conf. Computer-Aided De-
sign, 1995.

S. Liaoet al, “Instruction selection using binate covering for code size
optimization,” inProc. Int. Conf. Computer-Aided Desigt995.

R. Leupers and P. Marwedel, “Retargetable generation of code selectors
from HDL processor models,” ifProc. European Design Test Canf.
1997.

W. Zhao and C. A. Papachristou, “An evolution programming approach
on multiple behaviors for the design of application specific pro-
grammable processors,” Proc. European Design Test Conf. ED&TC
96.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 3, JUNE 2001 485

[28] K. Kim, R. Karri, and M. Potkonjak, “Heterogeneous built-in resiliency [34] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau, “Optimization of machine

of application specific programmable processors,Pioc. Int. Conf. descriptions for efficient use,” iRroc. 29th Int. Symp. Microarchitec-
Computer-Aided Desigri996. ture, Dec. 1996.

[29] T.Conte and W. Mangione-Smith, “Determining cost-effective multiple [35] ——, “HMDES version 2.0 specification,” ilMPACT Tech. RepIM-
issue processor designs,”fmoc. Int. Conf. Computer Desigt993. PACT-96-03, University of lllinois, Urbana, IL, 1996.

[30] T. M. Conte, K. N. P. Menezes, and S. W. Sathaye, “A technique to[36] R. Jain,The Art of Computer Systems Performance Analydiéew
detemine power-efficient, high-performance superscalar processors,” in ~ York: Wiley, 1991.

Proc. 28th Hawaii Int. Conf. System SciencE395. [37] J. L. Hennessy and D. A. Patters@pmputer Architecture: A Quanti-
[31] J. Kin et al, “Power efficient mediaprocessors: Design space explo- tative Approach San Francisco, CA: Morgan Kaufman, 1993.
ration,” in Proc. 36th Design Automation Cont999. [38] J. E. Smith, “Characterizing computer performance with a single

[32] D.C. Argyres, “Performance and cost analysis of the execution stage of number,”"Communications ACMol. 31, no. 10, pp. 1202-1206, 1998.
superscalar microprocessors,” Master's thesis, Department of Comput¢89] M. R. Garey and D. S. Johnso@pmputers and Intractability: A Guide
Science, University of lllinois, Urbana, IL, 1995. to the Theory of NP-CompletenesdNew York: Freeman, 1979.

[33] S.P.Songand M. Denman, “The powerPC 604 RISC microprocessor,”
in Tech. Rep.Motorola Inc., and IBM, 1994.

