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Abstract

Background: In spite of the abundance of genomic data, predictive models that describe phenotypes as a function
of gene expression or mutations are difficult to obtain because they are affected by the curse of dimensionality,
given the disbalance between samples and candidate genes. And this is especially dramatic in scenarios in which
the availability of samples is difficult, such as the case of rare diseases.

Results: The application of multi-output regression machine learning methodologies to predict the potential effect
of external proteins over the signaling circuits that trigger Fanconi anemia related cell functionalities, inferred with a
mechanistic model, allowed us to detect over 20 potential therapeutic targets.

Conclusions: The use of artificial intelligence methods for the prediction of potentially causal relationships
between proteins of interest and cell activities related with disease-related phenotypes opens promising avenues
for the systematic search of new targets in rare diseases.
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Background

With the extraordinarily fast increase in throughput that

sequencing technologies underwent in the last years [1,

2], genomics has become a de facto Big Data discipline.

Recent prospective studies have compared genomic data

generation with other major data generators such as

astronomy, twitter and youtube and have concluded that

genomics is either on par with or, possibly even most

demanding than the Big Data domains analyzed in terms

of data acquisition, storage, distribution, and analysis of

data [3]. Therefore, this seems to be the ideal scenario

for the application of machine learning techniques, that

have recently been successfully applied to many domains

of medicine [4] such as radiology [5], pathology [6],

ophthalmology [7], cardiology [8], etc. However, in the

case of human genomic data, most of the applications

have been unsupervised class discovery approaches,

using gene expression data for visualization, clustering,

and other tasks, mainly in single-cell [9, 10] or cancer

[11, 12], being supervised applications restricted to a few

examples of relatively simple problems, in which a good

balance between variables to predict and data available is

satisfactory, such as inferring the expression of genes

based on a representative subset of them [13] or predict-

ing the activity status of Ras pathway in cancer [14].

Consequently, in spite of the wealth of genomic data

available there is a lack of translational applications due

to the fact that the most interesting predictive scenarios

face a serious problem of potential overfitting. Thus,

attempts to describe complex, multivariant phenotypes

as a function of an undefined number of genes are

hampered by the high number of variables (in the range

of 20,000 genes [15]), which challenge many conven-

tional machine learning (ML) approaches. Therefore,

new strategies that exploit the enormous potential of

ML applied to genomic Big Data in order to model

diseases and discover new therapies are necessary.

An especially interesting use of genomic data is related

with the application of ML to model the function of the
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cell [16]. Such models form a natural bridge from variations

in genotype (at the scale of gene activities) to variations in

phenotype (at the scale of cells and organisms) [17, 18].

Despite, these models are based on yeast, an organism far

simpler than human, and use yeast genomic data, which

are far more abundant than human genomic data, the

framework proposed is interesting not only because of the

use of a causal link between genotype and phenotype but

also because it is attained with a dimensionality reduction.

Thus, mechanistic models of human cell signaling [19] or

cell metabolism [20] can provide the functional link

between the gene-level data available (gene expression) and

the cell phenotype level, allowing the selection of specific

disease-related cellular mechanisms of interest. In fact,

mechanistic models have helped to understand the disease

mechanisms behind different cancers [21–24], the mecha-

nisms of action of drugs [19], and other biologically inter-

esting scenarios such as the molecular mechanisms that

explain how stress-induced activation of brown adipose

tissue prevents obesity [25] or the molecular mechanisms

of death and the post-mortem ischemia of a tissue [26].

Here we plan to use a mechanistic model of the molecu-

lar mechanism of a disease, Fanconi anemia (FA) (ORPHA:

84), a rare condition that causes genomic instability and a

range of clinical features that include developmental abnor-

malities in major organ systems, early-onset bone marrow

failure, and a high predisposition to cancer [27]. Signaling is

known to play a relevant role in the disease and also defines

its most characteristic hallmark: failure of DNA repair [28,

29]. In addition, it has been described that FA influences

survival and self-replication of hematopoietic cells [30].

Solid tumors, usually with poor prognosis as tumor re-

section is the only therapeutic option given that patients

do not tolerate chemotherapy or radiation, constitute one

of the most relevant hallmarks of FA. With improved

hematopoietic stem cell transplant protocols, FA patient

survival has increased, leading to a progressively increased

number of solid malignancies in adult patients. Thera-

peutic research is currently focused in targeted therapies

for solid tumors as well as in preventive options in the

context of drug repurposing [31].

At present, a detailed map of FA signaling is available in

the Kyoto Encyclopedia of Genes and Genomes, KEGG,

(03460) that can be used to derive a mechanistic model

that relate gene expression to the activity of signaling cir-

cuits within the FA pathway that trigger cell activities

related to FA hallmarks. These models can be used to

investigate other molecules that could affect the activity of

such circuits and therefore, presumably, to FA hallmarks.

Therefore, these molecules are potential therapeutic tar-

gets. Since we are dealing with a rare disease, which typic-

ally are not considered as attractive business niches by

pharmaceutical companies [32], we will restrict the search

space to proteins that are already targets of approved drugs.

Actually, here we are aiming for drug repurposing, that is,

the discovery of new indications for drugs already used in

the treatment of other diseases [33], an ideal strategy for

rare diseases that accelerates enormously the evaluation

of candidate molecules and simultaneously reduces

failure risks [34].

The attainment of the relationships between candidate

proteins for a new indication and the FA hallmarks poses

a challenge that can be addressed with the appropriate

ML method.

Results

General approach

Here we take advantage of the biological knowledge avail-

able on FA, as represented in the FA pathway. The FA

pathway describes the functional interaction among genes

that finally trigger, from six different circuits, cell func-

tionalities related with DNA repair (see Fig. 1), a known

FA hallmark. Since the disease condition involves the mal-

function of one or several of these DNA repair cell func-

tionalities, we hypothesize here that other genes that have

an influence on the status of these functionalities might be

playing the role of upstream regulators and therefore their

potential modulator capacity could eventually make of

them suitable therapeutic targets. In order to find drug-

gable genes that could be playing a significant modulator

role over FA hallmarks we use known drug target (KDT)

genes listed in DrugBank [35] (Additional File 1). These

genes are used to predict the activity of the signaling

circuits triggering the FA hallmarks.

Since the FA pathway available in KEGG seems incom-

plete we first build a curated expanded version of the FA

pathway (see below). Then, we search for potential known

drug targets that affect the functionality of the FA path-

way. Figure 2 summarizes the procedure followed: for

each sample of each tissue available for each individual

(over 11,000), the activity of the genes in the pathway is

used to estimate the activity of the circuits contained in

the FA pathway using Hipathia [21]. Then, across the 11,

000 samples, the ML procedure tries to infer the circuit

activities from the expression levels of the KDT genes

external to the pathway.

Building a curated Fanconi Anemia disease map

Here we use as starting point the KEGG FA pathway

(hsa03460). However, among the 54 genes present in the

pathway (see Additional File 2), three known FA genes

(MAD2L2, RFWD3 and XRCC2) described in Orphanet

(ORPHA:84) were missing, which suggests that the FA

KEGG pathway probably does not constitute an updated

version of the current knowledge on FA. Therefore, we

have derived a manually curated expanded version of the

FA map. To achieve so we have used the package pub-

med.mineR [36] with all the possible pairs of FA genes
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Fig. 1 Fanconi anemia curated map, based in the KEGG FA pathway. There are two protein complexes: RPA, composed of RPA1, RPA2, RPA3 and
RPA4, and Core, composed of FANCM, FANCG, FANCL, FAAP100, FANCA, FANCB, UBE2T, STRA13, FANCC, FAAP24, HES1, FANCE, FANCF, BLM, RMI1, RMI2

and TOP3A. At the end of the effector nodes, whose names are taken for the circuits, a description of the main functionalities triggered by the
signaling circuits can be found

Fig. 2 Schema of the procedure followed for the analysis
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searching for direct functional interactions. The results

confirmed all the gene-gene interactions described in

the KEGG pathway and expanded the connections to

the three genes not present in the KEGG version as well

as discovered 12 new interactions among FA genes (see

Table 1). Figure 1 depicts the FA pathway expanded by

manual curation.

Interestingly, in spite of the small number of samples

in the comparison, the use of a mechanistic model, built

in Hipathia [48] with the curated FA pathway, to analyze

an experiment that compares gene expression in bone

marrow cells between normal volunteers and FA patients

[30] (GSE16334) rendered a significantly different activ-

ity in two circuits: REV3L (FDR-adj. p-value = 5.1 × 10−

4) and the RPA complex (FDR-adj. p-value = 4.5 × 10− 3),

as well as the MLH1-PMS2, almost significant (see Table

2) that could not be detected when using the original

KEGG FA pathway. Therefore, the curated pathway

demonstrates a better detection of the expected differen-

tial behavior between normal and diseased bone marrow

tissue than the original FA pathway, directly taken from

KEGG. Figure 3 shows the distributions of the activities

of different FA pathway signaling circuits in healthy and

FA bone marrow cells in which more pronounced differ-

ences in circuit activity can be visualized for the above-

mentioned circuits (REV3L, the RPA complex and

MLH1-PMS2). Actually, Additional File 3 shows the

same distribution obtained for the original FA KEGG

pathway, where some incoherence can be observed, such

as the absence of activity in four of the seven circuits.

Figure 4 shows the activity in different normal tissues,

taken from GTEx, which include blood, a tissue affected

by the disease, two tissues with a high rate of cell repli-

cation (skin and gastrointestinal), where DNA reparation

is expected to play a relevant role, and another tissue

with low rate of cell replication (brain). Unfortunately,

there are no expression data for bone marrow, the main

tissue affected by the disease, in GTEx. DNA reparation

circuits show a slightly different activity in brain when

compared to the rest of tissues in the case of the three

FA circuits.

Exploring the druggable space of influence over the FA

pathway

As sketched in Fig. 2, the ML strategy was applied to de-

tect proteins whose activity was able of predicting the

activity of the FA circuits that trigger the FA hallmarks.

The initial search space was restricted to KDTs extracted

from DrugBank (See Additional File 1). The cross-

validation of the relevance values (Fig. 5) rendered a

threshold of 0.006, above which the most relevant genes

presented a stable value.

The importance of the genes selected by the ML strat-

egy is strongly supported by a high predictive perform-

ance across all the splits, as can be seen in Fig. 6. The

distribution of the R2 score for each signaling circuit of

the FA curated pathway across all the training/test splits

have in all the cases a value close to 1 (note that the R2

score goes from -infinite to 1, where 0 represents a

model that always predicts the mean for each task and a

perfect model has a score of 1).

A total of 17 genes resulted to have a relevance over

the 0.006 threshold (See Table 3). Additional File 4 con-

tain details on the drugs targeting these proteins.

Discussion

Mechanistic models and machine learning approach used

Supervised ML applications in the case of human gen-

omic data aiming to find genes potentially causal of phe-

notypes have restricted to a few cases in quite simple

scenarios, such as the inference of very simple (and uni-

variate) phenotypes, such as the activity status of Ras

pathway in cancer [14]. Here we aimed to approach the

pathologic phenotype problem in more detail, trying to

capture the complexity of the molecular mechanism of

the disease. To achieve so, we have used signaling circuit

activities inferred by mechanistic models, as proxies of

disease-related cell functionalities triggered by them.

Such mechanistic models use gene expression data to

produce an estimation of profiles of signaling or

metabolic circuit activity within pathways [20, 24] and

have been used to describe the molecular mechanisms

behind different biological scenarios such as the explan-

ation on how stress-induced activation of brown adipose

tissue prevents obesity [25], the common molecular

Table 1 New genes and connections discovered that allow the
expansion of the FA pathway. The first two columns correspond
to the two interactor proteins, the third column refers to the
type of interaction and the last column shows the supporting
bibliographic evidence. Genes MAD2L2, RFWD3 and XRCC2 (in
bold) did not appear in the original FA KEGG pathway and were
added to the new curated FA pathway

NODE 1 Node 2 INTERACTION Ref.

MAD2L2 REV3L binding [37]

RFWD3 RPA1 binding/association [38]

XRCC2 RAD51C activation [39]

REV1 MAD2L2 binding/association [37]

FANCC REV1 activation [40]

POLK REV1 binding/association [41]

BRCA1 REV1 activation [42]

BRIP1 BRCA1 binding/association [43]

PALB2 BRCA2 binding/association [44]

PALB2 BRCA1 binding/association [45]

FANCA BRCA1 binding/association [46]

FANCD2 BRCA1 binding/association [47]
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mechanisms of three cancer-prone genodermatoses [49] or

the molecular mechanisms of death and the post-mortem

the ischemia of a tissue [26]. Moreover, recent benchmark-

ing of mechanistic modeling methods shows how Hipathia

clearly outperform to other competing method [50].

To assess the suitability of the expanded FA pathway, we

have analyzed the distribution of the activity of its circuits

once modeled in Hipathia. As expected, the overall activity

in blood, skin and gastrointestinal tissues is higher than that

of brain cells, due to its higher replication rate (Fig. 4).

However, brain tissue also exhibits pathway activity to some

extent, which can be explained by the involvement of FA

pathway in DNA repair, since brain cells have high level of

metabolic activity and use distinct oxidative damage repair

mechanisms to remove DNA damage [51]. We also ob-

served in Fig. 3 that RAD51C and REV3L circuit activities

derived from the expanded FA pathway are, contrarily to

the results obtained from KEGG FA pathway (Additional

Fig. 3), significantly lower in FA patients than in healthy do-

nors. This observation is coherent with the fact that these

circuits are involved in DNA crosslinking repair during

homologous recombination, a mechanism that has been

demonstrated to be damaged in FA patients [39]. An inter-

esting advantage of using mechanistic pathway models is

that focusing on the pathways and circuits directly related

to the disease hallmarks is straightforward. The analysis of

the FA dataset [30] renders a high number of genes deregu-

lated, which affect more pathways. However, many of the

affected functionalities are consequences of the disease hall-

marks or unrelated to them [52].

Therefore, the mechanistic models of the extended FA

pathway offer the possibility of discovering what protein

Table 2 Differential circuit activity in a comparison of healthy versus FA bone marrow cells. Circuits are named after their effector
nodes (see Fig. 1)

CIRCUIT Activation Statistic p-value FDR adj. p-value

RAD51 UP 0.615 0.558 0.659

MLH1-PMS2 UP 2.400 0.016 0.067

REV3L DOWN −3.789 3.917 × 10−5 5.092 × 10− 4

RAD51C DOWN − 1.924 0.056 0.162

RPA* UP 3.412 6.923 × 10−4 4.500 × 10−3

FANCM-STRA-FAAP24 UP 1.885 0.062 0.162

Fig. 3 Observed distribution of circuit activities in the comparison between healthy and FA bone marrow cells
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Fig. 4 Observed distribution of circuit activities in blood, a tissue affected by the disease, two tissues with a high rate of cell replication (skin and
gastrointestinal), where DNA reparation is expected to play a relevant role and another tissue with low rate of cell replication (brain)

Fig. 5 Distributions of the cross-validation of the relevance values for the top 50 most relevant genes ordered by their mean. Above the relevance
value of 0.006 the relevance rendered by the ML procedure and the means obtained from the cross-validation are consistent. Then this value is taken
as a threshold
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Fig. 6 the distribution of the R2 score for each signaling circuit of the FA pathway across all the training/test splits. The R2 score goes from
-infinite to 1, where 0 represents a model that always predicts the mean for each task and a perfect model has a score of 1

Table 3 List of most relevant genes (relevance > 0.006) obtained by the model. Drug IDs in bold are approved for use according to
DrugBank database

GENE NAME SYMBOL ENTREZ ID RELEVANCE TARGETING DRUGS (DrugBank ID)

NIMA related kinase 2 NEK2 4751 0.097324 DB07180, DB12010

DNA topoisomerase II alpha TOP2A 7153 0.078623 DB00276, DB00385, DB00444, DB00694, DB00773, DB00970,
DB00997, DB01177, DB01179, DB01204, DB04576, DB04967,
DB04975, DB04978, DB05022, DB05706, DB05920, DB06013,
DB06263, DB06362, DB06420, DB06421

baculoviral IAP repeat containing 5 BIRC5 332 0.052406 DB04115, DB00206, DB05141

centromere protein E CENPE 1062 0.036961 DB06097

polo like kinase 1 PLK1 5347 0.036159 DB06897, DB06963, DB07789

cyclin dependent kinase 1 CDK1 983 0.022697 DB05037, DB06195

glutamate ionotropic receptor NMDA
type subunit 1

GRIN1 2902 0.019528 DB01931, DB04620, DB05824, DB06741, DB09409, DB09481

cholinergic receptor nicotinic beta 2
subunit

CHRNB2 1141 0.013228 DB05855

synaptosome associated protein 25 SNAP25 6616 0.012799 DB00083

enhancer of zeste 2 polycomb repressive
complex 2 subunit

EZH2 2146 0.012543 DB12887, DB14581

methylenetetrahydrofolate dehydrogenase,
cyclohydrolase and formyltetrahydrofolate
synthetase 1

MTHFD1 4522 0.012111 DB00116, DB02358, DB04322

thymidylate synthetase TYMS 7298 0.009462 DB00293, DB00322, DB00432, DB00440, DB00544, DB00642,
DB01101, DB05116, DB05308, DB05457, DB07577, DB08478,
DB08479, DB08734, DB09256

serpin family E member 1 SERPINE1 5054 0.009206 DB05254

cytochrome c oxidase subunit I COX1 4512 0.008027 DB09140

retinoic acid receptor alpha RARA 5914 0.007607 DB00523, DB00799, DB00982, DB04942, DB05785

sodium voltage-gated channel alpha
subunit 2

SCN2A 6326 0.006728 DB13520

kinesin family member 11 KIF11 3832 0.006366 DB03996, DB04331, DB06040, DB07064, DB08032, DB08033,
DB08037, DB08198, DB08239, DB08244, DB08246, DB08250
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activities potentially affect the different pathway activities

that trigger FA hallmarks, which provide a mechanistic link

between such proteins and the disease phenotype. How-

ever, finding these relationships constitutes a complex

problem that involve multiple variables (here KDT pro-

teins) to predict multiple outputs (here signaling circuit ac-

tivities related with DNA repair, a FA hallmark) that can be

formulated as multi-output regression problems (MOR),

also called multi-task learning or vector valued regression.

MOR is a fundamental problem in machine learning as it

deals with the ability to predict multivariate responses with

a single model, instead of learning one model per output,

the classic single output regression (SOR) scenario, e.g.

conventional univariate regression. The MOR scenario has

several advantages over SOR: on the one hand, contrarily

to the case of SOR, where each variable to predict is treated

as independent (uncorrelated), in MOR, the variables to

predict, the circuit activities, are correlated, which makes

sense from a biological point of view. In other words, SOR,

requires a different set of hyper-parameters (i.e. a different

model) for each variable, leading to several training/testing/

validation scenarios with different features learned, while in

the MOR learning framework a unique model (only one set

of hyper-parameters) is used to predict all the output vari-

ables (circuits) at once, with the ability to exploit and learn

the shared patterns between them. Therefore, the MOR

scenario provides an ideal framework to properly address

hypothesis from a systems biology point of view given that

it assumes that the response variables, here the different

signaling circuits in the FA pathway are (or can be) inter-

connected. An additional advantage of using mechanistic

models is that, by accurately defining the functional space

of interest (the FA hallmarks described in the FA pathway),

the number of circuits involved in their activity results rela-

tively low, which constitutes a reduction of the dimension-

ality of the output space based on biological knowledge.

Here we used Random Forests (RF) [53], an ensemble of

decision trees that aggregates the output of each estimator

in order to stabilize and improve the prediction power. RFs

and other tree-based ensembles have been proven to be

extremely well suited for interpretable machine learning

across different systems biology scenarios [54]. Tree-

structured methods (TSM) provide a set of interpretable

rules by splitting data into sample/target-wise homogenous

groups and averaging the results. However, the predictive

performance of a single decision tree is subpar when com-

pared to other methods, such as Support Vector Machines,

mostly due to the fact that a tree must make several

sequential choices based on a subset of the data and one

incorrect decision can impact the rest of the sequence, thus

propagating the error. To improve the performance of a de-

cision tree, several strategies have been proposed, the most

notable among them are those based on building an

ensemble of trees, where several trees (from hundreds to

thousands) are fitted on different partitions of the training

data or under different conditions, and then combined in

order to achieve a better prediction capability [55]. On top

of this, RFs are particularly well suited for the analysis of

genomics datasets [56, 57] due to its robustness in scenar-

ios affected by the curse of dimensionality.

Although one key advantage of RFs is its ability to pro-

duce good enough results with minimal hyperparameter

search (given a sufficiently large number of trees are

trained), in some circumstances the hyperparameter space

must be properly optimized in order to obtain a good set

of results [58]. Our problem setup is one of such cases,

where a large number of highly correlated predictor

variables (gene expression) interact with a multivariate

response with many self-interactions (pathway circuit

activities). To overcome such difficulties, we make use of

Tree-structured Parzen Estimator (TPE) [59], a Sequential

Model-based Global Optimization strategy for hyperpara-

meter optimization. The base learners of a RF, the decision

trees, can be easily extended to the multi-output scenario

[60] by introducing a covariance weighting to the splitting

criterion with the aim of finding a representation of homo-

geneous clusters with respect to both the predictor and re-

sponse spaces. This multivariate splitting function leads to

a natural extension of the relevance scores, which main-

tains the interpretability.

Thus, interpretability in TSM methods depends in the

last instance of relevance scores, which are computed for

each input variable (gene expression in our case) by aver-

aging the importance measure (the higher, the better) of

each individual tree. Recent studies [61] have concluded

that, by means of the averaging of relevance technique, RF

could deliver an unreliable importance measure in certain

situations, such as classification problems, where the input

space has many categorical variables, favoring those vari-

ables with a higher number of categories. Although here,

predictor and response variables are continuous, multi-

variate regression is performed instead of classification,

the relevance scores have been validated by studying their

distribution along the repeated k-fold cross-validation

methodology. Figure 5 shows the top 50 gene relevance

distributions, ordered by their mean. The genes found as

relevant have a significant predictive impact on the cir-

cuits as Fig. 6 documents.

By means of the strategy presented here, many of the

problems affecting the analysis of genomic Big Data in a

ML framework can be overcome to fully exploit the dis-

covery potential of genomic big data.

Drugs with a potential new indication for FA

In order to understand what are the general roles played

in the cell by the genes selected as most relevant by the

ML algorithm (see Table 3) we carried out an enrich-

ment analysis. The functional landscape revealed by the
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analysis include Gene Ontology (GO) Biological processes

terms mainly related to cell cycle, specifically to the correct

regulation of spindle formation, chromatin condensation,

centrosome separation and in general, correct mitotic cell

phase transition (see Fig. 7 and Additional File 5 for a de-

tailed description of the terms found). These terms specific-

ally involve processes related to DNA replication, DNA

repair and stress response, which suggests that the activity

of these genes may potentially impact DNA repair cell abil-

ity, by controlling the balance between accumulation of

mutations and apoptosis in the cell, which indirectly also

impacts on tumor predisposition. Interestingly, the rare dis-

eases most associated with relevant genes included Fanconi

anemia, as well as other related diseases such as Baller-

Gerold syndrome (OMIM:218600), Ataxia telangiectasia

(OMIM:208900), Bloom syndrome (OMIM:210900), Filippi

syndrome (OMIM:272440), Congenital aplastic anemia (O

MIM:609135), Meier-Gorlin syndrome (OMIM:224690),

Seckel syndrome (OMIM:606744, OMIM:210600, OMIM:

613676, OMIM:613823, OMIM:614728, OMIM:615807, O

MIM:616777, OMIM:617253, OMIM:614851), cutaneous

melanoma (OMIM:609048). All these diseases share with

FA several of its hallmarks like chromosomal instability

condition or tumor predisposition [62–64].

Among the most relevant gene drug targets (Table 3)

8 proteins targeted by approved drugs, NEK2, TOP2A,

BIRC5, COX1, GRIN1, RARA, SNAP25 and TYMS can

be found, revealing the high potential for therapeutic

targets and candidates for drug repositioning in FA

(Additional File 4) rendered by the ML strategy applied.

Fig. 7 Enrichment analysis with GO terms and rare diseases

Esteban-Medina et al. BMC Bioinformatics          (2019) 20:370 Page 9 of 15



Although a detailed discussion on the nature of the most

relevant targets is out of the scope of this manuscript,

some of the top scored ones deserve to be reviewed for

their potential links to FA.

The most relevant protein, NEK2, is a serine/threo-

nine-protein kinase that regulates mitosis. Its expression

rises during S phase and reach its maximum level in late

G2 phase, just before mitosis. The protein regulates the

correct spindle formation and chromatin condensation,

playing a major role in cell cycle [65]. Indeed, DNA

damage results in G2 arrest due to the drastically

decreasing in NEK2 presence [66]. Indeed, this NEK2

inhibition is dependent of ATM, a protein that, along

with ATR, are master controllers of cell cycle and DNA

repair, the main pathway deregulated in Fanconi Anemia

[67]. NEK2 phosphorylates FANCA, a protein conforming

the FA core and highly associated with Fanconi Anemia dis-

ease [68]. These associations are in line with the expected

results, supporting the robustness and suitability of the

methodology presented here for the discovery of genes and

new therapeutic targets relevant to diseases, FA in this case.

The protein TOP2A is a topoisomerase, a nuclear en-

zyme that binds to the DNA and alters its topologic state

during transcription. It is associated with the initiation of

neoplasms, such as breast and peripheral nerve tumors or

Bloom syndrome, as well as with several anemia disorders

(Anemia due to Adenosine triphosphatase deficiency, Con-

genital dyserythropoietic anemia and Congenital aplastic

anemia) [69]. Regarding its connection with DNA repair,

TOP2A show a consistent high expression in G2, but it is

also highly expressed in late S phase, supporting a role in

regulating entry into mitosis [70]. Besides, topoisomerase-1

and 2A gene copy numbers are elevated in patients

mismatch repair-proficient tumor samples, suggesting that

TOP2A is required to deal with high replication stress [71].

Protein BIRC5, also known as survivin, plays an im-

portant role in apoptosis, being involved in pathways

such as Apoptosis (hsa04210, hsa04215), Hippo signaling

pathway (hsa04390) and specific disease pathways such

as Pathways in cancer (hsa05200) and Colorectal cancer

(hsa05210). Indeed, several studies demonstrate its asso-

ciation with neoplasia and, specifically with colorectal

cancer [72]. Some works suggests that the role of survi-

vin in DNA repair by homologous recombination has a

direct impact in cancer [73]. The gene BIRC5 is a mem-

ber of the inhibitor of apoptosis gene family (IAP), thus

its downregulation promotes apoptotic cell death. One

of the main mechanisms of apoptosis inhibition is due

to its protection of the cell towards the action of cas-

pases. Actually, the mechanism by which the Jak/STAT

pathway specifically triggers one of the survival circuits

of the apoptosis pathway that eventually results in the

disease has previously been described by means of a

mathematical model [52].

The protein coded by GRIN1, Glutamate Ionotropic

Receptor NMDA Type Subunit 1, directly bind thorough

NMDA receptors to their ligands (glutamate in this

case) allowing calcium to enter the cell, thus, promoting

cell activity and proliferation. Interestingly, some studies

associate the deregulation of GRIN1 and other NMDA

receptors with tumor formation [74].

TYMS (Thymidylate Synthetase) protein plays a critical

role in DNA replication and repair [75]. Mutations in its

enhancer region, resulting in an overexpression of TYMS,

are associated with several cancers and response to chemo-

therapy [76]. Interestingly, chemotherapeutic agents target-

ing TYMS, and reducing its expression, have grade 1

anemia as secondary effects, suggesting that deleterious

mutations in this gene may produce anemia [77]. Some au-

thors have described that HDAC inhibits both TYMS and

BIRC5 (one of the most relevant proteins found by our

model), suggesting an indirect relation between both pro-

teins [78]. But not only with BIRC5, a recent study showed

a non-canonical interaction between TYMS and FANCD2,

a protein belonging to FA pathway [79].

Gene COX1 (Mitochondrially Encoded Cytochrome C

Oxidase I) codes for the subunit 1 of Cytochrome C oxi-

dase, the component of the respiratory chain that catalyzes

the reduction of oxygen to water. Defects in this gene are

associated with Acquired Idiopathic Sideroblastic Anemia

(ORPHA75564), a disease that affects bone, bone marrow

and myeloid tissues, phenotypes also present in Fanconi

Anemia. COX enzymes have a role in response to oxidative

stress, COX-1 is believed to play a constitutive housekeep-

ing role [80] and its inhibition induce apoptosis and lead to

Prostaglandin production induced by ionizing radiation

[81]. In line with this, it has recently been demonstrated

that downregulation of COX1 stimulates mitochondrial

apoptosis through NH-kB signaling pathway [82].

RARA (Retinoic Acid Receptor alpha) protein is in-

volved in regulation of several cell processes, including

cell differentiation, apoptosis and transcription of clock

genes. Mutations in RARA gene, mostly resulting in fu-

sion genes, are associated with abnormality of blood

forming tissues, leukemias and deregulate genes involved

in DNA repair [83]. Recent works have demonstrated in

Escherichia coli that rarA, via its gap creation activity,

generates substrates for post-replication repair pathways,

including homologous recombination and translesion

DNA synthesis [84], both DNA repair pathways are

involved in FA disease mechanism.

With respect to the 81 drugs targeting the most relevant

genes, 55 of them have a description or indication provided

by DrugBank, and 28 are already approved as a therapeutic

option. Of these, 37 (67.27%) drugs are indicated for cancer

treatment (including breast and colorectal cancer, but

mostly, leukemias), most of them have antineoplastic ef-

fects (23, 38.33%), including chemotherapeutic agents. The
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remaining drugs are indicated for a variety of conditions,

including infections (viral or bacterial), hypertension, neu-

ropathies, Alzheimer, schizophrenia or rheuma, acting as

antinflammatory, antipsychotic, antibacterial or antiviral.

Most of the obtained drugs impact in the ability of the cell

to perform correct replication and division.

The availability of in vivo and in vitro models for FA

[68, 85–87] opens the door to validations of some of

these drugs.

Future directions

We have demonstrated that the use of circuit activities

with a functional meaning in the context of MOR can

efficiently discover proteins with an influence over hall-

marks of the disease. When these proteins are targets of

known drugs, they are potential candidates for repurpos-

ing. Actually, systems biology inspired approaches have

demonstrated to be superior to conventional reduction-

istic approaches for drug discovery [88], and especially

for drug repurposing [89, 90]. However, training the sys-

tem with expression in normal tissue is a quite general

approach than could be complemented with other po-

tentially interesting data. For example, the Connectivity

Map [91] contains 1 million profiles of cell liens treated

with different drugs and has been successfully used for

drug repurposing using network analysis [92].

On the other hand, there is an extraordinary activity in

deep neural networks in the field of bioinformatic appli-

cations [93–96], which opens the possibility of develop-

ing interpretable deep models in the near future.

Conclusions

We have demonstrated how a mechanistic model, which

provide a definition of cell functionalities and outcomes

that account for the phenotype of the disease, can be

used in combination with ML methods and genomic big

data available to discover proteins that might have influ-

ence over such disease-related cell functionalities and,

most likely, on the phenotype of the disease. Depending

on the specific molecular mechanism of the disease and

the type of influence, the molecules found can be con-

sidered therapeutic targets.

Building an interpretable model makes possible under-

standing how the model learns and, consequently, a

disease-centric learning framework can be built. In this

way, many of the problems affecting the analysis of gen-

omic data in a ML framework can be overcome to fully

exploit the discovery potential of such Big Data.

Methods

Data

The FA pathway (hsa03460) was obtained from KEGG.

The list of FA genes (Table 4) was taken from the Orphanet

[97] database (ORPHA:84).

A gene expression microarray study to identify differ-

ences at the transcription level in bone marrow cells be-

tween normal volunteers and FA patients [30] was

downloaded from GEO (GSE16334) and used to check

the performance of the expanded FA disease map model

in a real scenario.

Gene expression data from 53 non-diseased tissue sites

across nearly 1000 individuals, more than 11.000 sam-

ples and about 20.000 gene expression measurements

each, were downloaded from the GTEx Portal [98]

(GTEx Analysis V7; dbGaP Accession phs000424.v7.p2).

Genes that are target of approved drugs were taken

from the DrugBank [35] database (Version 5.1.2). A total

of 965 known drug target (KDT) genes targeted by a

total of 7122 drugs were considered in this study (see

Additional File 1). Some of these genes may potentially

affect the whole FA pathway or some of their circuits,

affecting in consequence, to the cell functionalities trig-

gered by the affected circuits.

RNA-seq data processing

After constructing the gene expression matrix for all

samples, the following pipeline was applied: 1) Trimmed

mean of M values (TMM) normalization (edgeR pack-

age) [99] was applied followed by a 2) Logarithm trans-

formation (apply log(matrix+ 1)), then 3) Truncation by

the quantile 0.99 (all values greater than quantile 0.99

are truncated to this value, all values lower than quantile

0.01 are truncated to this other value) and finally 4)

Quantiles normalization (preprocessCore package) [100].

Mechanistic model of cell functionality

The normalized gene expression data was rescaled from

the range of variation to 0–1 interval range [max(matrix)

= 1, min(matrix) = 0]. The Hipathia method [21], as im-

plemented in the Hipathia Bioconductor package [48],

was used to estimate signaling circuit activities within the

expanded FA pathway from the corresponding normalized

gene expression values. The Hipathia method uses a Wil-

coxon test was used to assess differences in pathway activ-

ity between controls and FA samples [21].

Machine learning

Here, a Multi-Output Random Forest (MORF) regressor

that predicts the circuit activity across the whole disease

pathway has been implemented using the scikit-learn

general Machine Learning library [101]. In the learning

framework used, the multiple dependent variables that

conform the disease environment are modeled in a “all

at once” fashion, i.e. each signaling circuit activity in the

expanded FA pathway is a target/output variable,

whereas each expression value of a KDT gene is an input

(Multiple Input Multiple Output). In order to find a

“quasi-optimal” set of hyperparameters for our MORF
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model, we have implemented an optimization strategy on

top of scikit-learn [101] and hyperopt [102]. Since the best

hyperparameters to fit the data are problem-dependent

[103], the hyperparameter space is explored by means of

the TPE [59] method, where each choice of hyperpara-

meters is a “configuration” in the original algorithm. A glo-

bal R2 score averaged across a K-fold cross-validation

partition of the data (k = 10) is used as objective function.

Finally, to evaluate the performance of the model in an un-

biased way, the previously found optimal hyperparameters

were fixed and a repeated (N = 10) k-fold cross-validation

is performed.

The same cross-validation can be used to obtain a dis-

tribution of the relevance values that can be used to set

a threshold beyond which the relevance values obtained

by the ML keep their positions in the rank of relevance

(have a stable value).

Enrichment analysis of most relevant genes

Those genes with a relevance confirmed by the cross-

validation procedure were considered relevant and were

used to perform an enrichment analysis to evaluate their

possible impact on the circuits of the FA pathway

triggering FA hallmarks. An enrichment analysis was

performed by using enrichR algorithm using GO Bio-

logical Processes as well as Rare Diseases with AutoRIF

(Automatic Reference into Function) and GeneRIF (Gene

Reference into Function) from ARCHS4 mining of pub-

licly available data tool to predict enrichment in rare dis-

eases terms [104–106].

Additional files

Additional file 1: Table S1. All gene drug targets studied obtained
from DrugBank database version 5.1.2, ranked by their relevance obtained
from MORF modelling. First column: gene name; second column: gene
symbol: third column: Entrez ID; fourth column: relevance; fifth column:
DrugBank ID of the drugs targeting the gene. (XLS 200 kb)

Additional file 2: Table S2. Genes in the KEGG FA pathway (hsa03460).
First column: gene name; second column: KEGG ID; third column: gene
symbol; fourth column: ENSEMBL ID; fifth column: OMIM ID. (DOCX 19 kb)

Additional file 3: Figure S3. Distribution of circuit activities in the FA
KEGG pathway. Distribution of activities in the seven circuits of the FA
KEGG pathway observed in the comparison between healthy and FA
bone marrow cells. (TIF 218 kb)

Additional file 4: Table S4. Drugs targeting most relevant genes
(relevance> 0.005) in Fanconi Anemia extended pathway, obtained from
DrugBank database. First column: DrugBank ID; second column: drug
name; third column: drug description; fourth column: drug status; sixth
column: drug Indication. (XLSX 69 kb)

Table 4 Fanconi Anemia ORPHANET (ORPHA:84) database affected genes

GENE NAME SYMBOL ENTREZ ID ENSEMBL ID OMIM

Fanconi Anemia complementation group F FANCF 2188 ENSG00000183161 603,467

Fanconi Anemia complementation group C FANCC 2176 ENSG00000158169 227,645

Breast cancer type 2 susceptibility protein BRCA2 675 ENSG00000139618 114,480

Breast cancer type 1 susceptibility protein BRCA1 672 ENSG00000012048 113,705

Fanconi Anemia complementation group E FANCE 2178 ENSG00000112039 600,901

RAD51 recombinase RAD51 5888 ENSG00000051180 114,480

Fanconi Anemia complementation group D2 FANCD2 2177 ENSG00000144554 227,646

Fanconi Anemia complementation group M FANCM 57,697 ENSG00000187790 609,644

DNA repair protein RAD51 homolog 3 RAD51C 5889 ENSG00000108384 602,774

Ubiquitin-conjugating enzyme E2 T UBE2T 29,089 ENSG00000077152 610,538

Fanconi Anemia complementation group B FANCB 2187 ENSG00000181544 300,514

Fanconi Anemia complementation group G FANCG 2189 ENSG00000221829 602,956

Fanconi Anemia complementation group I FANCI 55,215 ENSG00000140525 609,053

Fanconi Anemia complementation group L FANCL 55,120 ENSG00000115392 608,111

partner and localizer of BRCA2 PALB2 79,728 ENSG00000083093 114,480

SLX4 structure-specific endonuclease subunit SLX4 84,464 ENSG00000188827 613,278

Ring finger and WD repeat domain 3 RFWD3 55,159 ENSG00000168411 614,151

BRCA1 interacting protein C-terminal helicase 1 BRIP1 83,990 ENSG00000136492 114,480

ERCC excision repair 4, endonuclease catalytic subunit ERCC4 2072 ENSG00000175595 133,520

Mitotic arrest deficient 2 like 2 MAD2L2 10,459 ENSG00000116670 604,094

X-ray repair cross complementing 2 XRCC2 7516 ENSG00000196584 600,375

Fanconi Anemia complementation group A FANCA 2175 ENSG00000187741 227,650
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Additional file 5: Table S5. Enrichment analysis of the most relevant
genes. First column: term detected in the enrichment analysis; second
column: overlap; third column: p-value; fourth column: adjusted p-value;
fifth column: Z score; sixth column combined score; seventh column
genes annotated to the term. (XLSX 199 kb)
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