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We experimentally investigate the effects of noise on the adiabatic and cyclic geometric phase, also termed

the Berry phase. By introducing artificial fluctuations in the path of the control field, we measure the geometric

contribution to dephasing of an effective two-level system for a variety of noise powers and different paths. Our

results, measured using a microwave-driven superconducting qubit, clearly show that only fluctuations which

distort the path lead to geometric dephasing. In a direct comparison with the dynamic phase, which is path

independent, we observe that the Berry phase is less affected by noise-induced dephasing. This observation

directly points towards the potential of geometric phases for quantum gates or metrological applications.

DOI: 10.1103/PhysRevA.87.060303 PACS number(s): 03.67.Lx, 03.65.Vf, 42.50.Pq, 85.25.Cp

Noise is ubiquitous in physical systems—be it thermal noise

in electrical circuits [1], electronic shot noise in mesoscopic

conductors [2], vacuum noise of radiation fields [3], or low-

frequency (1/f -) noise in solid-state systems [4,5]. It prevents

quantum coherence from persisting on long time scales and

hinders the development of a large-scale quantum computer

[6,7]. Significant effort has thus been put into concepts and

methods to control and maintain fragile quantum superposition

states [8]. The geometric phase is a promising building block

for noise-resilient quantum operations [9] and its properties

in open quantum systems have been actively investigated in

theory [10–17]. There are, however, only a few experiments

studying the contribution to dephasing stemming from the

Berry phase [18–20].

In this Rapid Communication, we study the physics of a

two-level system, a qubit, in an effective field B, described by

the Hamiltonian

H = h̄σ · B/2, (1)

where σ = (X,Y,Z) are the Pauli matrices and B =
(Bx,By,Bz) is given in units of angular frequency. If the field is

adiabatically and cyclically varied in time, the ground |0〉 and

excited state |1〉 of the two-level system acquire a geometric

phase γ0 = ±A/2, where A is the solid angle (with respect

to the origin B = 0) enclosed by the path traced out by B(t)

[21]. This type of geometric phase is known as Berry phase.

Here, we consider an effective field evolving along a circular

path with radius Bρ =
√

B2
x + B2

y at constant Bz and with

precession period τ (Fig. 1). This path encloses a solid angle

A = 2π (1 − cos ϑ), with the polar angle ϑ = arctan(Bρ/Bz).

In realistic situations, the field components fluctuate about

their mean values and these fluctuations induce dephasing.

Changes in field strength will cause dynamic dephasing, while

modifications in solid angle will cause geometric dephasing.

Clearly, noise directed in azimuthal direction [angular noise,

Fig. 1(b)] does not modify the solid angle and thus, no

geometric dephasing is expected. In contrast, noise directed in

radial direction [radial noise, Fig. 1(c)] will lead to geometric
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contributions to dephasing. By artificially adding noise in the

radial (or azimuthal) direction to the field in our experiment, we

are thus able to maximize (or minimize) geometric dephasing

and investigate its properties for different angles ϑ and noise

powers.

To model realistic uncorrelated noise with a given band-

width, we generate fluctuations conforming to Ornstein-

Uhlenbeck processes, i.e., stationary, Gaussian, and Marko-

vian noise processes with a Lorentzian spectrum of bandwidth

Ŵi and noise power Pi (i = ρ,ϕ). In the experiment, the

precession frequency and the noise bandwidth are chosen to

be small compared to the amplitude B = |B| of the effective

field, i.e., 1/τ,Ŵi ≪ B, to study adiabatic processes. In this

case, we can derive the variance of the geometric phase from

a perturbative treatment. To first order in the noise variations

δϕ and δρ, the deviation δγ of the Berry phase is [11]

δγ = −
π

τ

∫ τ

0

sin ϑδϑdt. (2)

As the ensemble average of δγ vanishes, the mean Berry phase

is identical to γ0. By expressing the effective field in cylindrical

coordinates, B = (Bρ cos ϕ,Bρ sin ϕ,Bz), the variations in the

polar angle can be written as δϑ = (cos ϑ/B)δρ, and the Berry

phase is found to have a Gaussian distribution with variance

σ 2
γ = 2Pρ

(

π cos ϑ sin ϑ

Bτ

)2
Ŵρτ − 1 + e−Ŵρτ

Ŵ2
ρ

. (3)

As expected, to first order only variations δρ in radial direction

contribute to σ 2
γ .

Geometric phases have been observed in a variety of

superconducting systems [22–25]. Here, we use the two

lowest energy levels of a superconducting artificial atom

of the transmon type [26] embedded in a transmission

line resonator—an architecture known as circuit quantum

electrodynamics [27,28]. Note, however, that our findings

are independent of the specific implementation, and apply

to any system in which Berry phases can be observed. The

qubit is manipulated using microwave fields applied via a

capacitively coupled charge bias line. Using spectroscopic

measurements, we have determined the maximum Josephson

energy EJ,max/h = 11.4 GHz, the charging energy EC/h =
0.26 GHz, and the coupling strength g/2π = 360 MHz of

the qubit to the resonator. The experiments are performed
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FIG. 1. (Color online) (a) The path of the effective field describes a circle in the Bx-By plane at constant Bz. Noise in x and y directions with

noise powers Px and Py can be decomposed into noise in ρ and ϕ directions with noise powers Pρ and Pϕ . (b) and (c) The path of the effective

field without noise (dashed lines lying in the plane with constant Bz) is drawn alongside the same path exposed to two kinds of noise (solid

lines): angular noise in panel (b), where the velocity of precession is proportional to line thickness, and radial noise in panel (c). The projection

of the paths on the unit sphere |B| = 1 is also shown. In panel (b), the difference in solid angle due to noncyclic evolution is highlighted by a

stripe pattern.

at a qubit transition frequency ω01/2π = 4.68 GHz, with an

energy relaxation time T1 = 2.65 μs, a phase coherence time

T2 = 1.35 μs, and a spin-echo phase coherence time T echo
2 =

2.15 μs. The sample is operated in a dilution refrigerator at

a base temperature of 20 mK. In the dispersive regime, when

ω01 is far detuned from the resonator mode, the Hamiltonian

of the driven system is [22]

Heff = h̄(X� cos ϕ + Y� sin ϕ + Z)/2 (4)

in a reference frame which rotates at the drive frequency ωd .

This Hamiltonian is identical to the one in Eq. (1) with an

effective field B = (� cos ϕ,� sin ϕ,). It is determined by

amplitude �, phase angle ϕ and detuning  = ω01 − ωd of

the drive.

A Ramsey-type interferometric sequence containing a spin-

echo pulse to cancel the dynamic phase [18,29] is employed

to measure the Berry phase acquired by the two-level system

[see Fig. 3(a)]. A series of resonant pulses (of frequency ω01)

implement the spin-echo sequence, while off-resonant pulses

(of frequency ωd = ω01 − ) guide its state adiabatically

along the paths sketched in Figs. 1(b) and 1(c).

All presented Berry phases are measured at a detuning  =
−50 MHz. The acquired Berry phase is varied from 0 to 6.9 rad

by increasing the solid angle A via the drive amplitude �. The

strength of the noise is quantified by the normalized noise am-

plitude sρ =
√

Pρ/Bρ for radial noise and by sϕ =
√

Pϕ for an-

gular noise. These definitions ensure that fluctuations in radial

or azimuthal directions have identical amplitudes if sρ = sϕ .

The phases with noise are obtained by repeating the experi-

ment with different noise patterns. Identical noise patterns are

used before and after the spin echo pulse to ensure cancellation

of the dynamical phase. The pulse sequences, consisting of two

intermediate-frequency quadratures x and y, are numerically

created: Noise conforming to an Ornstein-Uhlenbeck process

is generated and added to the pulses describing the noiseless

evolution of the field. An arbitrary waveform generator

synthesizes these quadratures, which are up-converted to a

microwave-frequency signal using an in-phase–quadrature

(IQ) mixer. After the manipulation sequence, the state of

the qubit is determined in a dispersive readout [30] through

the resonator and reconstructed using state tomography [31].

To overcome noise in the detection, each individual noise

realization is measured 106 times.

Histograms of the measured Berry phases for four solid

angles are shown in Figs. 2(a)–2(d). For radial noise, the Berry

phases of the individual noise realizations have—as discussed

above—a Gaussian distribution with a mean equal to the Berry

phase γ0 without noise. For angular noise, we observe that

the widths of the phase distributions are, as expected, almost

zero. The expectation values of the Bloch-vector components

〈X〉 and 〈Y 〉 for individual noise realizations are distributed

on the equatorial plane of the Bloch sphere [Figs. 2(b) and

2(d)], reflecting the spread of the measured phases. They lie

on a circle with radius ν0 ≈ 0.80 < 1, which is a result of the

intrinsic noise present in the system.

Distributions akin to those shown in Figs. 2(b) and 2(d)

are used to compute the coherence ν =
√

〈X〉2 + 〈Y 〉2 =
e−(4σγ )2/2 versus solid angle [Fig. 2(f)]. In this plot and

all subsequent plots, the coherences are normalized to a

measurement without added noise whereby the intrinsic noise

is eliminated. We observe that for radial noise the coherence

decreases and then stabilizes as a function of solid angle,

while it is approximately unity for angular noise. This is

an immediate consequence of the nature of the Berry phase:

Radial noise modifies the solid angle A, causing dephasing

and a decrease in coherence. In contrast, angular noise hardly

affects A.

For both kinds of noise, the difference γ = γ − γ0 �
0.2 rad in the mean Berry phase with and without noise is very

small [Fig. 2(e)]. The measured coherences agree well with

Eq. (3) and numerical results obtained by solving the unitary

dynamics of the Hamiltonian in Eq. (4). The measured Berry

phase γ0 itself (not shown) agrees well with the prediction for

a transmon-type qubit [25], with a discrepancy of 0.20 rad

across all solid angles for the data in Figs. 2(e) and 2(f).

To illustrate the effects of noise quantitatively, both the

Berry phase and the dynamic phase are measured for varying

noise amplitudes s. For the Berry phase, we observe that the

coherence follows the expected dependence e−(4as)2/2 for radial

noise [Figs. 3(c) and 3(e)] and that angular noise has a lesser

effect on the coherence than radial noise. For both types of

noise, and for normalized noise amplitudes �0.5, the Berry

phase with and without noise have the same value.

The coherence of the dynamic phase δ can be computed

perturbatively, in the same way as for the Berry phase. Using

the deviation
∫ τ

0
δB dt/h̄ =

∫ τ

0
sin ϑ δρ dt/h̄ of the dynamic

060303-2
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FIG. 2. (Color online) (a) Histograms of Berry phases and

(b) measured expectation values 〈X〉, 〈Y 〉 of 600 realizations of

radial noise for each solid angle A = π/16,3π/16,8π/16, and

15π/16 (indicated in red, orange, purple, and black online). Fits

of a Gaussian to the measured histograms are also shown in panel

(a). The circle in panel (b) indicates unit coherence. (c) and (d)

Measurements analogous to panels (a) and (b) for angular noise.

(e) and (f) Coherence ν and phase difference γ as a function

of solid angle A for radial noise (filled circles) and angular noise

(open circles). The experimental data points are shown alongside the

theory curve (solid lines) and the results from numerical simulations

(the shaded area indicates the standard deviation about the mean).

Data in panels (a)–(f) are recorded at fixed noise bandwidths Ŵi =
10 MHz, normalized noise amplitudes si = 1/15, and evolution time

τ = 100 ns.

phase, one finds its mean δ and its variance

σ 2
δ = 2Pρ(sin ϑ)2 Ŵρτ − 1 + e−Ŵρτ

Ŵ2
ρ

. (5)

Only radial variations contribute to σ 2
δ and cause the dynamic

phase to have a Gaussian distribution around the noiseless

dynamic phase δ0. Noise in azimuthal direction does not

change the magnitude of the field and hence does not cause

fluctuations in the dynamic phase.

The coherence of the dynamic phase was recorded using

a spin-echo sequence containing a single off-resonant pulse
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FIG. 3. (Color online) (a) and (b) Sketches of the pulse schemes

used to measure (a) Berry and (b) dynamic phases with radial noise.

Pulses applied along the x and y quadratures are shown as solid

and dashed lines, respectively. The readout pulse (see text) concludes

the sequence after t ≈ 400 ns. (c) and (d) Experimentally measured

coherence ν of the Berry phase and phase difference γ = γ − γ0

as a function of normalized noise amplitude s for radial noise (filled

circles) and angular noise (open circles), plotted on a logarithmic

scale. For every value of s, 300 noise realizations were measured

with noise bandwidth Ŵ = 10 MHz at solid angle A = 7π/16 and

evolution time τ = 100 ns. The continuous line is computed from

Eq. (3). The dashed line is a fit to the function exp(−(4as)2/2) with

fitting parameter a = 0.25 ± 0.01. (e) and (f) Quantities analogous

to panels (c) and (d) but for the dynamic phase, with δ = δ − δ0

and fitting parameter a = 0.60 ± 0.03.

[Fig. 3(b)], and therefore its variance was scaled by a factor

to allow for direct comparison with the Berry phase. From

Fig. 3(e), it is evident that the coherence of the dynamic phase

starts decreasing at weaker noise amplitudes than the Berry

phase, demonstrating the superior noise resilience of the Berry

phase. It is also observed that the mean dynamic phase δ starts

deviating from δ0 already at s ≈ 0.2. The measured coherences

for both dynamic and Berry phase are in very good agreement

with the predictions based on Eqs. (3) and (5) for radial noise.

For angular noise, fits to e−(4as)2/2 agree with the observed

behavior of the coherences. Indeed, while according to Eqs. (3)

and (5) the coherences are expected to be insensitive to angular

060303-3
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FIG. 4. (Color online) (a) Standard deviation σγ of the Berry

phase (dots) and σδ of the dynamic phase (squares) as a function of

evolution time τ , based on 300 noise realizations with Ŵ = 10 MHz

and sρ = 1/15. The solid lines result from calculations based on

Eqs. (3) and (5). The vertical dashed line approximately separates the

nonadiabatic from the adiabatic regime. (b) Coherence ν vs evolution

time τ of the Berry phase (dots) and the dynamic phase (squares).

noise to first order, nonadiabatic and higher-order effects [32]

still affect the coherences. In particular, the evolution of the

field can be noncyclic [33], which adds a small contribution to

dephasing [11] [Fig. 1(b)].

Finally, we directly compare the coherence of dynamic

and Berry phases in the presence of radial noise. The Berry

phase γ is recorded at a solid angle A = 0.37π , where the

effect of noise on γ is strongest. For long evolution times

τ , the Berry phase is more resilient against radial noise than

the dynamic phase because its variance σ 2
γ decreases with

evolution time [18], whereas the variance of the dynamic

phase σ 2
δ grows linearly in evolution time [cf. Eqs. (3) and (5),

as well as Fig. 4]. Both phases have equal coherences when

σ 2
γ = σ 2

δ , i.e.,

τ = π cos(ϑ)/B, (6)

and the dynamic phase is more coherent than the Berry phase

only for even shorter evolution times [τ < 13 ns according

to Eq. (6) and τ < 20 ns according to the experimental data

in Fig. 4]. Note that the variance of the dynamic phase is

independent of the value of the dynamic phase, which is why

it was recorded using the same drive amplitudes as for the

Berry phase gates. The data in Fig. 4 agree with calculations.

The standard deviation σδ of the dynamic phase starts differing

significantly from computed predictions at evolution times

τ � 100 ns, when the recorded phases are spread across 2π

and their variance saturates.

In conclusion, we have demonstrated that the Berry phase

is less affected by noise along the path in parameter space

than by noise perpendicular to it. Given a system with known

noise properties, this can potentially be exploited to realize

noise-resilient geometric operations. Both kinds of noise

leave the mean of the geometric phase unchanged. Shifts

of the mean Berry phase are theoretically expected [12]

but are beyond current experimental precision. We have

also shown that the geometric phase is less affected by deco-

herence than the dynamic phase when evolving adiabatically

(evolution times �1/B). Our results beautifully exemplify

fundamental properties of the geometric phase and serve

as a stepping stone for further investigations of geometric

phases as a resource for quantum computation or for precision

measurements [34–37].
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