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ABSTRACT
With the rapid growth of in-the-wild videos taken by non-specialists,
blind video quality assessment (VQA) has become a challenging
and demanding problem. Although lots of efforts have been made
to solve this problem, it remains unclear how the human visual
system (HVS) relates to the temporal quality of videos. Meanwhile,
recent work has found that the frames of natural video transformed
into the perceptual domain of the HVS tend to form a straight
trajectory of the representations. With the obtained insight that dis-
tortion impairs the perceived video quality and results in a curved
trajectory of the perceptual representation, we propose a temporal
perceptual quality index (TPQI) to measure the temporal distortion
by describing the graphic morphology of the representation. Specif-
ically, we first extract the video perceptual representations from
the lateral geniculate nucleus (LGN) and primary visual area (V1)
of the HVS, and then measure the straightness and compactness
of their trajectories to quantify the degradation in naturalness and
content continuity of video. Experiments show that the perceptual
representation in the HVS is an effective way of predicting subjec-
tive temporal quality, and thus TPQI can, for the first time, achieve
comparable performance to the spatial quality metric and be even
more effective in assessing videos with large temporal variations.
We further demonstrate that by combining with NIQE, a spatial
quality metric, TPQI can achieve top performance over popular
in-the-wild video datasets. More importantly, TPQI does not re-
quire any additional information beyond the video being evaluated
and thus can be applied to any datasets without parameter tuning.
Source code is available at https://github.com/UoLMM/TPQI-VQA.
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1 INTRODUCTION
Recently, video streams have exploded on social media platforms,
and most of them are captured by users in the wild with portable
mobile devices [1, 34, 41]. Compared to videos from professionals,
in-the-wild videos usually suffer from complicated distortion is-
sues such as out of focus, over/under-exposure, and camera shake.
Therefore, it is highly desirable to have an automatic quality assess-
ment to eliminate low-quality videos or improve them during the
acquisition and enhancement process. As these videos do not have
pristine counterparts, a blind video quality assessment (VQA) is
required. Although significant algorithms for blind images quality
assessment (IQA) have been proposed [17, 27, 30, 33, 60], for videos,
the temporal-domain quality is another integral aspect of blind
VQA, since video perception is highly correlated with motion and
temporal variations, leading VQA a more challenging problem.

Up till now, some efforts have been made in modeling the quality
in the temporal domain for VQA. One direct way is to compute
frame-level quality scores and then express their relative impor-
tance over time by applying temporal pooling to these frame-level
quality scores [43, 44, 57]. However, the temporal pooling of spa-
tial quality ignores the motion among frames. The most popular
approach to temporal quality modeling is to deploy regular para-
metric bandpass models of natural scene statistics (NSS), such as 3D
discrete cosine transform (3D-DCT) [20] and 3D mean-subtracted
contrast-normalized (3D-MSCN) coefficients [32, 37], which charac-
terize the perceived quality degradation by predicting the deviation
of the distribution of frame-difference coefficients in the presence
of distortion. However, in-the-wild videos contain authentic and
commonly intermixed distortions, making NSS-based models de-
signed for one specific distortion in each video unsuitable. Inspired
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(a) Video clips with MOS = 4.14 (b) Video clips with MOS = 3.00 (c) Video clips with MOS = 2.16

(d) Quality scores calculated by Curvature [12] (e) Quality scores calculated by our VPT Descriptor

Figure 1: Examples of three video clips from KoNViD-1k dataset. The chart next to the frames is visualized temporal trajectory (the two
principal components) of all frames in the LGN domain. From (a) to (c), the temporal trajectory changes from nearly straight for high quality
to curves formediumquality and to fragments for lowquality. (d) and (e) show the distribution of quality scoresmeasured by the curvature [12]
and the proposed TPQI. In (d), the curves are mixed together and the average scores of the curvature do not have clearly relation with the
MOS values; whilst in (e), the proposed TPQI scores are better separated for different qualities and inversely related to the MOS values.

by standout performance on a wide variety of computer vision
tasks, deep learning-based VQA models [3, 4, 19, 24, 50, 57] have
been proposed to extract content-aware and distortion-sensitive
features to predict the quality of in-the-wild videos. However, most
of them still integrate the frame-wise deep features by some pooling
modules such as gated recurrent unit (GRU) [19] and long short-
term memory (LSTM) [57], making their performance constrained
without effective extraction of motion information for video qual-
ity perception. Although some work has been done on temporal
quality modeling of video, research in this area is still in its infancy.
The great challenge is that it is still unclear how humans perceive
temporal distortion, especially for the in-the-wild videos.

Recent researches have reported the discovery on the straight-
ness of the perceptual representation of natural videos [11, 12]. It
demonstrated that HVS transforms the incoming natural video sig-
nals into more regular representations in the perceptual domains,
which are aligned along straighter trajectories in time. Examples
of temporal trajectories of video clips, which track the perceptual
representation of each frame in HVS along time, are visualized
in Fig. 1(a)-(c) (red point is the two principal components of the

representation and dashed blue line is the temporal trajectory). The
temporal trajectory is close to a straight line for the video with a
high subjective quality score, but degenerates to haphazard curves
for videos with low subjective quality scores. However, although
the discovery has been successfully used to discriminate the natural
and unnatural videos, i.e. artificial and naturalistic sequences, the
quality scores, predicted based on the curvature index induced in
the temporal trajectories [12], do not have clear relation with the
human subjective scores for VQA (Fig. 1(d)). We suspect that this
may be due to only measuring the extent of straightness of the
temporal trajectory is not enough for VQA.

In this paper, we make the hypothesis that video distortions that
harm the perceived quality of the videos will result in curved repre-
sentations in HVS and propose a generalized and completely blind
Temporal Perceptual Quality Index (TPQI), through measuring
the graphical morphology of the temporal representations of the
videos in HVS (Fig. 1(e)). Specifically, we first employ two compu-
tational models of HVS simulating the neural activity in the lateral
geniculate nucleus (LGN) and primary visual area (V1) to transform
the videos into their neural temporal trajectory representations.
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Then, we design a video perceptual trajectory (VPT) descriptor to
quantify the temporal distortions. Considering that the distortions
affect both the orientation and the fragmentation of the temporal
trajectory, the VPT descriptor integrates two morphology elements
into the measurement, i.e. change of the direction and distance of
the change. Experiments on various combinations of the elements
are conducted to determine the final VPT descriptor.

We have evaluated the proposed TPQI on four popular in-the-
wild video datasets and the results demonstrate that the proposed
TPQI achieves almost the same performance as the well-established
spatial quality index, NIQE [33], indicating that the temporal qual-
ity index can be the same effective as the spatial quality index for
VQA. Moreover, the representations of HVS in TPQI outperform the
deep features from convolutional neural networks (CNNs), includ-
ing Alexnet [16], VGG [39], and Resnet [9], which are considered
as candidate models for biological vision, showing that the VPT
descriptor can well represent the neural perception of the temporal
distortions. By integrating with NIQE, we can achieve state-of-the-
art performance in the area of completely blind VQA, and even
better than some of the opinion-aware blind VQA methods. The
main contributions of our paper can be summarized in threefold:

• We exploit to characterize the complex temporal distortions of
in-the-wild videos in the perceptual domain and demonstrate
that the graphical morphology of the temporal trajectory
representation can be treated as the indication of temporal
distortion.

• We propose a generalized and completely blind Temporal
Perceptual Quality Index (TPQI) to measure the perceived
temporal quality of video data by quantifying the loss of
straightness and compactness of the temporal trajectory with
a newly designed video perceptual trajectory descriptor.

• We show for the first time that only the proposed TPQI can
achieve VQA performance comparable to that of the spatial
quality index and combining the spatial quality index and
TPQI can achieve top performance over popular in-the-wild
video datasets.

2 RELATEDWORK
2.1 Video Quality Assessment
Early VQA methods were specifically designed for synthetic dis-
tortions (e.g., Gaussian blur, compression, and transmission arti-
facts) based on statistical characteristics of the video, such as frame
difference [37, 38], gradient [26], and optical flow [28, 51]. The
most popular algorithms deploy perceptually relevant low-level
features captured from natural bandpass statistical models. Typical
approaches include Video-BLIINDS [38], which uses a combination
of temporal features from block-based motion estimation and DCT
coefficients computed from frame differences, and spatial features
from NIQE [33], GM-LOG [54], which computes the joint statis-
tics of gradient magnitude and Laplacian of Gaussian responses in
the spatial domain, DESIQUE [61] in log-derivative and log-Gabor
domains, and HIGRADE [17] in LAB color-transformed gradient
domain. These methods estimate the deviations in the statistical
distribution as a perceptual quality metric and have achieved good
performance in quality assessment of synthetic distorted videos.

However, their performance decreases significantly when applied
to in-the-wild videos containing multiple unknown distortions.

Quality assessment of in-the-wild videos has attracted great at-
tention given its potential broader practical utility. Attempting to
capture the unknown and highly diverse distortions as possible as
they can, recently proposed models used dozens of such perceptu-
ally relevant features and achieved state-of-the-art performance on
existing in-the-wild datasets. For example, VIDEVAL [44] is a bag
of features-based blind VQA model on KoNViD-1k and YouTube-
UGC, which uses a feature ensemble and selection procedure on
top of existing efficient blind VQAmodels. RAPIQUE [45] combines
and exploits the advantages of both quality-aware scene statistics
features and semantics-aware deep convolutional features, design-
ing a general and efficient spatial and temporal bandpass statistical
model for VQA. Instead of extracting handcraft features, deep VQA
methods [4, 19, 48, 49, 56, 58] use CNNs to extract rich semantic fea-
tures and run regression on the extracted features to predict video
quality. For example, MLSP-FF [8] extracts frame-wise features
with Inception-ResNetv2 model [42] and some works [48, 56, 58]
introduce 3D-CNN instead of 2D-CNN to extract more efficient
temporal features. Along with more powerful feature extraction,
deep VQA methods attempt to achieve the temporal-memory effect
by some temporal regression modules, such as recurrent neural
network (RNN) [4], GRU [19] and LSTM [48, 58].

2.2 Completely Blind Quality Assessment
Most IQA/VQA methods require a large number of distorted im-
ages or videos with human subjective scores to learn the quality
regression model, which leads to a massive workload in collecting
these annotations. More importantly, it is difficult to collect enough
training samples to cover the numerous distortion types, resulting
in a weak generalization of opinion-aware quality assessment.

A few works have been carried out on completely blind IQA,
i.e. assessing quality without any additional information. Mittal et
al. [31] first proposed a probabilistic latent semantic analysis of the
statistical features of the pristine and distorted image patches and
discovered latent quality factors that can infer a quality score from
the test image patches. Later, they [33] proposed the Natural Image
Quality Evaluator (NIQE), which infers the quality of a test image
bymeasuring the distance between its Multivariate Gaussian (MVG)
model learned from a set of local features from the image and the
MVG model learned from the pristine natural images. Inspired by
NIQE, Zhang et al. [59] replaced the local features with various NSS
features and computed them from a collection of pristine image
patches instead of the whole image. Liu et al. [23] proposed an
unsupervised NR-IQA model based on the free energy principle to
quantify the image quality in terms of structure, naturalness, and
perceived quality changes during the degradation of test image.

As for the completely blind VQA, Mittal et al. [32] proposed
Video Intrinsic Integrity and Distortion Evaluation Oracle (VIIDEO),
which was built on an NSS model of consecutive frame differences
and measured departures from the statistical regularities in natu-
ral videos. Kancharla et al. [13] assumed that the increase in the
straightness of perceptual domain representation was positively
related to MOS values and performed a linear prediction in the LGN
domain to model temporal distortions by the prediction errors.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY L. Liao et al.

... ... 

...

...

VPT
Descriptor

VPT
Descriptor

NIQE

QV1

QLGN

Spatial Quality

0.5

0.5

QOverall

QNIQE

LGN

V1

VPT
Descriptor

Trajectory of LGN Representation

PCA

PCA

Trajectory of V1 Representation

QTPQI

Temporal Quality

..
. 

..
. 

Figure 2: Framework of the proposed completely blind VQA method. Each individual video frame is first transformed and obtained the
temporal trajectory in perceptual domain, i.e. LGN and V1 domains. A video perceptual trajectory descriptor is used to quantify temporal
quality from both perceptual domains. The fusion of the temporal and spatial quality is used to predict the overall quality estimation.

3 THE PROPOSED METHOD
We propose a video quality assessment algorithm based on the per-
ceptual domain representation of the video extracted using band-
pass models of the visual system, aiming to explore the mapping
from the temporal trajectory of a video to the subjective percep-
tion of temporal quality. The framework of the proposed method is
shown in Fig. 2. We first transform each individual video frame into
the perceptual domain, i.e. LGN and V1 responses in this work, and
obtain the temporal trajectory of the video by arranging the per-
ceptual features along time. Then, we propose a video perceptual
trajectory descriptor (VPT) to jointly measure the straightness and
compactness of the trajectory, with the former modeling the distor-
tions from naturalness of video and the latter modeling the content
continuity between video frames. The temporal perceptual quality
index (TPQI) is the average score from the VPT descriptors on both
the LGN and V1 features. Finally, we combine the proposed TPQI
with a spatial quality metric to predict the overall video quality.

3.1 Perceptual Domain Representation of HVS
We first extract the perceptual domain representations simulating
the responses of LGN and V1, which are vital regions of the HVS
for visual information processing. Specifically, LGN performs lumi-
nance and contrast gain control, while V1 is known to be tuned to
different orientations, scales, and frequencies. As stated in [12], the
LGN representation likely straightens natural videos by providing
robustness to local fluctuations in luminance and contrast, whereas
the V1 representation provides straightening by its position- and
phase-invariant properties. We use both representations to mimic
the nonlinear functional properties of the early visual system.

3.1.1 Extracting LGN representation. The LGN model consists of
center-surround filtering followed by local luminance and contrast
gain control operations to simulate the primary nonlinear transfor-
mations performed by the retina and lateral geniculate nucleus [29].
In this work, we employ the LGN blocks as proposed by Laparra
et al. [18]. In this model, the linear components for luminance sub-
traction are implemented using difference of Gaussian (DoG) filters

and a Laplacian pyramid. The non-linearity components perform
contrast gain control to capture the local gain control property
of the LGN neurons, which is achieved by performing a contrast
normalization operation on the output of the linear bandpass filters.
To relieve the tunning of hyper-parameters of the proposed model,
we keep the settings of the LGN model as they are in [13].

3.1.2 Extracting V1 representation. The V1 model aims to trans-
form the visual signal using a set of oriented filters whose responses
are squared and combined over phases to capture the nonlinear
behavior of complex cells in the primary visual cortex (V1) [2].
In this work, we adopt Gabor filters as the simulation model of
V1, motivated by the HVS hypothesis that Gabor filters have a
good approximation of the response of V1 [6]. Specifically, in the
spatial domain, the 2-D Gabor filter is a Guassian kernel function
modulated by a complex sinusoidal plane wave, defined as:

𝑔\ (𝑥,𝑦) =
𝑓 2

𝜋𝛾[
𝑒𝑥𝑝 (−𝑥

′2 + 𝛾2𝑦′2

2𝜎2
)𝑒𝑥𝑝 ( 𝑗2𝜋 𝑓 𝑥 ′ + 𝜙),

𝑥 ′ =𝑥 cos\ + 𝑦 sin\,
𝑦′ = − 𝑥 sin\ + 𝑦 cos\,

(1)

where 𝑓 is the frequency of the sine wave, \ represents the orienta-
tion of the normal to the parallel stripes of the Gabor function, 𝜙 is
phase offset, 𝜎 is the standard deviation of the Gaussian envelope,
and 𝛾 is the spatial aspect ratio specifying the ellipticity of the
support of the Gabor function. The Gabor filters are then used to
convolve with each video frame, and the features from all Gabor
filters are concatenated as the V1 representation of this frame.

3.1.3 Dimensionality reduction of the perceptual domain represen-
tations. To better understand the perceptual activities, many recent
studies [7, 25, 35] have used dimensionality reduction techniques to
transform the high-dimensional neural data into low-dimensional
subspaces where the underlying manifolds are topologically sim-
ple. In this work, we apply principal component analysis (PCA)
to reduce the representations of LGN and V1 to low-dimensional
features of dimension 𝑑 .
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3.2 Temporal Perceptual Quality Index
3.2.1 Motivation. Taking the temporal trajectories from LGN and
V1 representations, we attempt to quantify their straightness and
compactness losses to predict the temporal quality. A recent com-
putational neuroscience model [12] defines the curvature of the
trajectory as the average of the unsigned angles between differ-
ence vectors of successive frames to represent the straightness loss
(Fig. 3(a)). Although it is able to distinguish between natural and
unnatural videos, it fails to map the curvature to the subjective
quality scores (Fig. 1(d)), probably because it does not quantify how
far away a new frame deviates from the straight line, especially in
the case of a large gap between two frames. Another alternative
proposed in [13] attempts to measure temporal distortion by calcu-
lating the distance between the predicted values from a linear model
fit of the perceptual representations and the true representation
(Fig. 3(b)). It has taken the deviation distance from the trajectory
into account, but ignores the variation between successive frames.

In this paper, we propose to measure both the straightness and
the compactness of the trajectory. The former measures the angular
change between the difference vectors of successive frames, while
the latter measures the degree of deviation between these frames
(Fig. 3(c)). In this way, if there is no directional change between two
vectors, the magnitude of the vectors does not matter, but if there
is, the distance will increase the penalty for the angular changes.

3.2.2 Video perceptual trajectory descriptor. In this work, we adopt
three nearby frames as a temporal trajectory unit as in [12] and
integrate two types of morphology change elements, including
change of the direction and distance of the change to measure
temporal distortion degree and thereby predict the temporal quality.

Direction change: The curvature is used to measure the di-
rection of the change, which is defined as the angle between the
nearby difference vectors. Specifically, let 𝒙 𝒊−1, 𝒙 𝒊 and 𝒙 𝒊+1 be the
perceptual representations of three consecutive frames, which are
located in a 𝑑-dimensional space after dimensionality reduction,
the curvature can be calculated as:

−−−−−→𝒙 𝒊−1𝒙 𝒊 = 𝒙 𝒊 − 𝒙 𝒊−1, (2)
−−−−−→𝒙 𝒊𝒙 𝒊+1 = 𝒙 𝒊+1 − 𝒙 𝒊, (3)

\𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
−−−−−→𝒙 𝒊−1𝒙 𝒊

| |−−−−−→𝒙 𝒊−1𝒙 𝒊 | |
·

−−−−−→𝒙 𝒊𝒙 𝒊+1

| |−−−−−→𝒙 𝒊𝒙 𝒊+1 | |
), (4)

where −−−−−→𝒙 𝒊−1𝒙 𝒊 and −−−−−→𝒙 𝒊𝒙 𝒊+1 denote the two difference vectors of the
three consecutive frames. · denotes to vector dot product and \𝑖 is
the curvature in radians.

Distance change: We use the magnitude of sum of the two dif-
ference vectors to measure the distance of the change. Specifically,
the distance can be calculated as:

𝑆𝑖 = | |−−−−−→𝒙 𝒊−1𝒙 𝒊 + −−−−−→𝒙 𝒊𝒙 𝒊+1 | | = | |𝒙 𝒊+1 − 𝒙 𝒊−1 | |. (5)

VPT descriptor: Assuming both the extent of the change direc-
tion and distance are negatively correlated to the temporal quality,
i.e. the larger the change in direction or the longer the change in dis-
tance, the greater temporal distortion and thus the lower temporal
quality, we define a generic representation of these twomorphology
change elements to measure the temporal distortion at each time
instant 𝑖 , given by:

𝑄𝑖 = 𝑓 (\𝑖 , 𝑆𝑖 ), (6)

(a) Curvature index [12] (b) Linear error index [13]

(c) The proposed VPT descriptor
Figure 3: Comparison of three kinds of trajectory descriptor for
measuring temporal distortion.

where 𝑓 (·) denotes a pairwise function of \𝑖 and 𝑆𝑖 . In this work, we
use 𝑓 (\𝑖 , 𝑆𝑖 ) = \𝑖 ×

√
𝑆𝑖 after experimenting with various choices.

3.2.3 Calculating the score of TPQI. To estimate the video-level
temporal quality, the temporal averages of 𝑄𝑖 in the LGN and V1
domains are calculated and followed by logarithmic compression
as in [13] separately, and then the temporal quality score of the
whole video is obtained from the average of the two domains.

𝑄𝑇𝑃𝑄𝐼 =
log( 1

𝑁−2
∑𝑁−1
𝑖=2 𝑄𝐿𝐺𝑁

𝑖
) + log( 1

𝑁−2
∑𝑁−1
𝑖=2 𝑄𝑉 1

𝑖
))

2
, (7)

where 𝑁 is the total number of video frames, and 𝑄𝑇𝑃𝑄𝐼 is calcu-
lated from frame 2 to frame 𝑁 − 1.

3.3 Natural Video Quality Evaluator
3.3.1 Spatial quality estimation. It is commonly acknowledged that
frame-level spatial quality plays a very important role in estimating
the overall video quality in the VQA problem. In our work, we
employ the well-established blind NR-IQA algorithm, NIQE [33],
for spatial quality estimation. The overall spatial quality of a video
is the average of the frame-level spatial quality scores, given by:

𝑄𝑁𝐼𝑄𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

𝑞𝑖 , (8)

where 𝑞𝑖 denotes to the spatial quality score of 𝑖-th frame and 𝑁 is
the total frame number of the video.

3.3.2 Overall video quality estimation. The overall video quality
estimate is the fusion of spatial and temporal quality given by:

𝑄𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑓 𝑢𝑠𝑖𝑜𝑛(𝑄𝑁𝐼𝑄𝐸 , 𝑄𝑇𝑃𝑄𝐼 ), (9)

where 𝑓 𝑢𝑠𝑖𝑜𝑛(·) denotes the fusion strategy. There are two fusion
strategies of defining the overall quality index for a video, i.e. aver-
age or product of spatial and temporal quality, which both cause the
index to respond to percentage changes in either spatial or temporal
indices. We study the effectiveness of the two fusion strategies in
the experimental section.

4 EXPERIMENTAL RESULTS
4.1 Experimental Settings
4.1.1 Datasets. Weevaluate the effectiveness of the proposedmethod
on four popular in-the-wild VQA datasets, including: KoNViD-1k,
LIVE-VQC, CVD2014, and YouTube-UGC.

KoNViD-1k [10]: The dataset contains 1,200 videos and the
resolution of all videos is 960 × 540. The videos are 8 seconds in
duration with frame rates of 24/25/30 frames per second (fps).
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Table 1: Performance comparison on the four VQA datasets. TPQI (LGN), TPQI (V1) and TPQI (LNG+V1) are the three TPQI variants adopting
temporal representations from different perceptual domains. Overall (Sum) and Overall (Product) denote two different strategies of fusing
spatial and temporal quality scores.

Category Method KoNViD-1k LIVE_VQC CVD2014 YouTube-UGC
SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

Opinion-aware
blind VQA

V-BLIINDS [38] 0.710 0.704 0.460 0.694 0.718 11.765 0.700 0.710 15.222 0.559 0.555 0.536
TL-VQM [15] 0.780 0.770 0.406 0.799 0.803 10.145 0.830 0.850 11.330 0.669 0.659 0.485
NSTSS [37] 0.625 0.639 - - - - 0.615 0.653 - - - -

VIDEVAL [44] 0.783 0.780 0.403 0.752 0.751 11.100 - - - 0.779 0.773 0.405

Completely
blind VQA

NIQE [33] 0.543 0.548 0.536 0.598 0.622 13.356 0.492 0.612 16.950 0.266 0.290 0.640
VIIDEO [32] -0.015 0.013 0.639 0.029 0.137 16.882 0.145 0.119 23.644 0.160 0.146 0.637
STEM [13] 0.629 0.629 0.497 0.656 0.670 12.649 0.532 0.619 16.813 0.284 0.318 0.623

Completely
blind VQA
(Ours)

TPQI (LGN) 0.453 0.439 0.576 0.519 0.516 14.071 0.229 0.356 20.243 0.047 0.064 0.635
TPQI (V1) 0.531 0.527 0.545 0.596 0.618 13.276 0.408 0.469 19.057 0.269 0.311 0.617

TPQI (LGN+V1) 0.556 0.549 0.541 0.636 0.645 12.907 0.413 0.464 19.107 0.111 0.218 0.626
Overall (Sum) 0.660 0.659 0.482 0.708 0.721 11.714 0.553 0.637 16.693 0.268 0.297 0.613

Overall (Product) 0.693 0.693 0.462 0.718 0.730 11.550 0.524 0.597 17.368 0.230 0.288 0.615

LIVE-VQC [40]: The dataset contains 585 videos with more
temporal variations than the KoNViD-1k dataset. The resolution
of the videos ranges from 240P to 1080P, and the videos are 10
seconds in duration with frame rates ranging from 19 to 30 fps.

CVD2014 [36]: The dataset contains 234 videos and the reso-
lutions of the videos are 480P and 720P. The duration and frame
rates range from 10 to 25 seconds and 11 to 31 fps, respectively.

YouTube-UGC [47]: The dataset has 1,131 videos with authen-
tic distortions of 15 categories. The resolution of the videos varies
from 360P to 4K, and all videos are 20 seconds in duration.

4.1.2 Baseline Methods. For comparison, we select three com-
pletely blind methods, i.e. NIQE [33], VIIDEO [32], and STEM [13].
We also compare our proposed method with four representative
opinion-aware blind VQA algorithms, including V-BLIINDS [38],
TLVQM [15], NSTSS [37], and VIDEVAL[44]. Unlike our proposed
method that does not require any annotation, these opinion-aware
algorithms need a training procedure that regresses various fea-
tures extracted to the annotated MOS values. The numerical results
of these baselines are presented from the literature [13, 37, 44].

4.1.3 Evaluation Metrics. We report three widely used metrics to
evaluate the VQA performance, including Spearman’s rank corre-
lation coefficient (SRCC), Pearson’s linear correlation coefficient
(PLCC), and root mean square error (RMSE). SRCC and PLCC mea-
sure the correlation between predicted quality scores and labeled
MOS values, and RMSE indicates the relative error. A better VQA
method would result in higher SRCC and PLCC, but lower RMSE.

Considering the inconsistency of the scale between the predicted
quality scores and the subjective scores, we perform the nonlin-
ear mapping with a 4-parameter logistic function as suggested by
VQEG [46]. The function is formulated as follows.

𝑄 𝑓 𝑖𝑡 = 𝛽2 +
𝛽1 − 𝛽2

1 + exp ( −(𝑄𝑝𝑟𝑒−𝛽3)
|𝛽4 | )

(10)

where𝑄𝑝𝑟𝑒 and𝑄 𝑓 𝑖𝑡 denote the predicted score and mapped score,
respectively. 𝛽1, 𝛽2, 𝛽3 and 𝛽4 are the four fitting parameters of the
logistic function.

Table 2: Numerical comparison on the performances of trajectory
descriptors. Linear denotes the linear prediction error in [13]. The
features used for comparison are from both LGN and V1.

Descriptor KoNViD-1k LIVE_VQC CVD2014
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

Te
m
po

ra
l Linear [13] 0.504 0.497 0.567 0.611 0.238 0.410

Curvature 0.425 0.423 0.539 0.548 0.380 0.430
Distance 0.411 0.403 0.460 0.505 0.310 0.315
Ours 0.556 0.549 0.636 0.645 0.413 0.464

O
ve
ra
ll Linear [13] 0.642 0.644 0.662 0.686 0.394 0.450

Curvature 0.401 0.429 0.660 0.677 0.479 0.515
Distance 0.632 0.641 0.666 0.684 0.354 0.359
Ours 0.693 0.693 0.718 0.730 0.524 0.597

4.1.4 Implementation details. The PCA dimension is set to 10 and
a spatial resolution of 480 × 270 for all videos to extract the V1
representations, which were both analyzed in the experiments. We
employ 48 Gabor filters with 6 scales and 8 orientations and the
size of the Gabor filters was set to 39×39.The raw spatial resolution
was used for calculating NIQE.

4.2 Performance Evaluation
Wefirst compare the performancewith the baselines on four datasets.
The results are shown in Table 1 and analyzed in detail as follows.

Overall performance. The proposed TPQI delivers competitive
performance over all completely blind baselines, and the overall per-
formance of the combined TPQI and spatial metric NIQE achieves
the best performance over three datasets. The overall performance
is even better than some opinion-aware VQA baselines, e.g., better
than V-BLIINDS on LIVE_VQC dataset and better than NSTSS on
KoNViD-1k and CVD2014 datasets. The results show that the
proposed TPQI does not require any dataset-specific information,
and can be generalized to any video with natural settings.

Notice that the proposed method does not reach the best perfor-
mance on YouTube-UGC dataset, and the performance degrada-
tion is in accordance with the results of NIQE, which is constructed
based on the statistical regularities of natural images. The reason
may be that this dataset contains many unnatural video categories,
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Table 3: Numerical comparison on the performances of different choices of change distance in the trajectory unit. (𝒙𝒊+1 → −−−−−→𝒙𝒊−1𝒙𝒊 means the
distance from the representation 𝒙𝒊+1 to vector −−−−−→𝒙𝒊−1𝒙𝒊).

Dataset Domain | |−−−−−→𝒙 𝒊−1𝒙 𝒊 | | | |−−−−−→𝒙 𝒊𝒙 𝒊+1 | | | |−−−−−→𝒙 𝒊−1𝒙 𝒊 | | + | |−−−−−→𝒙 𝒊𝒙 𝒊+1 | | | |−−−−−→𝒙 𝒊−1𝒙 𝒊 + −−−−−→𝒙 𝒊𝒙 𝒊+1 | | 𝒙 𝒊+1 → −−−−−→𝒙 𝒊−1𝒙 𝒊
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

KoNViD-1k Temporal 0.544 0.535 0.546 0.537 0.550 0.541 0.556 0.549 0.554 0.545
Overall 0.678 0.680 0.680 0.681 0.690 0.690 0.693 0.693 0.673 0.677

LIVE-VQC Temporal 0.632 0.638 0.632 0.639 0.635 0.641 0.638 0.647 0.636 0.645
Overall 0.710 0.722 0.711 0.723 0.717 0.730 0.718 0.730 0.697 0.714

CVD2014 Temporal 0.388 0.442 0.386 0.441 0.396 0.452 0.413 0.464 0.421 0.470
Overall 0.522 0.584 0.522 0.584 0.544 0.609 0.524 0.597 0.533 0.592

YouTube-UGC Temporal 0.114 0.216 0.115 0.217 0.115 0.218 0.111 0.218 0.117 0.216
Overall 0.211 0.291 0.212 0.292 0.236 0.298 0.230 0.288 0.211 0.265

Table 4: Numerical comparison of different video resolutions for
V1 feature on KoNViD-1k. The time unit is second/frame on CPU.

Video Resolution
(Downsam. rate)

TPQI (V1) Overall
SRCC↑ PLCC↑ Time SRCC↑ PLCC↑ Time

960 × 540 (1) 0.522 0.518 0.928 0.695 0.694 1.234
480 × 270 (1/2) 0.531 0.527 0.254 0.693 0.693 0.334
240 × 135 (1/4) 0.521 0.520 0.067 0.680 0.682 0.095
120 × 67 (1/8) 0.501 0.501 0.033 0.662 0.665 0.044

such as Animation, Gaming, and Lyric Video, which are subjected
to artificial processing and do not conform to the straightness hy-
pothesis in the perceptual domain.

Employing features from different perceptual domains.
The comparison among TPQI (LGN), TPQI (V1) and TPQI (LGN+V1)
studies the effectiveness of the perceptual representations from
different domains on measuring the temporal quality. The perfor-
mance increases from the LGN domain to the V1 domain with the
depth of the visual system, and the linear combination of LGN
and V1 features can further boost the performance. The results
show that both features play important roles in predicting subjec-
tive scores, and these features can also compensate for each other.
They also show that our proposed TPQI, which measures only the
temporal quality, can achieve better VQA performance than NIQE,
especially on LIVE_VQC, which includes large camera motions.

Fusion of TPQI with spatial quality metric. We conduct
comparative experiments on the fusion strategies, i.e. summation
or multiplication, of the scores from the proposed temporal index
(TPQI) and the spatial quality metric (NIQE). It can be observed
that the product of the spatial and temporal scores leads to higher
accuracy for KoNViD-1k and LIVE_VQC, which is probably con-
tributed by the relative insensitivity of our indices to the range of
values occupied by the spatial and temporal indices. Thus we adopt
the product strategy in the ablation study to obtain the overall
quality predictions.

4.3 Ablation Study
4.3.1 Design of the VPT descriptor. We propose to describe the loss
in the straightness and compactness of perceptual domain represen-
tation by two components, namely the curvature representing how
the representation deviates from the straight line and the distance
representing how fast it deviates over a certain time interval.

Effectiveness of curvature and distance components. To
investigate the validity of these two components, we conduct an
ablation study on three variants: a) curvature only; b) distance

(a) Comparison on TPQI (V1)

(b) Comparison on overall quality
Figure 4: Performance comparison of different video resolutions
for V1 feature extraction on KoNViD-1k.

only; c) a combination of curvature and distance (ours). To make
the comparison more comprehensive, we also include d) the linear
prediction error for temporal modeling in [13]. The numerical com-
parisons are shown in Table. 2. As stated in [12] that the curvature
of the perceptual representation is vital to discriminating between
natural and artificial videos, and it is also more effective than the
distance for assessing temporal quality. But taking both curvature
and distance results in better performance than just utilizing a sin-
gle component, showing that the distance may show the intensity
of temporal distortion, which also accounts for the low subjective
score. The proposed descriptor also achieves better performance
than the linear model, indicating that the proposed descriptor can
better measure the temporal distortions in the perceptual domain.

Options for distance components. To make a better descrip-
tor, we have tested the possible distance measurement options from
the perceptual representation. Table. 3 shows all the tested options
and their performance. In general, the performance of option mea-
suring the compactness of the trajectory by the magnitude of sum
of the two difference vectors 𝑆𝑖 , i.e. | |−−−−−→𝒙 𝒊−1𝒙 𝒊 + −−−−−→𝒙 𝒊𝒙 𝒊+1 | |, is better
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Table 5: Numerical comparison on the performances of different dimensions 𝑑 of the representation in V1 domain.

Dataset Domain d=5 d=10 d=30 d=50 d=80
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

KoNViD-1k Temporal 0.530 0.527 0.531 0.527 0.524 0.519 0.506 0.503 0.473 0.475
Overall 0.692 0.694 0.693 0.693 0.685 0.685 0.677 0.678 0.668 0.667

LIVE-VQC Temporal 0.595 0.617 0.596 0.618 0.596 0.609 0.583 0.597 0.544 0.565
Overall 0.714 0.726 0.718 0.730 0.710 0.726 0.699 0.717 0.686 0.705

CVD2014 Temporal 0.400 0.467 0.408 0.469 0.450 0.504 0.470 0.534 0.452 0.505
Overall 0.502 0.569 0.524 0.597 0.521 0.585 0.511 0.582 0.492 0.577

YouTube-UGC Temporal 0.281 0.326 0.269 0.311 0.277 0.319 0.261 0.312 0.248 0.311
Overall 0.241 0.305 0.228 0.287 0.208 0.258 0.198 0.235 0.198 0.235

(a) 1-th to 3-th feature blocks of AlexNet (b) 1-th to 5-th feature blocks of VGG19 (c) 1-th to 9-th feature blocks of ResNet152
Figure 5: Performance comparison between bio-inspired features, i.e. features extracted by computational models of LGN and V1, and deep
features from different layers of three classical CNN models, which have been well-trained on ImageNet [5] for classification tasks.

than the other options. According to these results, we use it for the
distance in the TPQI algorithm.

4.3.2 The impact of various settings on V1 feature. The representa-
tion in V1 domain has important contribution on the performance
of the proposed TPQI, so that we test various settings including
the resolutions for feature extraction and feature dimensionality
reduction of the presentation in V1 domain. The experiments are
conducted on two models: 1) TPQI (V1) model to eliminate effects
from the LGN feature and the spatial quality, and 2) Overall model
to check its effects on the final proposed VQA algorithm.

Resolutions for extracting V1 feature. We first test various
downsampled video resolutions for V1 feature extraction since
temporal modeling may not require a high spatial resolution. We
conduct the test on the KoNViD-1k dataset with a unified raw
resolution of 960 × 540, and apply the conclusion to other datasets.
The results are presented in Table. 4 and Fig. 4, respectively. For
TPQI (V1) model, the best performance is reached at downsampling
rate of 1/2 (270P); while for the Overall model, the performance
also almost reaches saturation at this resolution. Considering that
the computational complexity decreases exponentially with the
resolution downsampling, we chose to use 270P for the resolution
of the input videos to extract the representation in V1 domain.

Dimension of V1 feature. The representation in V1 domain is
the feature after dimensionality reduction of the original V1 feature
map. We perform an extensive study on the parameter 𝑑 for the
feature dimensionality reduction, and the results are reported in
Table 5. The best results are mostly achieved at 𝑑 = 10, and lower or
higher dimensions will cause the degradation of the performance.
Therefore, we set 𝑑 = 10 for the dimension of the representation in
V1 domain in the proposed VQA algorithm.

4.3.3 Bio-inspired handcrafted feature v.s. deep feature. As being
stated that the convolutional neural networks (CNNs) have shown
impressive ability in object recognition and been proposed as candi-
date models for biological vision [14, 55], we compare the straight-
ening capabilities of their features with the proposed biological
LGN and V1 features for VQA. The experiment is conducted by
replacing the LGN and V1 features with the features extracted in
each stage of the classical CNN models, including Alexnet [16],
VGG19 [39], and Resnet152 [9]. The results in Fig. 5 show that the
proposed biological features can outperform those deep features
extracted from the CNN models in temporal quality perception,
which motivate us to address the related vision problems, such as
image restoration [21, 22], action recognition [62, 63], and video
compression [52, 53] considering the characteristics of the HVS.

5 CONCLUSIONS
In summary, we have applied the perceptual straightening hypoth-
esis of the HVS to design a blind temporal quality prediction al-
gorithm called TPQI. We demonstrate the efficacy of TPQI by its
superior performance over a number of in-the-wild datasets. The
performance of TPQI is noteworthy since it even surpasses super-
vised VQA algorithms on related datasets. Importantly, temporal
consistency checks introduced by this hypothesis play a key role
in achieving performance gains in video quality prediction. The
proposed TPQI algorithm is explainable and generalizes well over
a variety of in-the-wild datasets.
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