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Masoud Zabihi, Salonik Resch, Hüsrev Cılasun, Zamshed I. Chowdhury, Zhengyang Zhao,

Ulya R. Karpuzcu, Jian-Ping Wang, and Sachin S. Sapatnekar

Abstract—This paper describes how 3D XPoint memory arrays
can be used as in-memory computing accelerators. We first
show that thresholded matrix-vector multiplication (TMVM),
the fundamental computational kernel in many applications
including machine learning, can be implemented within a 3D
XPoint array without requiring data to leave the array for
processing. Using the implementation of TMVM, we then discuss
the implementation of a binary neural inference engine. We
discuss the application of the core concept to address issues
such as system scalability, where we connect multiple 3D XPoint
arrays, and power integrity, where we analyze the parasitic effects
of metal lines on noise margins. To assure power integrity within
the 3D XPoint array during this implementation, we carefully
analyze the parasitic effects of metal lines on the accuracy of
the implementations. We quantify the impact of parasitics on
limiting the size and configuration of a 3D XPoint array, and
estimate the maximum acceptable size of a 3D XPoint subarray.
Keywords: 3D XPoint, Phase-change memory, In-memory comput-
ing, Matrix-Vector Multiplication, Neural Network.

I. INTRODUCTION

With the rapidly increasing sizes of datasets and challenges in
transistor scaling in recent years, the need for new computing
paradigms is felt more than ever [1]. In today’s computing
systems, large portions of computation energy and time are
wasted for transferring data back and forth between the proces-
sor and the memory [2]. One approach is to bring the processor
and memory closer to each other and build a near-memory
platform that places the computing engine adjacent to the
memory, and hence reduce the energy and time overhead for
data transfer. Another approach that even more significantly
reduces the time overhead and energy is to use the memory
device as the computational unit and built a true in-memory

computing platform. We follow the latter approach.

The substrate that we work on is 3D XPoint [3], a class of
memory technology that fills a unique place within the mem-
ory hierarchy between solid state storage drive (SSD) and the
system main memory. In comparison with the NAND-based
SSD (which is the most ubiquitous storage device available
today [4]), it has the advantage of being faster, denser, and
more scalable. Its nonvolatility differentiates it from competing
technologies such as NAND-based SSDs and dynamic random
access memories (DRAMs), although NAND-based SSDs are
more cost-effective today and DRAMs are faster. Other emerg-
ing nonvolatile technologies face limitations: stand-alone PCM
must deal with resistance drift, where the cell resistance
increases over time [5]; FeFET is handicapped by its large
operating voltage and limited endurance [6]; MRAMs require
an access transistor (unlike 3D XPoint), leading to a larger
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cell size than 3D XPoint; ReRAM is not commercially viable
to the level of 3D XPoint and MRAM.

The operation and performance of 3D XPoint as a memory
unit are discussed in [7]–[11]. In our work, rather than focus-
ing again on the memory aspects of 3D XPoint, we explore
the possibility of exploiting 3D XPoint arrays to perform in-
memory computation. This means not only that 3D XPoint
can function as a storage unit, but also that it can perform
computation inside its array without the need for the data to
leave the array. Therefore, unlike conventional computational
systems, the information can be processed locally rather than
being sent to a processor through the memory hierarchy.

The analysis in this paper considers wire non-idealities
and physical design of 3D XPoint subarray. We first show
the implementation of thresholded matrix-vector multiplication
(TMVM), which is a building block for neural networks
(NNs) and deep learning applications. Second, using this core
operation, we discuss the implementation of a neural network
inference engine. Finally, we discuss how to enable 3D XPoint
for more complex versions of these implementations (e.g.
multi-bit operations and multi-layer NNs).

For in-memory computing platforms, wire resistances are
a substantial source of non-ideality that must be taken into
account during the implementations [12]. Some works attempt
to analyze the parasitic effects of wires but do not consider all
contributing factors with realistic layout considerations [13],
[14]. In [15], a framework is presented to incorporate the
effects of nonidealities in 2D resistive crossbar performance.
In [16], an analytical approach is developed to study the effects
of the parasitic of wires for the implementation on spintronics
computational RAM.

We discuss the feasibility of using 3D XPoint as an in-
memory computing engine for neuromorphic applications, and
evaluate its performance for MNIST digit recognition. We
present novel methods for the implementation of MVMT
and NN on 3D XPoint. We use 3D-stacked PCM memory
layers in the 3D XPoint subarray to compute and store the
computation results entirely inside the array, without sending
the data to the periphery of the array. Our method is scalable
by using multiple arrays to handle a large computational
workload. In addition, multi-bit operations are supported in
our methodology. We evaluate a realistic size of the 3D
XPoint subarray and metal features (based on the ASAP7 7nm
technology [17], [18]) for accurate electrical correctness. We
develop a comprehensive method to analyze the impact of wire
parasitics of wires in the 3D XPoint subarray and devise a
methodology to determine the maximum size of a 3D XPoint
subarray that ensures electrically correct operation.

Next, we discuss the structure of 3D XPoint in Section II.
In Section III, we describe the implementation of TMVM, and
NN. In Section IV, we explore the methods for more complex



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2021.3112238, IEEE Journal

on Exploratory Solid-State Computational Devices and Circuits

implementations. We develop the models for the effect of wire
parasitics in Section V, evaluate the results of our analysis in
Section VI, and then conclude the paper in Section VII.

II. BACKGROUND

Some recent works study the implementation of logic opera-
tions using a 3D crossbar array architecture. In [19], a double
layer Pt/HfO2−x/TiN ReRAM crossbar array is used and it
is experimentally shown that the array can implement MVM
and CNN. Additional peripheral circuitry (e.g., AND gates)
are required for obtaining the computation results. In [20],
it is shown that stateful logic operation can be performed
on a memristive TiO2-based 3D crossbar array. The adverse
effects of wire non-idealities are not incorporated in the
implementations. Similarly in [21], the authors map logic
operations on a memristive 3D crossbar without considering
wire parasitic or technology design rules. In [22], the authors
use 3D memristive crossbars for neuromorphic computation.
For the implementation of a neuron, additional amplifier
circuitry is required at the periphery of the crossbar.

Fig. 1 shows the overall structure of a 3D XPoint subarray.
A two-level PCM stack is integrated at the top of CMOS
peripheral circuitry. The storage device is based on phase-
change memory (PCM) technology, which is connected to
a compatible ovonic threshold switch (OTS) made of AsTe-
GeSiN [23]–[25]. Word lines at the top (WLT s), word lines
at the bottom (WLBs), and bit lines (BLs) in the middle
provide the current path to each individual memory cell [26].
The compatibility of the junction of PCM and OTS devices
is a key factor in allowing access to individual cells without
facing sneak path problems [27]. The total number of PCM
cells in the 3D XPoint subarray with Nrow rows and Ncolumn

columns is (2Nrow ×Ncolumn), with half in the top PCM
level and half in the bottom PCM level, as shown in the figure.
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Figure 1: The structure of a 3D XPoint subarray. The CMOS
peripheral circuitry is located underneath the memory subarray.

PCM is a non-volatile memory technology exploiting
Ge–Sb–Te (GST) alloys (e.g., Ge2Sb2Te5) as the storage
medium [28]. PCM has two states: a crystalline phase with
high conductance (GC) and an amorphous phase with low con-
ductance (GA). The GST alloy transition between amorphous
and crystalline states is triggered by changing the temperature
level [29], [30]. In early explorations of PCM technology
(1970s–early 2000s), the temperature level was changed using
a laser source [31]. The state-of-the-art research on PCM is
focused on using electrical impulses to change the temperature,
and hence the state, of the PCM device by applying an electric
current (or voltage) pulse across the PCM device [32].

Fig. 2(a) shows that applying a fast high-amplitude current
pulse of amplitude IRESET (called the RESET pulse) heats up

the GST material to the melting temperature Tmelt (∼600◦C or
higher [30]), erasing the previous periodic and ordered atomic
arrangement. After quenching, the new disordered atomic
structure will be frozen, making the transition from high
conductance crystalline state to low conductance amorphous
state possible. To change the state of the GST from amorphous
to crystalline, a slow, relatively low amplitude current pulse of
amplitude ISET (called the SET pulse) must pass through the
GST material. The SET current pulse causes the GST material
to heat up to crystalline temperature Tcryst (∼400◦C [30]).
Over a long SET time of several tens of nanoseconds, this
is a high enough temperature (still lower than Tmelt) for the
reconfiguration and crystallization of the previous amorphous
atomic region to the crystalline state. The desirable PCM
characteristics are a lower amplitude of the RESET current and
a shorter SET time. A RESET current as low as 10µA and a
SET time as low as 25ns for individual PCM devices is already
demonstrated with sub-20nm scalability, high endurance 1012

cycles, and a projected 10-year retention time at 210◦C [5].
Fig. 2(b) shows the electrical model of PCM cell. The

resistance across the PCM cell can be modeled by two voltage
controlled switches [9]. Depending on the status of switches
S1 and S2, different currents flow between two lines connected
to the terminals of the PCM cell, determined by GA and GC .
The ON/OFF states of the memory cell are determined by
OTS: If the voltage level across the OTS of a cell is larger
than a threshold, the cell is considered to be ON, and it is
OFF otherwise. In today’s technologies, the OTS conductance
for the OFF state is up to 108× smaller than for the ON state.

The value stored in the PCM device can represent either
logic 1 (crystalline phase) or logic 0 (amorphous phase). Three
memory operations available in 3D XPoint: write logic 1
(using the fast high-amplitude SET pulse), write logic 0 (using
long low-amplitude RESET pulse), and read. For the memory
read operation, since it is undesirable to change the state of
the PCM cell, a pulse with relatively very small amplitude
will be applied, increasing the temperature slightly above the
ambient temperature but below Tcryst (and of course Tmelt).
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Figure 2: PCM model: (a) the transition between amorphous and
crystalline phases by applying SET and RESET pulses across a

pillar type PCM device, and (b) PCM cell can be modeled using a
resistive circuit with two voltage control switches [9].

III. REALIZATION OF IN-MEMORY COMPUTING

A. Implementation of TMVM

TMVM is a fundamental step in the implementation of many
applications, and is a fundamental computational kernel in
machine learning (ML) applications. Using 3D XPoint as the
TMVM computation engine can tremendously decrease the
ML computational workload, as the data does not need to
leave the 3D XPoint array during the computation.
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To show how the first step of a TMVM, let us multiply,
without thresholding, matrix G ∈ R

(Nx+1)×(Ny+1) and vector

V = [V0V1V2...VNx
]
T
∈ R

(Nx+1), where G is given by:

G =















G0,0 G0,1 ... G0,Ny

G1,0 G1,1 ... G1,Ny

. . ... .

. . ... .

GNx,0 GNx,1 .. GNx,Ny















(1)

This computes O =
[

O0O1O2, ...ONy

]T
∈ R

(Ny+1)) where
each element of vector O is a dot product. For example,

O0 = G0,0V0 +G1,0V1 + ...+GNx,0VNx
(2)

This is computed in the 3D XPoint array by applying voltages
across a set of conductances to produce a current O0.

Today’s PCM cells can only store binary values. Hence, we
assume that elements of matrix G and vector V are binary. To
implement a “neuron-like” operation using TMVM, the O0

value and computed Oi values are followed by a thresholding
operation. In (2), if the sum of products exceeds the current
required to flip the output bit, then logic 1 is stored as the
conductance, GO0

, of the PCM cell O0; otherwise, the stored
logic value is 0. Similarly, for other Ois, the values after
thresholding are stored as the conductance states, GOi

.

𝑉3𝑉2𝑉1𝑉0
𝐺𝑁𝐷

𝐺3,0𝐺2,0𝐺1,0𝐺0,0 𝐺3,1𝐺2,1𝐺1,1𝐺0,1
𝑁𝑐𝑜𝑙𝑢𝑚𝑛 Cells
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Figure 3: (a) Using 3D XPoint as an in-memory computing engine
for TMVM of GV . (b) The equivalent circuit model for the

implementation of a dot product (to calculate O0).

Fig. 3(a) shows the implementation of the TMVM on
a 3D XPoint subarray with (2Nrow ×Ncolumn) PCM cells
((Nrow ×Ncolumn) cells each at top PCM level and bottom
PCM level) where Ncolumn = Nx+1 and Nrow = Ny+1. For
clarity, as compared to Fig. 1, only the lines and PCM cells
engaged in the computation are shown, and the rest of the lines
and the PCM cells (at the bottom) are removed from the figure.
All elements of O will be calculated simultaneously and are
stored in the same column with Nrow PCM cells. Considering
that today’s 3D XPoint cannot store multiple values in a cell,
we assume that elements of vector V and G are binary.

The conductances G are first programmed in the top PCM
level by memory write operations or by previous computation.

• Before the computation starts, cells that store GOi
s at the

bottom are preset to logic 0.
• Then, voltages Vi, 0 ≤ i ≤ Nx are applied to the word

lines WLT s connected to input cells located at top. If Vi

represents logic 1, voltage VDD is applied (Vi ← VDD)
to the WLTi and the current that flows through the
corresponding input cell is proportional to G0,iVDD.

• If Vi represents logic 0, WLTi is floated (Vi ← float) and
no current passes through the corresponding PCM cell.

• The summation of currents (IT ) from input cells flows
through the GO0

in a time interval tSET . Based on the

values of Vi and Gi,0, different currents pass through the
input cells that store Gi,0. If IT > ISET , the state of GO0

changes to logic 1. However, we require IT < IRESET

to avoid erroneous computation.

To calculate the minimum and maximum allowable applied
voltage (VDD) to the lines, we consider a simplified electrical
model for the implementation of a dot product (e.g., for O0)
shown in Fig. 3(b). Current IT can be written as follows

IT = GO0

∑Nx

i=0 ViGi,0
∑Nx

i=0 Gi,0 +GO0

(3)

When the computation begins, GO0
≈ GA since the preset is

0, and IT (t = 0) is small (of the order of few hundred nAs).
However, by the passage of time, the amorphous region near
the heater in the output PCM starts to turn crystalline, resulting
in increasing GO0

(and consequently IT ) and heat (generated
by the flow of more electric current). If the applied voltage
VDD is large enough to provide a current larger than ISET ,
crystallization repeats until a threshold point where the whole
amorphous region in the output PCM turns into a crystalline
region with high conductivity, representing logic 1. On the
other hand, the VDD must not be so large that the generated
temperature exceeds Tmelt, causing erroneous computation.

To calculate the VDD range for the accurate implementation
of the described dot product, we analyze the two cases
corresponding to Vmin (the minimum acceptable voltage) and
Vmax (the maximum acceptable voltage). For the Vmin case,
we assume that all Vis, and all Gi,0s represent logic 1, i.e.,
VDD voltages are applied to all WLT s and the conductances
of input cells are in the high conductance state corresponding

to GC . In this case, from (3), IT =
(

Nx+1
Nx+2

)

GCVDD. Since

ISET ≤ IT ≤ IRESET , the Vmin requirement implies a first
constraint, requiring that VDD to lie in the range:

R1 =

[(

Nx + 2

Nx + 1

)(

ISET

GC

)

,

(

Nx + 2

Nx + 1

)(

IRESET

GC

)]

(4)
For the Vmax case, all Vis are set to logic 1, while all

Gi,0s are set to logic 0. Since the result of the dot product
should be at logic 0, we expect that the preset value of PCM
stored O0 remains intact. At the maximum voltage possible,
we hypothetically assume that the applied voltage pulse should
be below the level required to change the output state from
logic 0 to logic 1, even if conductances of all input cells are

GA. In other words, IT =
(

(Nx+1)GAGC

(Nx+1)GA+GC

)

VDD < ISET ,

i.e., the output state cannot be altered. Therefore, the second
set of constraints require VDD to lie in the range

R2 =

[

0,

(

(Nx + 1)GA +GC

(Nx + 1)GAGC

)

ISET

]

(5)

The acceptable range for VDD isR1∩R2. Therefore, the mini-
mum and maximum acceptable voltages are Vmin = min(R1)
and Vmax = min(max(R1),max(R2)), respectively.

B. Implementation of NN

Using the TMVM implementation, we implement a neuromor-
phic inference engine. Fig. 4(a) shows a single-layer NN with
N inputs and P outputs. Fig. 4(b) shows the data layout for the
NN implementation on a 3D XPoint subarray. The top PCM
cells are allocated for storing the weights (Wi,js), similar to

3
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Gi,js in TMVM that were stored in the top PCM cells, and
the bottom PCM cells are allocated for storing the outputs
(Yis), similar to Ois in TMVM. The inputs (Xis) are applied
to WLTis as voltage pulses (similar to Vis in TMVM).If
N ≤ Ncolumn and P ≤ Nrow, then all Yjs can be determined
simultaneously in one step. The output elements of the NN
can be stored in any column at the bottom (here, we choose
column 1). In Fig. 4(b), all other cells at the bottom patterned
by diagonal stripes are not engaged in the computation of Yis,
i.e., WLBs connected to these cells are floated.

𝑋1
𝑋2
𝑋𝑁

𝑌1
𝑌2
𝑌𝑃

Input Layer Output Layer

(b)(a)

𝑊1,1𝑊1,2𝑊2,2𝑊2,1
𝑊𝑁,1 𝑊𝑁,2𝑊𝑁,𝑃

𝑊1,𝑃
𝑊2,𝑃

𝑋1 𝑋2 𝑋𝑁
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𝑁𝑟𝑜𝑤

2

Figure 4: NN implementation: (a) A single-layer neuromorphic
inference engine. (b) Data layout for the NN implementation.

An application for the proposed NN implementation is
handwritten digit recognition of MNIST dataset with 10K
test images [33]. Analyzing each MNIST test image can
be performed using a similar NN shown in Fig. 4(a). Here
P = 10, as in MNIST each image represents a digit (from
0 to 9). In each computational step, ⌊Nrow

P
⌋ images can be

processed and stored in a column.

IV. ENABLING MORE COMPLEX IMPLEMENTATIONS

In this section, we discuss three concepts that enable more
complex computations. Then, we provide the implementation
of a multi-layer NN as an example. Our approach can also be
extended to perform multi-bit computation directly using the
principles in [34].

A. 3D XPoint with four stacked level of PCM cells

Industry projections show that the next generation of 3D
XPoint will have four-level stacked PCM cells [35]. If the
number of PCM levels increases, then the volume of stored
information per footprint area increases, and more complex
implementations are possible. Although a two-level subarray
of PCM cells is sufficient to implement any NN (see Sec-
tion IVD), we will illustrate how we can use a four-level
subarray of PCM cells to implement a multi-layer NN by
exploiting the extra PCM levels. The NN in Fig. 5 has three
layers: an input layer, a hidden layer, and an output layer. At
the top PCM level, the first set of weights are stored. In the
next PCM level, the hidden layer data is calculated, and by
applying the second set of weights as voltage pulses, we obtain
the outputs Yi of the NN at the third PCM level.

B. Scalability of 3D XPoint to large computations

We can connect multiple 3D XPoint subarrays to create
a larger array to handle computations with higher matrix

𝑋1𝑋2
𝑋𝑁

𝑌1𝑌2
𝑌𝐿

Input Layer Output LayerHidden Layer𝐻1𝐻2
𝐻𝑁

First Set of 

Weights

Second Set of 

Weights

Figure 5: Multi-layer NN with an input, hidden, and output layer.

dimensions. In Fig. 6(a), switches connect BLs of subarray 1
to those of subarray 2, enabling current flow from the BLs of
subarray 1 to those of subarray 2. The WLB of subarray 2
that is scheduled to store the computation results will be
connected to ground, while all other WLBs not engaging in
the computation (in both subarrays 1 and 2) are floated. Hence,
the computation results in subarray 1, are being calculated
and stored at the bottom PCM level of subarray 2 (BL-to-
WLT ). In Fig. 6(b), switches connect BLs of the subarray 1
to WLT of subarray 2. In this configuration, the results are
being calculated at the top PCM level of subarray 2. The status
of lines during the computation for these two configurations
are listed in the Supplementary Materials.

𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3
𝐵𝐿0𝐵𝐿1𝐵𝐿2𝐵𝐿3 𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3

𝐵𝐿0𝐵𝐿1𝐵𝐿2𝐵𝐿3

BL-to-BL Configuration 

for Switches

𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3
𝐵𝐿0𝐵𝐿1𝐵𝐿2𝐵𝐿3 𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3

𝐵𝐿0𝐵𝐿1𝐵𝐿2𝐵𝐿3

BL-to-WLT 

Configuration for 

Switches

Subarray 1 Subarray 2

Subarray 2Subarray 1

(a)

(b)

Figure 6: Two configurations for communication between 3D
XPoint subarrays: (a) switches connect BLs of subarray 1 to BLs
of Subarray 2, and (b) switches connect BLs of the subarray 1 to

WLT s of subarray 2.

C. Multi-layer NN implementation in a two-level PCM stack

We now illustrate how a multi-layer NN can be implemented
using a three-layer PCM stack. As an example, we discuss
the implementation of the three-layer NN (shown in Fig. 5)
using two two-level 3D XPoint subarrays. Let us assume
that the NN is required to analyze 10K images of the
MNIST dataset. The data layout of this implementation is
illustrated in Fig. 7 using two subarrays connected with BL-
to-WLT configuration (see Fig. 6(b)). The first set of weights
is stored at the top PCM cells of subarray 1. The inputs
(X0, X1, ..., XN ) are applied as the voltages to the WLT s of
subarray 1. We assume that at each time step, the hidden layer
values (H1, H2, ..., HN ) for a specific image from MNIST
are being processed. For example, the hidden layer values
of the second image (Him2

1 , Him2
2 , ..., Him2

N ) is calculated in
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from step 1 to step M

First set of weights is stored at top PCMs 

Second set of weights is applied to WLTs 

from step M+1 to step M+L

Figure 7: Data layout for the implementation of 3-layer NN.

step 2. Assuming that we calculate the hidden layer values of
M (= Nrow) images in each set of computation, we require
M steps to calculate and store the hidden layer values of
M images at the top PCM cells of subarray 2. In each of
these steps, the corresponding BL in subarray 2 is connected
to GND, and the remaining BLs in subarray 2 are floated.
After all hidden layer values are stored at the top PCM cells
of subarray 2, we apply the second set of the weights (as
voltage pulses) to the WLT s of subarray 2. At each column
at the bottom PCM cells of subarray 2, the outputs (Yis) of
M images are calculated and stored.

V. ANALYZING INTERCONNECT PARASITIC EFFECTS

To ensure the electrical correctness of the implementations
in in-memory computing platforms, we must consider non-
idealities due to wire parasitic effects [12], [16]. As an exam-
ple, we consider the implementation of a TMVM illustrated
in Fig. 3(a). In thhe equivalent circuit model shown in Fig. 8,
the WLT s, BLs, and WLBs have nonzero parasitics that
cause a voltage drop in the current path across the 3D XPoint
subarray, that may potentially lead to errors in the results of
TMVM. Let Gx and Gy be the conductances of the segments
of BLs and WLs, respectively. The conductances for WLT
and WLB are considered equal (both Gy) due to the symmetry
and equal allocation of metal resources to WLT s and WLBs.
We use Gi,j to denote the conductance of PCM cell (i, j) at
the top level, and GOj

s to denote conductances of a column
of PCM cells at the bottom level. In the worst case, each row
performs an identical operation, and carries an equal current
Irow. The total voltage drop to the last row is

Irow
Gy

+
2Irow
Gy

+...+
NrowIrow

Gy

=
Nrow(Nrow + 1)Irow

2Gy

(6)

where the first, second, and last terms on the left side
of the equation are for voltage drops of SegmentNrow

,
SegmentNrow−1, and Segment1, respectively. The voltage
drop of the last row increases quadratically with the number
of rows, and this causes a significant limit on the accuracy of
the implementations [12], [16]. Hence, it is important to find
the maximum allowable subarray size in which the voltage
drop does not impair the electrical of implementations.

During the computation, the resistive network shown in
Fig. 8 can have different configurations based on the applied
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Figure 8: The equivalent circuit model for the TMVM

implementation with considering wire parasitics.

voltage to WLT s. For example, if V2 ← float, then all
G2,js and their connected parasitics must be removed from
the equivalent circuit model of Fig. 8. To analyze parasitic
effects, we consider the corner case for voltage drop, where
only V0 ← VDD and the rest of the Vis are floated, resulting
in minimum equivalent conductance for inputs and wire para-
sitics. Moreover, for the corner case, we assume that inputs and
outputs are located Ncolumn columns away from each other
(the farthest possible distance). The value of all inputs assumed
to be 1, and therefore, the current flows from the inputs of the
TMVM computation must be sufficient enough to change the
state of the output of the TMVM computation. An excessive
voltage drop across the input and output cells causes a failure
in the TMVM implementation discussed earlier.

The rows far from the drivers have larger parasitics between
them and the driver. In particular, for the last row (farthest
from the driver, see Fig. 8), the voltage drop is the worst. If
the electrical correctness for the last row does not hold up, the
implementations would be unacceptable. We observe the rest
of the circuit from the last row and calculate (for the worst
case) the Thevenin resistance (Rth) and Thevenin voltage
(Vth) (see Fig. 9(a)). We define the Thevenin coefficient,
αth = Vth

VDD
, and its value is between 0 and 1. Both Rth and

αth can be obtained analytically using a recursive approach
explained in Appendix A. Both are functions of parameters
such as Nrow, Ncolumn, PCM cell width (Wcell) and length
(Lcell) as well as other parameters of PCM and wire devices.
Fig. 9(b) and (c) shows Rth and αth for different Nrow values.
For the smaller Nrow, PCM resistances are the dominant
resistances, and the parasitic effect of wires is minimum.
When the Nrow increases the values of the collective parasitic
resistances become comparable to those of PCM devices and
hence can degrade the electric correctness of the subarray. The
configuration of lines are based on configuration 1 that will
be discussed in Table I in the next Section.

There are negligible parasitics between the first row and
the driver, and the voltage range that ensures accuracy of
computing in the first row is closer to [Vmin, Vmax] (discussed
in Section III) than that of the last row. For the last row,
values of αth and Rth are significantly affected by parasitics.
Let us assume that the new voltage range ensures electrical

correctness of the last row is [V
′

min, V
′

max]. The voltage ranges
for the first row and last row are shown in Fig. 10(a). We
use the voltage ranges of first row and last row as two corner

5
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Figure 9: (a) Thevenin equivalents can be observed from the last
row, (b) effects of Nrow on Rth, (c) and on αth.
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Figure 10: (a) Calculated voltage ranges for the first and last rows.
(b) Acceptable and unacceptable regions in the (αth, Rth) plane.

cases (with least and most voltage drops, respectively), and
we find a voltage range the satisfy both corner cases; the
obtained voltage range guarantees the electrical correctness for
intermediate rows as well. The final acceptable voltage range
is the overlap between two voltage ranges shown in Fig. 10(a),

[V
′

min, Vmax], ensuring all of the rows from first row to the
last row receiving the proper voltage.

The noise margin (NM ) in implementations is defined by

NM =
Vmax − V

′

min

Vmid

(7)

where Vmid = (Vmax+V
′

min)/2. Clearly, we desire NM ≥ 0.
In Fig. 10(b), the acceptable and unacceptable regions in the
(αth, Rth) plane is shown. The NM on the separating line is 0,
above it NM is negative (unacceptable), and below it NM is
positive (acceptable). Our goal is to choose wire configurations
so that the corresponding (αth, Rth) of the design falls into
the acceptable region with maximum NM possible.

VI. RESULTS AND DISCUSSION

A. NM evaluation

To realistically analyze the effect of the parasitics, we assumed
that metal layers in 3D XPoint are constructed based on

M3
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M5 M5

𝑡𝑀9 𝑊𝑀9 M9

𝐿𝑐𝑒𝑙𝑙
M7
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𝑊𝑐𝑒𝑙𝑙

𝑊𝑐𝑒𝑙𝑙

M5

Figure 11: Multi-metal layer configuration can be utilized for the
design of WLT s, BLs, and WLBs of 3D XPoint subarray.

Table I: Different Configurations of Metal Lines in the 3D XPoint
Subarray Based on ASAP7 Design Rules.

Config WLT WLB BL Wmin×Lmin

1 M3 M1 M2 36nm×36nm

2 M3, M6, M8 M1, M7, M9 M2, M4, M5 48nm×80nm

3 M2 36nm×80nmM1, M4, M7, M9M3, M5, M6, M8

ASAP7 design rules [17], [18] (see Fig. 11). We can create
different configurations for allocating metal lines to WLT s,
WLBs, and BLs. Table I lists three possible configurations.
In configuration 1, only M1, M2, and M3 (the first three
metal lines) in ASAP7 are exploited for 3D XPoint, and
they are allocated to WLB, BL, and WLT , respectively. For
configurations 2 and 3, we assume that other than M1, M2, and
M3, the other metal layers (M4 to M9) can also be allocated
to the 3D XPoint lines. In configuration 2, we allocate M4 and
M5 to the BLs, and M6 to M9 are allocated equally between
WLT s and WLBs. In configuration 3, we assume that all
metals from M4 to M9 are allocated equally between WLT s
and WLBs; no extra top metal lines are allocated to BLs. We
report the minimum cell width (Wmin) and length (Lmin) for
each configuration based on the minimum required width of a
line and space between adjacent lines in each layer. The values
of parameters for metal lines and PCM devices are available
in the Supplementary Material.
NM improves with increasing Nrow: Fig. 12(a) shows NMs
of different Nrow values. NM is significantly sensitive to
Nrow. For Nrow as large as 2048, the implementations are
not valid due to excessive voltage drop, and hence negative
NM . Configuration 3 provides the best NM , because more
metal resources dedicated to WLT and WLB causes smaller
parasitics in the current path across rows.
NM improves with increasing Lcell: Fig. 12(b) shows the
NMs for different Lcells (for each configuration, values are
normalized to Lmin listed in Table I). By increasing Lcell,
the width of the WLT s and WLBs increase, decreasing the
parasitic resistances related to WLT s and WLBs.
NM decreases with increasing Wcell: Fig. 12(c) shows the
NMs for different Wcell (for each configuration, values are
normalized to Wmin listed in Table I). By increasing Wcell, the
length of the WLT s and WLBs increase, and consequently,
parasitics related to WLT s and WLBs considerably increase.
Therefore, for all cases, smaller Wcell causes larger NM .
NM remains unchanged with increasing Ncolumn:
Fig. 12(d) shows that the increase in Ncolumn does not affect
NM significantly. By increasing Ncolumn, parasitics of BLs
increase. However, since the BL resistances are in series
with those of PCM devices with orders of magnitude larger
resistance, the increase in BL resistance does not affect NM .

B. Implementing NNs on the 3D XPoint substrate

We list the performance of various 3D XPoint subarrays of
various sizes for the digit recognition of MNIST dataset in
Table II. Each MNIST test image is scaled to 11×11 as in [36],
a transformation that maintains 91% recognition accuracy and
reduces computation. We use configuration 3 in all cases, as it
provides the best NM among all alternatives. For the smallest
subarray with size 64× 128, NM is the maximum among all
cases. For the largest subarray with size 1024 × 1024, we
increase Lcell by 2.6× (compare to that of 64×128 subarray)

6
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Figure 12: NMs of the three metal line configurations: (a) changing Nrow (while Ncolumn = 128, Lcell = 4Lmin, and Wcell = Wmin),
(b) changing Lcell (while Ncolumn = 128, Nrow = 128, and Wcell = Wmin), (c) changing Wcell (while Ncolumn = 128, Nrow = 64,

and Lcell = 4Lmin), and (d) changing Ncolumn (while Nrow = 256, Lcell = 4Lmin, and Wcell = Wmin).

Table II: Evaluation of Different Subarray Sizes for Digit
Recognition Application.

64×128 36×240 6 21.5pJ 62.9 133.3 1.25 636.2 65.1% 64.9%

128×256 36×320 12 21.5pJ 335.5 66.7 1.25 650.6 63.1% 62.7%

256×512 36×400 25 20.7pJ 1677.7 32.0 1.25 681.0 58.9% 58.1%

512×1024 36×480 51 20.3pJ 8053.0 15.7 1.25 732.5 52.2% 50.8%

1024×2048 36×640 102 20.3pJ 42949.6 7.8 1.25 882.2 34.5% 31.5%

#Image 

per 

Step

Energy 

per 

Image

Subarray 

Area 

(µm2)

Subarray 

Size

Cell Size 

(nm×nm)

Execution 

Time 

(µs) 

NM
𝑉𝑚𝑎𝑥
(V)

NM

w/ 10% 

Var.

𝑉𝑚𝑖𝑛′
(mV)

to decrease the parasitics of lines. Consequently, we achieve
acceptable NM of 34.5%. With this relatively large subarray,
we have more parallelism that allow to process a larger number
of MNIST images in each computational step, reducing the
total execution time (17× faster than that of 64×128 subarray).
The energy per image is similar for all cases because the
subarray sizes listed in Table II are large enough to allow fully
processing an 11×11 MNIST image locally without extra data
movement between subarrays or peripheral circuitry.

The table also shows the impact of 10% process variation on
NM . In the second to the last column, interconnect resistances
are changed by 10%. For small arrays, the change in NM
is negligible because the resistance of the PCM element and
OTS dominate wire resistance. For larger arrays, this effect
becomes more noticeable (but is still not significant). In the
last column, PCM device parameters as well as interconnect
resistances are simultaneously varied by 10% to find the worst
NM due to variations of all parameters. NMs for all arrays
are still positive and acceptable (between 12.4% for the largest
subarray and 46.6% for the smallest subarray).

VII. CONCLUSION

We have presented methods for the implementations of
TMVM, NN, and 2D convolution on 3D XPoint. To ensure
the accuracy of the implementations, we considered wire
parasitics in our implementations. We have demonstrated that
interconnect parasitics have a significant effect on the imple-
mentations performance and have developed a comprehensive
model for analyzing this impact. Using this methodology, we
have developed guidelines for the 3D XPoint Subarray size and
configurations based on ASAP7 technology design rules. We
used different size 3D XPoint subarrays for digit recognition
of MNIST dataset. Using the our methodology methodology,
we design a relatively large subarray of 2 Mb with acceptable

NM of 34.5%, providing the opportunity for processing more
images per step without any energy overhead.
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APPENDIX

We derive recursive expressions for calculating Rth and Vth

of a (Nrow ×Ncolumn) subarray of 3D XPoint.
Within the footprint area of a cell (Wcell × Lcell), we define

Gy (representing the conductance for WLT and WLB seg-
ments) and Gx (representing the conductance of BL segment).
Fig. 13 shows the equivalent simplified circuit model for the
implementation TMVM in the corner case. Row i is separated
from its predecessor by conductance Gy at each end. The
input cell is connected to the output cell, Ncolumn columns
away. The conductances in the last row are rearranged to create
a two-port structure consisting of the PCM conductances so
that the rest of the network can be modeled using Thevenin
Equivalents (Rth and Vth).

For configuration 1 (listed in Table I), Gy = GM1
= GM3

(assuming similar wire conductance for WLT s and WLBs)
and Gx = GM2

in which the conductance, GMk
, is given by:

G−1
Mk

=
ρMk

LMk

tMk
WMk

, where ρMk
, LMk

, tMk
, and WMk

are, re-

spectively, the resistivity, length, thickness, and width in metal
layer k (see the Supplementary Material). For configurations
2 and 3, the equivalent conductance of the wire segment must
be calculated based on the multi-metal layer configuration

(𝐺𝑂1)−1
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Figure 13: Notations used for calculating Thevenin resistance
(Rth) and Thevenin voltage (Vth) shown on the circuit model for

the implementation of TMVM in the worst case scenario.

of a given segment. For example, in configuration 2, Gy

(representing a segment conductance of WLT ) is obtained
by Gy = GM3

+GM6
+GM8

.
To calculate Rth and Vth, we derive recursive expressions.

For conciseness, we define the resistance, Rrowi
, of row i as:

Rrowi
= Ncolumn (Gx)

−1
+ (GC)

−1
+
(

GONrow−i

)

−1
(8)

We can obtain Rth, using the notations in Fig. 13, as:

Rth = 2 (Gy)
−1

+Ncolumn (Gx)
−1

+RNrow−1 (9)

where RNrow−1 is calculated using the recursive expression:

Ri = (Rrowi
) ||

(

Ri−1 + 2 (Gy)
−1

)

(10)

The base case corresponds to the driver row that precedes the
first row, and is R0 = 2RD, as seen in Fig. 13.

To compute Vth, as illustrated in Fig. 13, we first compute
the intermediate variable R′

j , which corresponds to the effec-
tive downstream resistance (away from the source) seen from
node j. The computation proceeds in a recursive fashion from
the last row towards the first as:

R′

j−1 =
(

Rrowj−1

)

||
(

R′

j + 2 (Gy)
−1

)

(11)

with the base case R′

Nrow−1 = RrowNrow−1
. Having computed

R′

j , we may now compute Vth = VNrow
, using a recursive

computation on Vi:

Vj =
R′

j

2 (Gy)
−1

+R′

j

Vj−1 (12)

in which 2 ≤ j ≤ Nrow − 1 and the base case is:

V1 =
R′

1

R′

1 + 2 (Gy)
−1

+ 2RD

Vb (13)

8
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SUPPLEMENTARY MATERIAL

A. PCM parameters

The conductance values of parameters in a PCM cell listed
in Table III. In this work, we adopt the RESET current
(IRESET ) of 100µA with RESET Time (tRESET ) of 15ns,
and SET time (tSET ) of 80ns with the assumption of SET
current (ISET ) of 50µA (= IRESET

2 ) [7], [8].

Table III: PCM cell parameters and values [7], [8]

Parameters Description Value

GA

PCM conductance in the

amorphous state
660 nΩ−1

GC

PCM conductance in the

crystalline state
160µΩ−1

S1

Voltage control switch

for OTS

100nΩ−1(<0V) and

10Ω−1(>0.3V)

S2

Voltage control switch for

PCM in crystalline state

10Ω−1(<0.8V) and

100nΩ−1(>1V)

B. Interconnect specifications for ASAP7

The interconnect specifications are listed in Table IV, which
shows the metal thickness (tM ) and resistivity (ρM ), the
minimum line spacing (Smin), minimum line width (Wmin),
and Table V, which shows the via parameters [17], [18].

Table IV: Specification of Metal Layers in ASAP7 [17], [18]

Metal tM Smin Wmin ρM

M1(V) 36nm 18nm 18nm 43.2Ω.nm

M2(H) 36nm 18nm 18nm 43.2Ω.nm

M3(V) 36nm 18nm 18nm 43.2Ω.nm

M4(H) 48nm 24nm 24nm 36.9Ω.nm

M5(V) 48nm 24nm 24nm 36.9Ω.nm

M6(H) 64nm 32nm 32nm 32.0Ω.nm

M7(V) 64nm 32nm 32nm 32.0Ω.nm

M8(H) 80nm 40nm 40nm 28.8Ω.nm

M9(V) 80nm 40nm 40nm 28.8Ω.nm

Table V: Specification of Vias in ASAP7 [17], [18]

Via RV Via Size Minimum Spacing

V12 (M1 and M2) 17Ω 18nm×18nm 18nm

V23 (M2 and M3) 17Ω 18nm×18nm 18nm

V34 (M3 and M4) 17Ω 18nm×18nm 18nm

V45 (M4 and M5) 12Ω 24nm×24nm 33nm

V56 (M5 and M6) 12Ω 24nm×24nm 33nm

V67 (M6 and M7) 8Ω 32nm×32nm 45nm

V78 (M7 and M8) 8Ω 32nm×32nm 45nm

V89 (M8 and M9) 6Ω 40nm×40nm 57nm

C. Status of lines during communications between subarrays

The status of 3D XPoint lines during the communications
with each other is listed in Table VI.

D. Corner case circuit

The corner case circuit is shown in Fig. 14. In the Ap-
pendix A, we simplified the circuit even further and calculate
the Thevenine equvalents observed from the last row. In
Fig. 15, we show the reconfiguration and simplification of
circuit shown in Fig. 14.

Table VI: Status of 3D XPoint Lines for Two Different
Configurations

Line Subarray
Configuration

BL-to-BL BL-to-WLT

WLT s
1 Vis are applied Vi are applied

2 all float all active

BLs
1 all active all active

2 all active
all float -{output row

connect to the ground}

WLBs
1 all float all float

2
all float-{output column

connect to the ground}
all float

𝐺𝑦
𝐺𝑦

𝐺𝑦
𝐺𝑥 𝐺𝑥 𝐺𝑁𝐷

𝑂0
𝑂1

𝑉𝐷𝐷𝐺𝑦
𝐺𝑦

𝐺𝑦
𝐺𝑥𝐺0,0 ≈ 𝐺𝐶

𝐺0,1 ≈ 𝐺𝐶

𝐺0,𝑁𝑦 ≈ 𝐺𝐶
𝑂𝑁𝑦

𝐼1

𝐼𝑁𝑦

𝐼0

𝐺𝑥𝐺𝑥

𝐺𝑥𝐺𝑥
𝐺𝑥𝐺𝑥
𝐺𝑥 𝐺𝑥

𝐺𝑥
𝐼0

𝐺 𝑥𝑁𝑥
Figure 14: The equivalent circuit model for the worst case

𝑂0 𝑂1
𝐺0,0

𝐺𝑦

𝐺 𝑥𝑁𝑥 𝐺 𝑥𝑁𝑥
𝐺𝐶

𝑂1

𝐺 𝑥𝑁𝑥
𝐺𝐶

𝐺𝑦

𝐺𝑦𝐺𝑦𝐺𝑦

𝑂1

𝐺 𝑥𝑁𝑥
𝐺𝐶

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑦 𝑉𝐷𝐷

𝐺𝑁𝐷

Input and 

output PCMs of 

the Last row𝑂0
𝐺0,0 𝐼𝑙𝑎𝑠𝑡 +−

1/𝑅𝑡ℎ
𝑉 𝑡ℎ=α

𝑡ℎ𝑉 𝐷𝐷

Figure 15: Reconfiguration and simplification of equivalent circuit
model.

E. Multi-bit operations

Thus far, we have discussed the implementations of operations
with binary digits. We introduce two methods that enable us
to implement operations with multi-bit digits. For brevity, we
explain the principle using two-bit digits, where each digit
consists an MSB (most significant bit) and an LSB (least
significant bit). Let us assume that we want to perform TMVM
of G2bitV where G2bit is a (Nx +1)× (Ny +1) matrix with
two-bit elements, meaning the element located in row i and
column j of the matrix G2bit is GMSB

i,j GLSB
i,j .

Fig. 16 illustrates two ways to implement 2-bit operations
on a 3D XPoint subarray. Fig. 16(a) shows an area-efficient
approach. For example, to calculate O0, we need to calculate
(GLSB

0,0 +2GMSB
0,0 )V0+(GLSB

1,0 +2GMSB
1,0 )V1+ ...+(GLSB

Nx,0
+

2GMSB
Nx,0

)VNx
. To do so, we can apply V0 to the WLT0

(connected to the PCM storing GLSB
0,0 bit), and we can apply

2V0 to WLT1 (connected to the PCM storing GMSB
0,0 bit).

Therefore, the current flowing through the MSB cell is two
times larger than that of the LSB cell. Another more area-
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Table VII: Evaluation of Implementation Energy and Area for
Multi-Bit TMVM using Area Efficient and Low Power Schemes.

Parameters
Implementation 

Scheme

Number of Bits for each G element

1 2 3 4 5 6

TMVM 

Energy

(pJ)

Area Efficient 2.0 5.0 13.1   

Low Power 2.0 2.2 2.4 2.5 2.6 2.6

TMVM 

Area

(µm2)

Area Efficient 0.2 0.4 0.6

Low Power 0.2 0.6 1.3 2.8 5.7 11.6

intensive approach, which does not require multiple voltage
levels, is shown in Fig. 16(b) where we copy the MSB in
pair of adjacent cells, and we apply the same voltage to their
corresponding WLT s. The current through the MSB cell is
weighted to be twice that of the current through the LSB cell.

𝐵𝐿0𝐵𝐿1𝐵𝐿2𝐵𝐿3
𝐵𝐿0𝐵𝐿1𝐵𝐿2𝐵𝐿3

(b)(a)

𝑉0 2𝑉0

𝑂0 𝑂1 𝑂𝑁𝑦𝐺0,0𝐿𝑆𝐵 𝐺0,0𝑀𝑆𝐵 𝐺1,0𝐿𝑆𝐵 𝐺1,0𝑀𝑆𝐵
𝑉1 2𝑉1 𝑉0 𝑉0 𝑉0 𝑉1

𝐺0,0𝐿𝑆𝐵 𝑂0 𝑂1 𝑂𝑁𝑦𝐺0,0𝑀𝑆𝐵 𝐺0,0𝑀𝑆𝐵 𝐺1,0𝐿𝑆𝐵
Figure 16: Two implementations with multi-bit operations: (a)
area-efficient implementation, (b) low-power implementation.

We analyze the energy and area for the implementation a
multi-bit TMVM using two schemes that we introduced in
Section IV. We listed the results in Table VII. As we increase
the number of bits for the Gi,js, the allocated area for both
implementations increases. However, while for area-efficient
scheme, the area increases linearly, for the low-power scheme,
the area increases exponentially. The implementation energy in
the low-power scheme slightly increases with increasing the
number of bits, while for the area-efficient schemes, energy
increases rapidly. For the area-efficient scheme, we do not list
the energy and area values beyond 3 bits, because it requires
applying a large voltage level (>5V) within the subarray,
making the implementation infeasible and unrealistic.
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