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Abstract

A major challenge in neuroscience is understanding how brain function emerges from

the connectome. Most current methods have focused on quantifying functional con-

nectomes in gray-matter (GM) signals obtained from functional magnetic resonance

imaging (fMRI), while signals from white-matter (WM) have generally been excluded

as noise. In this study, we derived a functional connectome from WM resting-state

blood-oxygen-level-dependent (BOLD)-fMRI signals from a large cohort (n = 488).

The WM functional connectome exhibited weak small-world topology and non-

random modularity. We also found a long-term (i.e., over 10 months) topological reli-

ability, with topological reproducibility within different brain parcellation strategies,

spatial distance effect, global and cerebrospinal fluid signals regression or not. Fur-

thermore, the small-worldness was positively correlated with individuals' intelligence

values (r = .17, pcorrected = .0009). The current findings offer initial evidence using

WM connectome and present additional measures by which to uncover WM func-

tional information in both healthy individuals and in cases of clinical disease.
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1 | INTRODUCTION

In general, brain networks can be derived from structural connectivity

(anatomy), functional connectivity (statistical dependencies), and even

effective connectivity (causal relations) among collections of distrib-

uted brain regions (Bullmore & Sporns, 2009; Sporns, 2012). Func-

tional networks can be calculated using temporal correlations—or

coherences—between blood oxygen level-dependent (BOLD)–functional

magnetic resonance imaging (fMRI) signals from distinct brain regions in

gray-matter (GM) (Achard, Salvador, Whitcher, Suckling, & Bullmore,

2006; Biswal et al., 2010; Biswal, Yetkin, Haughton, & Hyde, 1995). It

has been suggested that human brain networks are organized to allow

optimized efficiency, which implies a small-world topology, a densely

connected core of high-degree hubs, and a modular organization (Avena-

Koenigsberger, Misic, & Sporns, 2017). Investigations into such an orga-

nization serve to uncover fine details concerning the brain's network

architecture. However, previous studies that have evaluated GM func-

tional networks have both underappreciated and failed to provide direct

evidence for the presence of functional information in white-matter

(WM).

The role of WM in neuroimaging remains controversial. Histori-

cally, BOLD-fMRI hemodynamic responses have been considered
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noisy, unreliable and undetectable in WM. In recent years, however,

brain activation in WM has been detected using BOLD-fMRI

(Gawryluk, Mazerolle, & D'Arcy, 2014). Mounting evidence from the

interhemispheric transfer task as well as the Poffenberger and the

Sperry paradigms support for the already well-established example

using fMRI activation in WM that is implicated in the corpus callosum

and internal capsule (Courtemanche, Sparrey, Song, MacKay, &

D'Arcy, 2018; D'Arcy, Hamilton, Jarmasz, Sullivan, & Stroink, 2006;

Gawryluk, Mazerolle, Beyea, & D'Arcy, 2014; Gawryluk, Mazerolle,

Brewer, Beyea, & D'Arcy, 2011; Tettamanti et al., 2002). In addition,

neural activity actually elicits temporal and spectral profiles of hemo-

dynamic responses in WM that are similar to those in GM under visual

stimulation (Ding et al., 2013, 2016; Huang et al., 2018). Recently, we

examined whether the power of low-frequency BOLD fluctuations in

WM during resting state exhibits a specific distribution rather than a

random distribution of noise at rest (Ji, Liao, Chen, Zhang, & Wang,

2017). Moreover, this WM activity, which is estimated from low-

frequency BOLD fluctuations, was shown to be modulated under dif-

ferent cognitive tasks (Huang et al., 2018; Ji, Liao, Chen, Zhang, &

Wang, 2017; Marussich, Lu, Wen, & Liu, 2017; Wu et al., 2017).

When combined, these findings converged to provide evidence of

neural activation/activity in WM based on task-related/free BOLD-

fMRI (Gawryluk, Mazerolle, & D'Arcy, 2014) and showed that fMRI is

a promising tool for investigating WM functioning in the human brain.

While previous studies have investigated WM activation/activity,

we wanted to explore functional connectivity in WM by examining

functional networks in WM. For instance, as the specific WM tracts

are tracked using diffusion data, it is also possible to identify func-

tional connectivity in anatomical bundles with resting-state fMRI data

(Ding et al., 2018; Marussich et al., 2017; Wu et al., 2017). Recently,

Peer et al. demonstrated that WM also had an intrinsic functional

organization, indicating interacting networks of functional modules as

seen in a resting-state fMRI investigation and that were similar to

those found in GM functional networks (Peer, Nitzan, Bick, Levin, &

Arzy, 2017). In line with this work, the perception-motor functional

network in WM was found to be abnormal in schizophrenia (Jiang

et al., 2019). More recently, Ji et al. found that patients with

Parkinson's disease showed increased small-worldness in the WM

functional network (Ji et al., 2019). Moreover, brain function profiles

of WM function, including power spectra, coupling of WM and GM

functional connectivity were found to be disrupted in various brain

disorders, such as pontine stroke, Alzheimer's disease, and epilepsy

(Jiang et al., 2019; Makedonov, Chen, Masellis, & MacIntosh, 2016;

Wang et al., 2019). However, such previous studies focused on the

extant functional modules and large-scale networks in WM; used rela-

tively small sample sizes; and failed to offer direct evidence for the

different roles played by functional connectomes within WM and GM.

In the present study, we explored the resting-state WM functional

connectome in a large cohort of healthy controls (n = 488). We uti-

lized graph theoretical analysis, which had been successfully applied

to an association matrix of functional connectivity measures (Liao

et al., 2018). We investigated the following: (a) whether the WM func-

tional connectome has features of complex networks, such as a small-

world topology, densely connected hubs, or modular organization;

(b) in the case that the WM functional connectome showed typical

network architectures, whether any differences of brain architectures

or mechanisms were found between WM and GM functional con-

nectomes; and (c) whether these brain architectures were reliable over

a long-term (over 10 months) period in healthy controls (Time 1 and

Time 2: n = 175).

2 | MATERIALS AND METHODS

2.1 | Subjects

Test–retest data was obtained from a large longitudinal cohort,

namely, Southwest University Longitudinal Imaging Multimodal (SLIM)

study. For detailed description about the subject information and data

acquisition parameters, please see Liu et al. (2017). The data is avail-

able for research purposes through the International Data-sharing Ini-

tiative (http://fcon_1000.projects.nitrc.org/).

The above-mentioned data was obtained from healthy subjects

(n = 558, 305 females; aged between 18 and 27 years; age (mean

± SD) 20.08 ± 1.28 years) who were recruited from Southwest Univer-

sity, Chongqing, China. This study was approved by the Institutional

Human Participants Review Board of the Southwest University Imag-

ing Center. Written informed consent was obtained from all subjects.

Subjects were excluded if they: (a) were < 18 years of age; (b) had

been diagnosed with psychiatric or neurological disorders; (c) had

used psychiatric drugs within the 3 months prior to scanning; (d) were

pregnant; (e) had a history of head trauma; (f) had metal devices such

as electronic implants; or (g) met the DSM-V criteria for any psychiat-

ric disorders. Nine months after the first scanning session (Time 1),

221 subjects were requested to undergo a follow-up scanning (Time 2).

Scans for each subject were separated by an average of 10.4 ± 3.61

(mean ± SD) months.

2.2 | Data acquisition

All subjects underwent structural and functional imaging scanning

using a Siemens Trio 3.0 T scanner at Southwest University, Chong-

qing, China. The T1-weighted anatomical images (repetition

time = 1,900 ms, echo time = 2.52 ms, flip angle = 9�, field of

view = 256 × 256 mm2, matrix = 256 × 256, voxel size = 1 × 1 × 1mm3,

slices = 176) were acquired. Subsequently, resting-state BOLD-fMRI

were acquired using a single-shot, gradient-recalled echo planar imag-

ing sequence (repetition time = 2,000 ms, echo time = 30 ms, flip

angle = 90�, field of view =220 × 220 mm2, matrix = 64 × 64, voxel

size = 3.4 × 3.4 × 3 mm3, slices = 32). For each subject, a total of

242 volumes (484 s) were acquired. All subjects were instructed to

simply rest with their eyes closed.

2.3 | Data preprocessing

Functional images were preprocessed using the DPARSF (v4.3, www.

restfmri.net) and SPM12 toolkits (www.fil.ion.ucl.ac.uk/spm/
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software/spm12). Slice-timing correction and realignment were

applied to the 235 functional volumes after excluding the first 7 vol-

umes (14 s). Subjects were excluded if the head motion exceeded

2.0 mm translation or 2.0� rotation. The mean framewise-

displacement (FD) was also calculated for each subject.

Structural images were then co-registered with the preprocessed

functional images (mean functional image for each subject), and seg-

mented into GM, WM, and cerebrospinal fluid (CSF) using a dif-

feomorphic nonlinear registration algorithm (DARTEL; Ashburner,

2007) in SPM12. Briefly, DARTEL works by aligning GM across

images, while simultaneously aligning WM. This procedure generates

its own increasingly crisp average template images for a group, to

which images are iteratively aligned (Ashburner & Friston, 2009). We

used the default parameter setting. Specifically, for bias regularization,

the parameters were set to light regularization (0.001); while bias full

width at half maximum (FWHM) was set at a 60 mm cutoff. This pro-

cedure a generates WM and GM files, a series of template images,

and segment parameters.

To minimize mixing signal (and noise) components from the WM

and GM regions due to partial volume effect, subsequent processing

of the functional images was performed separately for WM and GM,

in accordance with our previous study parameters (Ji, Liao, Chen,

Zhang, & Wang, 2017). First, individual masks were generated using a

rigorous 90% threshold on the probability maps of both WM and GM

(i.e., produced by structural segmentation), respectively. Second, func-

tional images were spatially separated into WM and GM images using

the dot product between functional images and the two masks

(i.e., WM and GM). Third, the mean CSF signals (95% thresholded),

24 head motion parameters (six head motion parameters, one time

point before, and the 12 corresponding squared items), and scrubbing

parameters (FD > 0.5 mm along with one-forward and two-back

neighbors) were regressed out from functional data (Liao et al., 2019).

To avoid elimination of important neural signals, we did not remove or

regress out WM or global signals (Huang et al., 2018; Ji, Liao, Chen,

Zhang, & Wang, 2017; Peer et al., 2017).

Next, the segmented WM and GM structural images were spa-

tially normalized onto Montreal Neurological Institute (MNI) space

using deformation fields from DARTEL. Specifically, the DARTEL tem-

plate was set as the final iterative template images (usually called

Template_6.nii). This template is registered to MNI space (affine trans-

form), and generates deformation fields. Thus, the WM and GM func-

tional images under the WM and GM masks are also normalized to

MNI space using these deformation fields, and are resampled to

3 × 3 × 3 mm3. Then, only voxels identified as WM or GM across 80%

of subjects were included as part of the group-level WM or GM

masks. To exclude the impact of deep brain structures, the probability

(25% threshold) Harvard-Oxford Atlas was used to remove subcortical

nuclei (i.e., bilateral thalamus, putamen, caudate, pallidum, and nucleus

accumbens) from the group-level WM and GM masks. To minimize

spurious local spatial correlations between voxels, spatial smoothing

was not applied. Subsequently, linear trending and band-pass filtering

(0.01–0.10 Hz) was performed to minimize any drifts as well as mini-

mize high frequency physiological noise sources such as the

respiration rate. Finally, as functional connectivity is sensitive to the

confounding factor of head motion, scrubbing regression was per-

formed to reduce any spurious correlations (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012). If the FD of a point exceeded 0.5 mm,

the value of the signal at the point, as well as one forward and two

back neighbors were removed. Subjects with 80% of their volumes

remaining were included for further analysis.

2.4 | Exclusion criteria

First, we excluded subjects whose head motion exceeded 2.0 mm of

translation or 2.0� of rotation, and whose remaining volumes were

less than 80% after scrubbing analysis. In this study, 47 subjects out

of a total of 558 subjects were excluded and no further analysis was

performed. The quality of preprocessed functional images was then

checked, excluding an additional 23 subjects with low quality func-

tional images (e.g., most part of the temporal lobe was uncovered)

from remained 511 subjects. Finally, 488 subjects were included in

Time 1, and 175 subjects were included in the test–retest analysis

(Time 1 and Time 2).

2.5 | Construction of the WM functional

connectome

The group-level WM mask was subdivided into 128 random regions

of interest (ROIs) and was generated and approximately identical in

size (mean ± SD = 143 ± 6 voxels across ROIs), as previously

described by Zalesky et al. (2010). To ensure the equality of sequential

comparison analysis, we first split the WM and GM masks into half

across hemispheres, and then divided each half mask in 64 random

ROIs using the region-growing method (Zalesky et al., 2010). The WM

group parcellation (WM.nii) used here is attached as Supporting Infor-

mation Data S1. Following construction of the WM functional

connectome, correlation matrices (128 × 128) were produced using

Pearson's correlation coefficient between each ROI's averaged time

series. Fisher's r to Z transformation was applied to each of the corre-

lation matrices. A schematic of the analyses is shown in Figure 1.

Finally, we estimated the topological properties of the WM functional

connectome.

2.6 | Network properties of the WM functional

connectome

2.6.1 | Threshold selection

To explore the influence of thresholding on topological properties

(Bullmore & Bassett, 2011), we used sparsity-based (proportional)

thresholding to the weighted correlation matrix corresponding to each

subject (Garrison, Scheinost, Finn, Shen, & Constable, 2015). The spar-

sity was defined as the ratio of the real edge numbers divided by the

maximum possible edge numbers in a given network at a rthr. We

decreased the rthr from 1 to 0 (from maximum to minimum) till the

existing number of edges satisfies a sparsity threshold. Specifically,
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0≤ sparsity≤1=
εrthr

N N−1ð Þ=2

where εrthr expresses the existing number of edges generated by

thresholding at rthr, and N(N−1)/2 represents the maximum possible

number of edges existing in a given network of N nodes (Bullmore &

Bassett, 2011; Liao et al., 2018). In this case, when rthr = 0, sparsity = 1;

when rthr = 1, sparsity = 0.

The minimum sparsity was defined across all subjects as follows:

(a) the mean degree of a node (the number of connections to the

node) over all nodes in thresholded weighted matrices was greater

than 2 × log(N) ≈ 9.7 (Achard & Bullmore, 2007; Ji et al., 2017; Liao

et al., 2011, 2018); where N expresses the number of nodes, N = 128.

In this case, total number of edges ≈882, which was equivalent to

sparsity = 0.11 or 11% of the maximum number of edges possible

(C2
128 =8128) in a network of 128 nodes. This procedure allowed us to

estimate small-world properties (He, Chen, & Evans, 2007), and to

compare the topological properties of brain networks to those of

equally-sized random networks with a minimum mean degree >log(N),

in order to guarantee that a given random graph will be connected

(Watts & Strogatz, 1998). (b) The above-mentioned sparsity was fur-

ther adjusted to ensure that the size of the giant connected cluster, or

largest subgraph, was greater than 80% of the total number of nodes

in the network (N ×80% ≈103). The maximum sparsity corresponds

to the lowest significant correlation coefficients p < .05 for all WM or

GM weighted matrices across all subjects (Ji et al., 2017). We counted

the remaining edges after thresholding (p < .05) for the weighted

matrix of each subject, which results in maximum sparsity (the

remaining edges divided by the maximum possible edges) for that sub-

ject. This procedure minimizes the number of spurious edges (Ji et al.,

2017; Liao et al., 2018). As such, a range of sparsity thresholds

(WM functional network: 0.17–0.42, interval = 0.01; GM functional

network: 0.11–0.48, interval = 0.01) could be pre-selected.

2.6.2 | Global topological properties

The global topological properties of WM and GM functional con-

nectomes were computed using Gretna software (v2.0, www.nitrc.

org/projects/gretna). The following parameters were included the net-

work strength (S), global efficiency (Eglob), local efficiency (Eloc), nor-

malized clustering coefficient (γ), normalized shortest path length (λ),

and small-worldness (σ). A review outlines the uses and interpreta-

tions of these topological properties (Rubinov & Sporns, 2010).

Briefly, S measures the connectivity capacity of the entire network.

Eglob quantifies the capacity of information exchange across the whole

network, where information is concurrently transferred (Latora &

Marchiori, 2001). Eloc can be regarded as a measure of the fault toler-

ance of the subgraph, showing how efficiently information is

exchanged at the local level. Small-worldness supports both segre-

gated and integrated information processing. The mathematical defini-

tions of these topological properties are listed in the Supporting

Information Data S2.

F IGURE 1 Construction of white-matter (WM) functional connectome. Step 1: Structural image (3D T1) was co-registered with the

preprocessed functional images (mean functional image). Step 2: The co-registered 3D T1 image was segmented into white-matter (WM), gray-

matter (GM), and CSF. Step 3: The group-level WM mask was then divided into 128 random ROIs (nodes) of an approximately identical size. Step

4: Functional images were then spatially separated into segmented WM. After sequent preprocessing, only functional voxels identified as WM

across 80% subjects were included as part of the group-level WM mask. Next, BOLD-fMRI signals of each ROI was extracted by averaging all

voxels' time series in the node. Step 5: A correlation matrix was produced using Pearson's correlation coefficient between any paired node's

averaged time series for each subject. BOLD-fMRI, blood-oxygen-level-dependent functional magnetic resonance imaging; CSF, cerebrospinal

fluid; ROI, region-of-interest [Color figure can be viewed at wileyonlinelibrary.com]
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2.6.3 | Generation of random networks

Brain networks are always compared to random networks to vali-

date its nonrandom topology. As suggested by Stam et al., statisti-

cal comparisons should generally be performed between networks

that have equal (or at least similar) degree sequence (Stam, Jones,

Nolte, Breakspear, & Scheltens, 2007). In line with previous stud-

ies (Maslov & Sneppen, 2002; Sporns & Zwi, 2004), a Markov-

chain algorithm was used to generate random networks by ensur-

ing the same number of nodes, edges and degree of distribution

as the elicited brain networks. The procedure can be described by

the following steps: a pair of edges—(i1, j1) and (i2, j2)—were first

randomly selected, where node i1 is connected to node j1, and

node i2 is connected to node j2. If there were no edges between

the two nodes, we added two new edges to replace the original

two edges. This procedure is then repeated 2× the number of

edges in the reference brain network to assure randomized

organization.

2.6.4 | Degree of distribution fits

To determine whether the WM functional connectome included hub

regions, three possible forms of the degree distribution P(k) (Achard

et al., 2006) were fitted to the WM functional connectome: a power

law, P(k) ~ k−α; an exponential, P(k) ~ e−αk; and an exponentially trun-

cated power law, P(k) ~ kα−1ek/kc. To quantify the strength of each fit,

goodness-of-fit was compared using Akaike's information crite-

rion (AIC).

2.6.5 | Topological properties of the WM functional

connectome

To validate the nonrandom topologies of the WM functional

connectome, we compared the topological properties (Eglob and Eloc)

between WM and random networks using a Wilcoxon signed-rank

test. And we compared σ against 1 using a one-sample t test

(Humphries, Gurney, & Prescott, 2006; Liao et al., 2011). Considering

σ was the ratio of γ/λ, and that the same degree of distribution was

found between WM and random networks, we did not compare the S,

γ, and λ values between WM and random networks. The comparisons

were first conducted for each sparsity values (0.17–0.42, inter-

val = 0.01). We then calculated the area under curve (AUC) for Eglob,

Eloc and σ using a range of sparsities from 0.17 to 0.42 for each sub-

ject. This AUC provides a summarized scalar for topological properties

independent of single threshold selection, as any single threshold

admits that the topological properties would be uniquely dependent

on the precise threshold (Achard & Bullmore, 2007). The integrated

AUC of topological properties has been used in previous brain net-

work studies, and is sensitive to topological comparison (Ji et al.,

2017; Liao et al., 2018).

2.6.6 | Correlation between topological properties

and intelligence

We investigated the relationship between the topological properties

(Eglob, Eloc, and σ) in the WM functional connectome, as well as fluid

intelligence derived from the Combined Raven's Test (Sun et al.,

2019) using Pearson's correlation coefficient. This test was used as a

psychometric index of individual intelligence. We performed this cor-

relational analysis on 402 out of 488 subjects who performed this

behavioral test.

2.6.7 | Modular organization

To examine the modular organization of the WM functional

connectome, we applied Newman's measure of modularity (Q)

(Newman, 2006). A module in the network can be defined as a subdi-

vision that has more connections within the module than outside the

module.

2.6.8 | Test–retest analysis

To evaluate the reliability of global topological properties in the WM

functional connectome, we applied a test–retest analysis. We created

a group-level mask for subjects who took part in both studies, for

whom both Time 1 and Time 2 data were available. We subdivided

this group-level mask into 128 random ROIs. To minimize (scale) the

effects of random networks, we used normalized Eglob, normalized

Eloc, and σ values to process the test–retest analysis. Normalized Eglob

was computed by the ratio of the Eglob of WM networks to the Eglob

of comparable random networks, as well as normalized Eloc. We then

calculated the topological properties (normalized Eglob, normalized Eloc,

and σ) over a common range of sparsities range from 0.17 to 0.43

(interval = 0.01) across Time 1 and Time 2.

We evaluated the test–retest reliability of global topological prop-

erties (Andellini, Cannata, Gazzellini, Bernardi, & Napolitano, 2015;

Wang et al., 2017) using the intraclass correlation coefficient (ICC).

More specifically, a one-way ANOVA was used to evaluate the results

of both scans in order to calculate the between-subject mean square

(MSb) and within-subject mean square (MSw). ICC values were then

calculated as follows:

ICC=
MSb−MSw

MSb + d−1ð ÞMSw

where d is the number of observations per subject (here d = 2); MSb is

the between-subjects mean square; MSw is the within-subjects mean

square. We calculated the ICC values of topological properties for

each specific sparsity. We classified ICC values into five levels

according to the following criteria (Landis & Koch, 1977): excellent

(ICC > 0.8), high (0.79 > ICC > 0.6), moderate (0.59 > ICC > 0.4), fair

(0.39 > ICC > 0.2), and poor (ICC < 0.2).
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2.7 | Comparison of topological properties between

WM and GM functional connectomes

Using an identical method as used for WM, we constructed the func-

tional connectome (128 × 128 correlation matrices) of GM. The GM

group parcellation (GM.nii) used in the current study is attached as

Supporting Information Data S1. Furthermore, we compared topologi-

cal properties of the functional connectome between WM and GM.

For the GM functional connectome, the AUC of each topological

property (S, Eglob, Eloc, γ, λ, and σ) was calculated using a range of spar-

sities from 0.11 to 0.48 (interval = 0.01) for each subject, separately. To

compare the topological properties between WM and GM functional

connectomes, a Wilcoxon signed-rank test was conducted for each

sparsity value (range from 0.17 to 0.42, interval = 0.01), followed by a

calculation of the integrated AUC of each topological property within a

common range of sparsities from 0.17 to 0.42 (interval = 0.01).

2.8 | Validation analyses

We performed validation analysis in order to estimate the influence of

head motion on the topological properties of the WM functional

connectome. We also performed several additional analyses including

global signal regression, without CSF regression, spatial (Euclidean)

distance, and the node parcellation scheme, described in detail below.

Moreover, considering that any interference would influence both

WM and GM functional connectomes, we performed additional ana-

lyses comparing measured between WM and GM, such as the spatial

(Euclidean) distance effect, global signal effect, and hemodynamic

response function (HRF) effect.

1. Head motion effect: to validate whether the topological properties

in the WM functional connectome were sensitive to head motion,

we performed a Pearson's correlation analysis between mean FD

and the AUC values of the topological properties.

2. Euclidean distance effect: as the observed WM nodes were all spa-

tially very close to each other, this could lead to an overestimation of

the clustering of the WM functional connectome. To exclude Euclid-

ean distance effects for topological properties of the WM functional

connectome, we regressed a Euclidean distance matrix from theWM

functional connectivity matrices (Goni et al., 2014). The Euclidean

distance D (in mm) was calculated by the 2-norm (k.k2) of any pair of

nodal centroids in the MNI stereotactic space (Misic et al., 2014; Sal-

vador et al., 2005). The topological properties were then re-

calculated in these regressed matrices. In addition, we re-evaluated

the modular organization of the WM functional connectome.

We then performed a comparison of topological properties between

the WM and GM functional connectomes after regressing out the

Euclidean distance matrix from both WM and GM functional connectiv-

ity matrices.

3. Global signal effect: we regressed out global brain signals (includ-

ing WM, GM, and CSF tissues) during WM and GM functional

data processing and maintained all other processes to validate the

effect of global signals on our findings.

After global signal regression, we compared topological proper-

ties between WM and GM functional connectomes, as well as

between the WM functional connectome and random net-

works. In addition, we re-evaluated the topological properties

(Eglob, Eloc, and σ) from the test–retest scans.

4. Node parcellation effect: we applied WM bundle masks using the

JHU ICBM-DTI-81 WM atlas, as has been previously used (Ding

et al., 2018; Wu et al., 2019) to validate the effects of node

parcellation effect on topological property comparisons between

the WM functional connectome and random networks. This WM

atlas included 48 bundle regions (nodes).

5. CSF signal effect: to further explore the effects of CSF signals, we

did not further regress out the brain CSF signals during

preprocessing, maintaining all other processes intact. We validated

the effect of CSF on topological property comparisons between

the WM functional connectome and random networks.

6. HRF effect: there is expected to be a delay in BOLD-fMRI response

between WM and GM signals (Li, Newton, Anderson, Ding, & Gore,

2019), which may affect the comparison of topological properties

between WM and GM functional connectomes. To minimize any

HRF delay effect, we used a blind-deconvolution technique for

BOLD-fMRI signals to eliminate confounders, based on temporal

precedence (https://github.com/compneuro-da/rsHRF) (Wu et al.,

2013). During the resting state, BOLD-fMRI data were obtained by

inspecting the discrete events that resulted in relatively large ampli-

tude BOLD signal peaks, usually called spontaneous BOLD “events”

(Liu & Duyn, 2013; Wu & Marinazzo, 2016). These events can then

be used to retrieve the region-specific HRF at rest. In the present

analysis, BOLD “events” were defined as the amplitude of time

points exceeding 1 × SD of the time series surrounding a local peak

(Liu & Duyn, 2013; Wu & Marinazzo, 2016). Then, we used the

corresponding HRF in a deconvolution model to obtain the dec-

onvolved BOLD-fMRI signal. Finally, we constructed both the WM

and GM functional connectomes using this deconvolved BOLD-

fMRI signal.

7. Thresholding methods effect: Sparsity thresholding has been

suggested to influence the underlying graph metrics. As a form of

validation analysis, we performed an additional thresholding

method—calculation of the correlation coefficient (r) (Liao et al.,

2010, 2011)—to explore the topological properties (Eglob, Eloc, and

σ) of the WM functional connectome against random networks.

3 | RESULTS

3.1 | Network visualizations

Figure 2a displays the averaged WM functional connectivity matrix

(sparsity = 0.15) across all subjects at Time 1. The matrix values repre-

sent the connection strength between each two paired nodes.
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Figure 2b illustrates the spatial patterns of this functional connectome

consisting of the network diagram of nodes and edges. Brain hubs

were defined as the ROIs with a relatively high node degree (>mean

+ SD; Figure 2b). These hubs exhibit a large number of connections

(Achard et al., 2006), and play an important integrative role in the

functional connectome. In this study, hubs were primarily distributed

in the posterior thalamic radiation, superior corona radiation, and

superior longitudinal fasciculus. Multimodal brain networks exhibited

a power law degree distribution.

3.2 | Degree distribution

Figure 3a shows the regional degree distribution and the cumulative

probability of degree of WM functional connectome (sparsity = 0.15).

In addition, the WM functional connectome showed a best-fitting

exponentially truncated power law distribution, rather than a simple

power law distribution or exponential distribution (Figure 3b),

indicating the existence of highly connected hubs. See Table S1 for

parameter values and goodness-of-fit.

3.3 | Topological properties of the WM functional

connectome

We compared Eglob and Eloc attributes between the WM and random

networks, as well as small-worldness (σ) against 1 under the range of

sparsities (0.17–0.42) (Figure 4). The WM functional connectome

exhibited higher σ than 1 across the entire range of sparsities, as well

as an AUC value (one-sample t test, t = 21.63, p < .05, Bonferroni cor-

rection). Compared to random networks, the WM functional

connectome showed decreased Eglob (Wilcoxon signed-rank test,

p < .05, Bonferroni correction) and increased Eloc (Wilcoxon signed-

rank test, p < .05, Bonferroni correction) not only at each sparsity

value but also compared to the AUC value.

F IGURE 2 Correlation matrix and functional connectome visualization. (a) A correlation matrix of the 128 ROIs with sparsity = 0.15 was

constructed by averaging the correlation matrices across 488 subjects who had participated in scanning at Time 1. (b) An anatomical projection of

the 128-ROIs of the WM functional connectome (sparsity = 0.15). Each node depicted at its appropriate anatomical position (Table S2). Blue

edges represent links between nodes. Node colors indicate the hub region: Red indicates a hub region, and yellow indicates an anatomical

position that is not a hub region. ROI, region-of-interest; WM, white-matter [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 The degree distributions of the 128-ROIs of the WM functional connectome. (a) Regional degree distribution and the cumulative

probability of degree. (b) The blue asterisks represent the observed data. The red line denotes the best-fitting exponentially truncated power law.

The cyan line, and gray line indicate the fit of an exponential distribution, and a power law distribution, respectively see Table S1 for parameter

values and goodness-of-fit. ROI, region of interest; WM, white-matter [Color figure can be viewed at wileyonlinelibrary.com]
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Furthermore, we found that the AUC values of σ positively corre-

lated with fluid intelligence (r = .17, pcorrected = .0009, Bonferroni cor-

rection for three times planned comparisons; Figure 5), indicating a

role for WM function in cognitive ability. There was no statistically

significant correlation found between the other topological properties

(Eglob, and Eloc) and fluid intelligence.

3.4 | Modularity of the WM functional connectome

Using Newman's modularity algorithm, we found that the WM func-

tional connectome was separated into four modules (Figure 6). Brain

regions with these modules were found to be symmetrical across the

two cerebral hemispheres, and were located in specific anatomical

bundles, suggesting a nonrandom spatial distribution. In addition, the

modules exhibited dense connectivity between each node (colored

lines in Figure 6), and sparser connectivity between nodes of different

modules (gray lines in Figure 6). Module I included 40 brain regions

that were mainly located in the bilateral anterior/superior corona

radiata, and the genu/body of the corpus callosum. Module II included

41 brain regions, such as the posterior corona radiata, superior longi-

tudinal fasciculus, and splenium of the corpus callosum. Module III

included 21 brain regions located mostly within the optic radiation.

Module IV included 26 brain regions such as the cerebellar peduncle

and the anterior/posterior limb of the internal capsule. The anatomical

location (MNI coordinates) of each node, nodal degree, and desig-

nated module are list in Table S2.

3.5 | Global topological properties reliability

We quantified the long-term test–retest reliability of global topologi-

cal properties (including normalized Eglob, normalized Eloc, and σ) of

the WM functional network using ICC scores. We obtained the ICC

values of topological properties across the entire range of sparsities

from 0.17 to 0.43 (Figure 7). The ICC values of normalized Eglob were

moderate, whereas the ICC values of normalized Eloc, and σ were fair

relative to sparsity.

3.6 | Comparisons between WM and GM functional

connectomes

We compared global topological properties including S, Eglob, Eloc, γ, λ,

and σ between the WM and GM functional connectomes under the

common range of sparsities (0.17–0.42) (Figure 8). We found that the

WM functional connectome exhibited decreased Eglob, γ, λ, and σ,

while there was an increase in S and Eloc compared to the GM

F IGURE 4 Topological properties of the WM functional connectome. Eglob and Eloc (y-axis) as a function of sparsity (x-axis) of the WM

functional connectome and a random graph (left, and middle planes). The small-worldness (σ, y-axis) is shown as a function of sparsity (x-axis) of

the WM functional connectome (middle plane). For all networks, the WM functional connectome (the black dots and red lines) showed decreased

Eglob and increased Eloc compared to random network (the orange dots and black lines). The WM functional connectome also showed weak small-

worldness, that is, σ is higher than 1 (one sample t test, p < .05, Bonferroni correction). Similarly, the WM functional connectome showed

decreased AUC values of Eglob and increased AUC values of Eloc against a random graph and higher AUC values of small-worldness (σ) against

0.25 (the AUC value of 1 across all sparsities). Gray asterisks indicate that there are significant differences (Wilcoxon signed-rank test, p < .05,

Bonferroni correction) in topological properties between the WM functional connectome and random networks for specific sparsity and AUC

values. AUC, area under curve; Eglob, global efficiency; Eloc, local efficiency; WM, white-matter [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 5 Correlation between AUC values of small-worldness

and individuals' intelligence. Filled blue circles represent subjects

(n = 402) who performed a behavioral test. Red line and light red

interval represent the best-fit and 95% confidence of interval of

Pearson's correlation, respectively. pcorrected means the p value

survived after Bonferroni correction. AUC, area under curve [Color

figure can be viewed at wileyonlinelibrary.com]
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functional connectome (Wilcoxon signed-rank test p < .05, Bonferroni

correction for six times planned comparisons) under specific sparsities

and AUC values. Results suggested that the WM functional

connectome shifts towards randomization with a loss of segregation

and a preference for global integration.

3.7 | Validation results

1. There were no significant correlations between head motion

parameters (mean FD) and the AUC of the topological properties

of the WM functional network (all p > .05; Table S3). This finding

suggests that the topological properties of the WM functional net-

work cannot be explained by head motion.

2. Firstly, we found that shorter spatial distances (Euclidean distance)

between the centroids of nodes were correlated with higher func-

tional connectivity strength in the WM functional connectome

(Figure S1). The relationship between Euclidean distance and func-

tional connectivity in WM was most likely nonlinear, which can be

approximated by an inverse square law: z ~ 1/D2 (Salvador et al.,

2005).

After regressing out spatial distance from functional connectivity

matrices, we found that the global topological properties (Eglob, Eloc,

and σ) showed similar tendencies with our original results. The WM

functional connectome also showed decreased Eglob and increased Eloc

compared to random networks, while the WM functional connectome

exhibited higher σ than 1 under parts of specific sparsity and AUC

F IGURE 6 Modularity of WM functional connectome. The 128-ROIs WM functional connectome identified four link-based modules, which

are shown in a connectogram using DynamicBC (V2.2, www.restfmri.net/forum/DynamicBC). Lines crossing the diameter of the circle represent

functional connections between ROIs (circles). The colored and gray lines represent within-module and between-module connections,

respectively. The outer bars are sorted by degree, with colored bars indicating hub regions (k > mean + SD) (Table S2). Other locations are nonhub

regions. The outer-most brain graphs show each module individually, with nodes representing functional subregions within the module. ROI,

region of interest; SD, standard deviation; WM, white-matter [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 The reliability of global topological properties in the

WM functional connectome. ICC values represent the reliability of

global topological properties. To minimize random network effects,

the ICC values of normalized Eglob, normalized Eloc and small-

worldness (σ) were computed. ICC values (y-axis) of each global

topological property (different colored lines) are plotted as a function

of network sparsity (x-axis). The ICC values of normalized Eglob were

at moderate level and ICC values of normalized Eloc and small-

worldness (σ) were at a fair level. Eglob, global efficiency; Eloc, local

efficiency; ICC, intraclass correlation coefficient; WM, white-matter

[Color figure can be viewed at wileyonlinelibrary.com]
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value (Figure S2). In addition, the WM functional connectome was

separated into five modules (Figure S3). These findings suggest that

spatial distance has no significant effect on topological properties

(Eglob, Eloc, and σ), as well as the presence of a nonrandom modular

organization of the WM functional connectome.

Moreover, we found a consistent difference in global topological

properties (S, Eglob, γ, λ, and σ) between WM and GM functional con-

nectomes (Figure S4). These findings suggest that the topological prop-

erties of the WM functional network cannot be totally accounted for

by the spatial distance of nodes.

3. Similarly, after regressing out global signal, we found that the global

topological properties (Eglob, Eloc, and σ) showed similar tendencies as

the observed properties without global signal regression (Figure S5).

Also, the ICC values of normalized Eglob showed a moderate level,

while the ICC values of normalized Eloc, and σ showed a fair level; the

same as global signal regression (Figure S6). In addition, we also found

a consistent difference in global topological properties (S, Eglob, Eloc, γ

and σ), between theWM and GM functional connectomes (Figure S7).

4. We used WM bundle nodes, as utilized in a previous study by

Ding et al. (2018), to investigate the WM functional connectome.

This bundle based functional connectome also exhibited similar

topological properties tendencies to our predefined nodes. The

WM functional connectome showed decreased Eglob and

increased Eloc and higher σ against 1 in parts of sparsities. The

topological properties are shown in Figure S8.

5. After CSF signal nonregression, we found that the topological

properties (Eglob, Eloc, and σ) showed similar tendencies to our main

results in which the CSF signal was regressed out (Figure S9).

6. After considering the HRF between WM and GM nodes, we

found that the WM functional connectome also exhibited

decreased Eglob, γ, λ, and σ compared to the GM functional

connectome. However, the comparisons of S and Eloc differed

from the original results that did not exclude HRF effects

(Figure S10).

7. After performing an additional thresholding method—correlation

coefficient (r), we found that the WM functional connectome

showed weak σ. Similarly, the WM functional connectome also

exhibited decreased Eglob and increased Eloc compared to the ran-

dom networks (Figure S11).

4 | DISCUSSION

The functional role of WM BOLD-fMRI signals is a longstanding con-

troversy. The first debate relates to the way in which WM, relative to

GM, contains lower cerebral blood flow and volume. The cerebral

blood flow and volumes are the basis of the BOLD signal in neural

F IGURE 8 Comparison of global topological properties between the WM and GM functional connectomes. The global topological properties

(y-axis) are plotted as a function of network sparsity (x-axis). The black dots and red lines represent the WM functional connectome. The orange

dots and black lines represent the GM functional connectome. The inset boxplot represents the AUC of topological properties under a common

range of sparsities (0.17–0.42) in WM and GM functional connectomes. Gray asterisks indicate significant differences (Wilcoxon signed-rank test,

p < .05, Bonferroni correction) in topological properties between WM and GM functional connectomes at specific sparsity values. *p < .05,

Bonferroni correction. AUC, area under the curve; GM, gray-matter; WM, white-matter [Color figure can be viewed at wileyonlinelibrary.com]
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activity (Preibisch & Haase, 2001; Rostrup et al., 2000). Another

debate centers on how BOLD signals are associated with local field

action potentials in GM, while not reflecting action potentials in WM

(Gawryluk, Mazerolle, & D'Arcy, 2014).

However, in comparison to GM, and regardless of large discrepan-

cies in respect to the physiological factors observed between GM and

WM, WM maintains a higher ratio of glial cells to neurons (Azevedo

et al., 2009), while showing an approximately equal oxygen extraction

fraction (Raichle et al., 2001). In addition, in task-related fMRI studies,

external stimuli can reliably induce the WM hemodynamic with a pro-

file similar to that observed in GM, though with a smaller peak ampli-

tude (Huang et al., 2018). Resting-state fMRI studies have recently

shown that WM and GM exhibit similar low frequency signal powers

(Ding et al., 2013, 2016; Ji, Liao, Chen, Zhang, & Wang, 2017). Fur-

ther, BOLD-fMRI signals of intrinsic functional networks in WM were

highly correlated with those observed in GM, suggesting that WM

manifests an intrinsic functional organization (Ding et al., 2018; Jiang

et al., 2019; Peer et al., 2017). Taken together, these findings suggest

that there are no fundamental barriers or direct sources of evidence

against the possibility of detecting neural activities of BOLD-fMRI in

WM (Gawryluk, Mazerolle, & D'Arcy, 2014). To date, many psychiatric

and neurological disorders are characterized by WM functional abnor-

malities (Ji et al., 2019; Jiang et al., 2019; Jiang et al., 2019; Wang

et al., 2019). It is therefore important to explore WM functional net-

works to allow for fMRI-based investigations of WM brain disorders,

such as multiple sclerosis (He et al., 2009), and WM dementia (Filley,

2012), which may allow further insight into our understanding of the

pathological mechanisms of different neurological diseases. The cur-

rent study extends the findings of WM activity/connectivity to large-

scale understanding of WM network architecture and mechanisms,

thus offering a new approach to elucidating our understanding of

brain functioning.

Understanding how connectivity varies across nodes is a funda-

mental step in network analysis (Sporns, 2012). Furthermore, the

degree distribution allows us to investigate whether hubs exist in a

network, and to obtain greater insight into the potential brain func-

tioning of network hubs. We found that the degree distribution of the

WM functional connectome obeyed an exponentially truncated

power law, rather than a power law or an exponential distribution.

This finding is consistent with previous human GM functional

connectome and WM anatomical connectome research (Achard et al.,

2006). This exponentially truncated power law degree distribution

implies that WM functional connectomes are also organized within

some core regions, though they prevent the emergence of hubs with

a very large number of links (Bullmore & Sporns, 2009). More specifi-

cally, the current degree distribution often features a long tail that

tends towards high degrees, termed hub regions. This heterogeneous

distribution implies that different brain regions (i.e., nodes) serve dis-

tinct topological roles in the network (Hagmann et al., 2008; He et al.,

2009). In this study, we identified putative hub regions located mainly

in the posterior thalamic radiation, superior corona radiata, and supe-

rior longitudinal fasciculus. We did not directly compare hub regions

with the findings of previous research, where nodes were defined in

GM. However, we present evidence for hub regions, such as the thal-

amus in GM (van den Heuvel, Mandl, Stam, Kahn, & Hulshoff Pol,

2010), as the thalamic radiation encompasses the fibers between the

thalamus and the cerebral cortex. In light of such evidence, it seems

possible that this hub region plays a key role in the integration of

information involving such complex processes.

Optimized small-worldness may be a hallmark of brain con-

nectomes (Bassett & Bullmore, 2017). Therefore, this property should

also be observed for the WM functional connectome. Although the

present measure of σ was found to be statistically higher against 1—

the numerically value was close to 1, suggesting there may be a weak

small-worldness organization. In addition, there is evidence indicating

that BOLD-fMRI signals represent nonrandom noise and nonartifacts

(Ji, Liao, Chen, Zhang, & Wang, 2017; Marussich et al., 2017). To test

for robustness, we re-calculated small-worldness when performing

global signal regression, Euclidean distance regression, CSF signal non-

regression, and differential node parcellations (i.e., WM fiber bundle-

based nodes). We found that small-worldness was statistically higher

than 1 in each condition abovementioned. Furthermore, there were

no significant correlations between head motion parameters (mean

FD) and small-worldness. Moreover, the reliability of the current long-

term global topological properties was found to be fair to moderate,

similar to that previously reported for the GM functional connectome

findings. These results underscore the reliability of our findings.

Finally, the small-worldness positively associated with intelligence,

suggesting a more optimized efficient parallel information transfer

system in the brain. Taken together, these results indicate that small-

worldness is a fundamental property of anatomical, functional, and

even WM functional connectomes, indicating that these networks can

facilitate synchronization and information propagation.

The WM functional connectome showed a shift towards randomi-

zation (i.e., a loss of segregation, and a favoring global integration)

compared to GM. Measures of segregation indicate specialized

processing that occurs within densely interconnected brain regions

(Wig, 2017). A less segregated or specialized topological organization

may be beneficial for network function (Chan, Park, Savalia,

Petersen, & Wig, 2014). Measures of integration estimate the ability

to combine specialized information among distributed brain regions. A

preference for global integration may promote the efficiency of global

communication, and integrate distributed information. Taken

together, less segregation and a preference for integration results in

network randomization. This subtle randomization is consistent with

previous findings, which suggest that fMRI network randomization is

a marker of a genetic or shared environmental risk for a brain disorder.

Randomization is also consistent with the degree distribution being

fat-tailed. Thus, it can be predicted that the WM functional

connectome is topologically more random than that observed in GM.

The WM functional connectome also showed increased network

strength relative to the GM functional connectome. This finding may

be due to the fact that our ROIs were constrained by WM fiber bun-

dles, thus enabling ROIs within one fiber bundle to participate in more

direct connections (Honey et al., 2009). This is supported by the

observation that visual stimulation induces BOLD activation in
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specific WM bundles (Ding et al., 2018; Ji, Liao, Chen, Zhang, & Wang,

2017). Furthermore, the factors that impact the results of compari-

sons between WM and GM functional connectomes are diverse, such

as spatial distance, global signals, and fMRI response in ROIs. These

factors should be accounted for in future seeking to make compari-

sons between WM and GM functional connectomes. In this context,

the topological differences we describe are empirically novel, although

conceptually unsurprising, particularly in terms of elucidating WM

functional networks in a pathophysiological state (Ji et al., 2019).

Not all small-word networks are modular (Sporns, 2012). How-

ever, consistent with multiple human brain networks (Hagmann et al.,

2008; He et al., 2009), we found that the WM functional connectome

also exhibited a nonrandom modular topology. This modular organiza-

tion would be energetically favorable, in that it conserves wiring cost,

and would also create specialized information (Sporns & Betzel,

2016). Not only would spatially compact, modules conserve wiring

costs, it would lead to functional constraints, supporting the idea that

brain connectome topology is shaped by a trade-off between spatial

and functional considerations (Bullmore & Sporns, 2012). In contrast,

the persistence of modular organization, cross-linked by long-distance

ties, is crucial for creating specialized information (Gallos, Makse, &

Sigman, 2012). Our results support the hypothesis that each module

executes a discrete function. More specifically, Module I is primarily

specialized for a high-level cognitive system, supporting both bottom-

up and top-down stimulus-processing (Westerhausen & Hugdahl,

2008). Modules II, III, and IV are primarily specialized for a low-level

perceptive system (Westerhausen & Hugdahl, 2008). These results

suggest discrete cognitive functions in the WM network, thereby

offering new insight into our understanding of functional segregation

and the integration of brain networks.

4.1 | Methodological considerations

In the current study, we first strictly controlled the mixed WM and

GM BOLD-fMRI signals (Ji, Liao, Chen, Zhang, & Wang, 2017) in order

to minimize the contribution of partial volume effects from adjacent

GM to WM BOLD fMRI signals (Gawryluk, Mazerolle, & D'Arcy,

2014). Additionally, we employed several parallel data analysis

methods to provide a rich pool of information as well as further cross-

validation of our findings. Nevertheless, these findings also produced

parts of inconsistent results when comparing topological properties

between WM and GM functional connectomes. Such divergence

might be driven by closer WM spatial distances than found in GM and

with or without global signal regression, as well as differences in the

fMRI responses between WM and GM. Secondly, we considered five

influence factors, including the effects of spatial distance, global sig-

nals, CSF signals, node parcellation, and alternative thresholding

methods (correlation-based) to construct the WM functional

connectome. Primarily, we found that the WM functional connectome

showed weak small-worldness and similar tendencies even after

accounting for these factors. In addition, the comparisons of topologi-

cal properties are not consistent across all sparsities in differential fac-

tors, thus, we made our conclusion according to the AUC results.

4.2 | Limitations

One limitation of the methods used in this study entails the multiple

methodological choices for constructing the brain's connectome. The

data preprocessing and analytic strategies may influence the network

pattern. We have addressed these issues by testing the key findings

to ensure that they are robust with respect to contemporary

processing strategies for head motion correction (Power et al., 2012)

and for reasonable variation in the other analytic steps, including

choice of mask parcellation and brain global signal regression. Second,

although the significant differences in our results (WM vs. random,

WM vs. GM), the effect size was relatively small. Finally, as the pre-

sent shared data were assembled without physiological recordings,

future studies may wish to record and consider physiological data to

validate the effects of WM function.

In conclusion, we demonstrate that the brain's WM functional

connectome architecture includes small-world topology, high-degree

hubs, and a nonrandom modular organization. The global topological

properties were reliable in the long-term and were replicable across

the node parcellation strategy, global signal regression, spatial dis-

tance regression, and head motion effects. This suggests that the WM

functional connectome cannot be attributed simply to noise. We also

found that the WM functional connectome has a tendency towards

randomization compared to the GM functional connectome, adding a

new dimension to investigate brain networks. The current findings

offer evidence for a previously unappreciated WM connectome, and

presents a novel approach to elucidating our understanding of WM

functional information in both healthy individuals and in cases of clini-

cal disease.
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