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Abstract

Background: DNA methylation is influenced by both environmental and genetic factors and is increasingly

thought to affect variation in complex traits and diseases. Yet, the extent of ancestry-related differences in DNA

methylation, their genetic determinants, and their respective causal impact on immune gene regulation remain

elusive.

Results: We report extensive population differences in DNA methylation between 156 individuals of African and

European descent, detected in primary monocytes that are used as a model of a major innate immunity cell type.

Most of these differences (~ 70%) are driven by DNA sequence variants nearby CpG sites, which account for ~ 60%

of the variance in DNA methylation. We also identify several master regulators of DNA methylation variation in

trans, including a regulatory hub nearby the transcription factor-encoding CTCF gene, which contributes markedly

to ancestry-related differences in DNA methylation. Furthermore, we establish that variation in DNA methylation is

associated with varying gene expression levels following mostly, but not exclusively, a canonical model of negative

associations, particularly in enhancer regions. Specifically, we find that DNA methylation highly correlates with

transcriptional activity of 811 and 230 genes, at the basal state and upon immune stimulation, respectively. Finally,

using a Bayesian approach, we estimate causal mediation effects of DNA methylation on gene expression in ~ 20%

of the studied cases, indicating that DNA methylation can play an active role in immune gene regulation.

Conclusion: Using a system-level approach, our study reveals substantial ancestry-related differences in DNA

methylation and provides evidence for their causal impact on immune gene regulation.

Keywords: Epigenetics, DNA methylation, Ancestry, Gene expression, Mediation, Immunity

Background

Individuals and populations display variable susceptibil-

ity to infectious diseases, chronic inflammatory disor-

ders, and autoimmunity [1, 2]. Over the last decade, it

has become clear that such disparities partly result from

differences in the host genetic make-up, with an increas-

ing number of genes being associated with varying abil-

ities to fight infections at the individual and population

level [3, 4]. Furthermore, population genetic studies have

revealed that pathogen-driven selection has substantially

impacted human genetic diversity [5, 6]. Because the

mortality, and thus the selective pressure, imposed by

pathogens have been paramount [7], human populations

had to adapt to the different pathogenic environments

they encountered around the globe, and genes involved

in host defense are among the functions most strongly

selected for by natural selection [5, 8–11]. While sub-

stantial evidence supports this hypothesis at the genetic

level, we still know little about the degree of naturally
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occurring epigenetic variation at the population level

and how this may impact immune phenotypes.

As the immune system is the primary interface with the

human pathogenic environment, the study of DNA

methylation [12, 13] offers a unique opportunity to ex-

plore the interplay between the genome and environmen-

tal cues. DNA methylation can be affected by a range of

external factors, such as nutrition, toxic pollutants, social

environment, and infectious agents [14–19]. Furthermore,

numerous studies have mapped DNA sequence variants

associated with DNA methylation variation [20–28], i.e.,

methylation quantitative trait loci (meQTLs), and ~ 20%

of the inter-individual variation in DNA methylation has

been attributed to genetics [29, 30]. DNA methylation

variation has also been associated with complex traits, in-

cluding aging [31], body mass index [32], various cancers

[33, 34], obesity [35], and autoimmune and inflammatory

disorders [36, 37]. Yet, most studies of human epigenome

variation, both in health and disease conditions, have fo-

cused on populations of homogeneous genetic ancestry,

primarily of European descent.

A few studies, however, have reported that population

differences in ancestry, habitat, or lifestyle affect DNA

methylation, providing an initial assessment of the

contribution of genetic factors and gene-environment

(G × E) interactions to population-level epigenetic vari-

ation [38–44]. Yet, these studies investigated DNA

methylation variation from virus-transformed lympho-

blastoid cell lines or whole blood, so the differences ob-

served could reflect, at least partially, epigenetic changes

induced by cell immortalization or heterogeneity in

blood cell composition that was not fully accounted for

[45–47]. Thus, the extent of DNA methylation variation

related to ancestry, and its genetic determinants, in a

cellular setting relevant to immunity are far from clear.

A growing body of research has reported ancestry-related

variation in terms of immune gene expression levels. Two

recent studies found marked differences between individ-

uals of African and European ancestry in their transcrip-

tional responses to infectious challenges [48, 49] and

showed that regulatory variants (i.e., expression quantitative

trait loci, eQTLs) explain a substantial proportion of these

population differences. Still, a large fraction of the variance

in gene expression, both across individuals and populations,

cannot be attributed to genetic factors and remains unex-

plained [48–55]. In this context, DNA methylation repre-

sents an additional, possible layer for variation in gene

regulation [56]. The observed correlations between DNA

methylation and gene expression levels can be positive and

negative; in the canonical model, high levels of methylation

at promoter regions are often associated with low gene ex-

pression, but elevated gene body methylation is also associ-

ated with active expression [28, 47, 57–60]. There is also

increasing evidence that DNA methylation can play both

passive and active roles in the regulatory interactions influ-

encing gene expression, but the causality relationships be-

tween DNA methylation, gene expression, and genetic

factors are not fully understood [19, 23, 56]. Furthermore,

genetic variants associated with complex traits or diseases

by genome-wide association studies (GWAS) often overlap

both eQTLs and meQTLs, suggesting that disease risk can

be mediated, directly or indirectly, by variation in DNA

methylation [61–67].

Here, we aimed to broaden our understanding of the

mechanistic links between ancestry-related differences in

DNA methylation, genetic factors, and immune gene regu-

lation. To do so, we build upon the EvoImmunoPop col-

lection of primary monocytes originating from healthy

individuals of African and European ancestry [48]. We pro-

filed the DNA methylome of 156 donors, including 78 of

each ancestry, using the high-resolution Infinium Methyla-

tionEPIC array, which captures methylation variation at

more than 850,000 sites. This new dataset was combined

with both genome-wide genotyping and whole-exome se-

quencing data, as well as with RNA-sequencing profiles

from resting and stimulated monocytes with various im-

mune stimuli, obtained from the same individuals. Such a

system-level approach, integrating epigenetic, genetic, and

transcriptional data, allowed us to assess the extent to

which population-level variation in DNA methylation and

its genetic determinants impact transcriptional activity re-

lated to immune responses.

Results

Population differences in DNA methylation profiles of

primary monocytes

To assess population differences in DNA methylation of a

purified innate immune cell type, we characterized DNA

methylation variation at > 850,000 CpG sites across the

genome, in monocytes originating from 156 male healthy

volunteers: 78 of African descent (AFB, median age = 30.9

years) and 78 of European descent (EUB, median age =

25.9 years), all living in Belgium. Note that AFB individ-

uals moved to Belgium between the ages of 6–45 years old

(median age = 29 years). After normalization and filtering

(see “Materials and methods”), we retained a final dataset

of 552,141 methylation sites in the 156 individuals

(Additional file 1: Figure S1). Principal component analysis

(PCA) of DNA methylation clearly separated AFB and

EUB along the first two PCs, which explained together

11.6% of the total variance (Fig. 1a). At a false discovery

rate (FDR) = 1%, we identified 77,857 sites (14.1% of the

total number) that presented a significant difference be-

tween AFB and EUB in their mean level of DNA methyla-

tion, after adjusting for age and surrogate variables. When

restricting our analyses to CpGs that presented a mean

difference > 5% (measured by the β value [68], see

“Materials and methods”), we identified a total of 12,050
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differentially methylated sites between populations (DMS)

that mapped to 4818 genes. Because the age distributions

of AFB and EUB individuals significantly differ (Wilcoxon

P value = 10−4; Additional file 1: Figure S2), and age might

have a non-linear effect on DNA methylation [69], we also

investigated with ANOVA the extent to which DNA

methylation is non-linearly affected by age in our dataset.

Our analyses showed that such effects had little to no im-

pact on the population differences in DNA methylation

detected (Additional file 2: Supplementary Note 1).

The genomic distribution of DMS, which were

highly enriched in enhancer regions (odds ratio (OR)

~ 2.6, P = 1.42 × 10−224), was independent of the popu-

lation where hyper-methylation was observed (Fig. 1b).

However, of the 12,050 DMS, 76.3% were more meth-

ylated in AFB than in EUB, with respect to the ob-

served 54% when considering all CpGs (Fisher’s exact

P < 2.2 × 10−16) (Fig. 1c). The corresponding genes

were enriched in Gene Ontology (GO) categories re-

lated to cellular periphery and plasma membrane

(Fig. 1d). The remaining 23.7%, which were

hyper-methylated in EUB, were enriched in sites lo-

cated in genes largely associated with immune re-

sponse regulation and responses to external stimulus

(Fig. 1c, d; Additional file 3: Table S1). These results

cannot be explained by population differences in

monocyte subpopulations (i.e., CD14high/CD16neg
[Classical], CD14high/CD16low [Intermediate], and

CD14low/CD16high [Non-Classical]), as adding these

subpopulations as covariates in the model did not

alter our results (Additional file 1: Figure S3). Fur-

thermore, we detected no CpG sites whose levels of

methylation correlate significantly with monocyte sub-

types (FDR = 5%), indicating that the effects of mono-

cyte subpopulations on DNA methylation are

negligible at the epigenome-wide level. Together,

these analyses reveal genes and functions that present

extensive differences in DNA methylation between in-

dividuals of African and European ancestry, in the

context of primary monocytes.

Fig. 1 Population differences in DNA methylation profiles. a Principal component analysis (PCA) of DNA methylation profiles for all 156

individuals. Red and blue circles represent African (AFB) and European (EUB) individuals, respectively. The proportions of variance explained by

PC1 and PC2 are indicated. b Genomic location of differentially methylated sites (DMS), for CpG sites hyper-methylated in AFB (red) and in EUB

(blue). Odds ratio and 95% confidence intervals are displayed for AFB-DMS and EUB-DMS, comparing their localization in different genomic

locations as provided by Illumina (TSS1500, TSS200, 5′UTR, 1stExon, Body, Exon boundaries [ExonBnd], and 3′UTR), and in enhancer and promoter

regions specifically detected in monocytes by ChromHMM phase 15 (see refs. [110, 111]). Odds ratios were computed against the general distribution

of the 552,141 CpGs of our dataset. c Proportion of DMS that are hyper-methylated either in AFB (red) or in EUB (blue) individuals. The density of β

values of one CpG site by category is given as an illustration of the population differences, with red and blue lines representing the methylation

density in AFB and EUB, respectively. d Gene Ontology (GO) enrichment analyses of AFB- and EUB-DMS. For both groups, the top-GO categories

reaching 5% FDR are shown, together with the number of genes per category and the log10-transformed FDR-adjusted enrichment P values
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Genetic factors drive most ancestry-related DNA

methylation variation

We next examined the genetic determinants of the ob-

served population differences in DNA methylation, and

mapped methylation quantitative trait loci (meQTLs).

We first tested for local associations between DNA

methylation variation at CpGs and SNPs located within

a 100-kb window (cis-meQTLs), using MatrixEQTL [70]

(see “Materials and methods”). We set a 5% FDR thresh-

old, considering one association per CpG site and using

100 permutations (P < 1 × 10−5). We adjusted for age,

two surrogate variables (accounting for batch effects and

unknown confounders, see “Materials and methods”),

and the first two PCs of the genetic data (Additional file 1:

Figure S4), to account for population stratification. To

detect subtle effects, we merged all individuals and in-

cluded ancestry as a covariate, but simultaneously, we

analyzed the two populations separately to detect puta-

tive population-specific effects. For all subsequent ana-

lyses, we present the significant results of these two

approaches combined, unless otherwise indicated.

We identified 69,702 CpGs associated with at least

one genetic variant in at least one population (~ 12.6%

of all sites, referred to as meQTL-CpGs). Given that

multiple linked SNPs can be associated to the same

CpG, we kept the best-associated SNP for each

meQTL-CpG. However, we also used a fine mapping ap-

proach [51] to detect independent SNPs associated to

each CpG (see “Materials and methods”). In doing so,

we detected 9826 additional meQTLs (Additional file 1:

Figure S5), providing a more thorough view of the con-

tribution of proximate genetic variants to DNA methy-

lation variation. The median distance between a CpG

and its associated SNP was ~ 3.8 kb (Additional file 1:

Figure S6), supporting the close genetic control of

DNA methylation [22, 28, 41, 65]. Furthermore, we

found a 2.2-fold enrichment of meQTL-CpGs in en-

hancers (P < 1 × 10−326), a trend that was even more

pronounced for meQTLs associated with population

differences in DNA methylation (meQTL-DMS; OR ~

2.8, P = 6.8 × 10−317, Additional file 1: Figure S7).

Focusing on ancestry-related differences, we observed

that ~ 70.2% of DMS harbor a significant meQTL, with re-

spect to the 12.6% detected genome-wide (Fisher’s exact

P < 2.2 × 10−16; Fig. 2a). These meQTLs were found to ac-

count, on average, for ~ 58% of the observed population

differences in DNA methylation (Additional file 1: Figure

S8, see “Materials and methods”). Furthermore, meQTLs

presented opposite effects on DNA methylation as a func-

tion of population differences in allelic frequency, i.e., a

derived allele at higher frequency in Africans was generally

associated with high levels of DNA methylation, while a

derived allele at higher frequency in Europeans was pri-

marily associated with low DNA methylation (Fig. 2b).

This observation provides a genetic explanation for the

unbalanced patterns of hyper-methylation, observed at

DMS, between Africans and Europeans (Fig. 1c).

Local meQTLs can, a priori, lead to population differ-

ences in DNA methylation following two main models:

(i) the meQTL has a similar effect in both populations

but present different allelic frequencies (Fig. 2c), or (ii)

the meQTL is present at similar frequencies but display

population-specific effects, revealing more complex in-

teractions (Fig. 2d). We therefore investigated the popu-

lation specificity of the 69,702 meQTL-CpGs detected

using a model selection approach (see “Materials and

methods”). We found 2868 (4.1%) significant

population-specific effects (1337 AFB-specific and 1531

EUB-specific), suggesting the occurrence of G × E or

G × G effects.

Ancestry-related meQTLs are enriched in associations

with complex traits and diseases

Given that a large fraction of genetic variants identified

by GWAS are thought to act by affecting gene regulation

[71–74], we investigated the putative functional impact

of the detected meQTLs on ultimate complex pheno-

types. In practice, we searched for enrichments in

GWAS hits among our set of 79,528 meQTLs, correct-

ing for linkage disequilibrium (see “Materials and

methods”). Focusing on the 17 parental classes of the

Experimental Factor Ontology (EFO) classification [75],

we found that meQTLs were enriched in significant hits

for all these functional categories (Additional file 1:

Figure S9, OR ~ 2.1–5.5, P < 4.1 × 10−10). Stronger en-

richments were detected for meQTLs associated with

population differences in DNA methylation (OR ~ 2.7–

9.8, P < 2.9 × 10−3), in particular for phenotypes related

to hematological measurements, neurological disorders,

immune system disorders, inflammatory measurements,

and digestive system disorders (Fig. 2e).

Because DNA methylation and meQTLs have been

shown to be largely cell or tissue dependent [23, 76–81],

we next searched for the specific traits that account for

the signals detected at the parental category “immune

system disorder”, given our focus on primary monocytes.

We found that meQTLs overlapped variants associated

with diseases such as osteoarthritis, psoriasis, systemic

lupus erythematosus, inflammatory skin disease, or type

1 diabetes (Additional file 1: Figure S10). For example,

the meQTL SNP rs629953 presents markedly different

frequencies between AFB and EUB (DAF AFB 7.5% ver-

sus DAF EUB 62%), leading to variable population-level

DNA methylation at TNFAIP3 (cg06987098), and has

been associated with psoriasis susceptibility [82, 83]. To-

gether, our analyses support that complex traits and

variable DNA methylation are pleiotropically associated

with genetic variation [39, 60, 63, 64], but extend these
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associations to variants affecting ancestry-related

epigenetic variation in the context of an innate immun-

ity cell type.

Exploring the distant genetic control of DNA methylation

variation

We subsequently searched for the effects of distant gen-

etic variants on DNA methylation variation (trans--

meQTLs). To limit the burden of multiple testing, and

because trans-meQTLs are enriched in cis-eQTLs for

genes encoding transcription factors (TF) [65], we fo-

cused on two non-independent subsets of genetic vari-

ants: (i) the 4037 SNPs detected as cis-eQTLs for one of

600 TF-coding genes and, more generally, (ii) the 73,561

SNPs located in the vicinity (± 10 kb) of the TSS of these

genes. Only associations for which the SNP-CpG dis-

tance was higher than 1Mb were considered, at an FDR

of 5% (P < 1 × 10−9). Given the generally low power to

map trans-associations, we performed this analysis by

considering all individuals together and including ances-

try as a covariate.

We identified 133 CpG sites associated with at least

one distant SNP, for a total of 672 trans-meQTLs that

involved 91 independent loci (Additional file 4: Table

S2). Among these, we detected a number of hubs of dis-

tant genetic control of DNA methylation variation, in-

cluding six TFs (ZNF429, CTCF, FOXI1, ZBTB25,

MKL2, and NFATC1) where local genetic variation was

associated with at least 10 different CpGs in trans.

Highlighting one pertinent example, a single genetic

Fig. 2 Genetic control of population differences in DNA methylation levels. a Proportions of CpGs and DMS associated to genetic variants

identified in the three meQTL studies: merging the two populations (gray shades), mapping in AFB only (red shades) and in EUB only (blue

shades). For each mapping, proportions among all 552,141 tested CpG sites and among DMS are indicated in light and dark colors, respectively.

***Fisher’s exact P < 2.2 × 10−16. b Contour plot of meQTL effects on DMS as a function of their difference in derived allelic frequencies (DAF)

between populations. For each of the 8459 DMS for which we detected at least one meQTL, we used a kernel density estimation to draw the

contour plot of the effect of the derived allele of the meQTL onto methylation (beta, Y axis) according to the ΔDAF (DAFEUB – DAFAFB, X axis). The

coefficient and P value of Pearson’s correlation test are displayed. The marginal distribution of the two variables is displayed: top for ΔDAF, and right

for beta. c, d Examples of meQTLs detected in this study. Boxplots represent the distribution of β values as a function of genotype, for AFB (red) and

EUB (blue) individuals. The minor allele frequency of each meQTL is presented for each population on the top. Gray lines indicate the fitted linear

regression model for β value~genotype for each population. e Fold enrichment of meQTLs associated with DMS in GWAS hits. For each of the 17

parental EFO categories, the fold enrichment, the 95% confidence intervals obtained by bootstrap, and the associated P values are shown
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variant (rs7203742) nearby CTCF—encoding a transcrip-

tional regulator with 11 highly conserved zinc-finger do-

mains—controls the degree of DNA methylation at 30

CpG sites, ~ 29.4% of all CpGs regulated in trans. Fur-

thermore, of the 21 trans-regulated CpGs that were de-

tected as DMS, 12 were controlled by the same CTCF

variant. That this variant (T→C) presents high levels of

population differentiation (DAF AFB 24% vs. EUB 88%,

FST = 0.59 in the 1% of the genome-wide distribution)

suggests the action of positive selection targeting the de-

rived allele in Europeans. This observation makes of

CTCF not only a master regulator of DNA methylation,

as previously observed [65], but also an important con-

tributor to differences in DNA methylation between hu-

man populations.

Dissecting the mechanistic relationships between DNA

methylation and gene expression

We leveraged the availability of RNA-sequencing data

from the same individuals [48] to obtain new insights

into the mechanistic relationships between DNA methy-

lation and gene expression variation, in African and

European individuals. We associated the levels of ex-

pression of 12,578 genes in primary monocytes with

those of DNA methylation at CpGs located within 100

kb of their TSS, for a total of 513,536 CpG sites. Associ-

ations were considered significant if they passed a P

value threshold determined using 100 permutations

(FDR = 5%, P < 5 × 10−5) (see “Materials and methods”).

We identified 1666 CpGs whose levels of DNA methy-

lation were associated with gene expression (eQTMs),

for a total of 811 genes (eQTM-genes) associated with at

least one CpG in one population group (Additional file 5:

Table S3). The KEGG pathways associated with

eQTM-genes contained a large number of immune-re-

lated pathways, providing a link between DNA methyla-

tion and gene expression in the context of immunity

(Fig. 3a). When investigating the population specificity

of the 811 eQTMs (see “Materials and methods”), we de-

tected 93 significant population-specific effects (43

AFB-specific and 50 EUB-specific). The majority of these

cases (80 out of 93) corresponded to genes whose

eQTMs were also under genetic control, suggesting,

again, the occurrence of G × G or G × E interactions.

Based on current genomic annotations, eQTMs were

mostly negatively correlated to gene expression (69.5%

vs. 30.5%, see also refs. [23, 28, 65, 84, 85]). Negatively

correlated sites were strongly enriched in enhancers

(OR~ 2.6, P = 6.6 × 10−59) (Fig. 3b), highlighting their

major role in transcriptional regulation [86–88]. In

addition, we found a slight excess of negative associa-

tions in promoters (OR ~ 1.2, P = 1.8 × 10−2) and nearby

TSS (TSS1500) (OR ~ 1.4, P = 7.2 × 10−13), as expected

following the canonical model. Conversely, positive

associations were enriched in sites located nearby

UTRs, particularly 3′-UTR (OR ~ 1.8, P = 8.4 × 10−5)

[89], but depleted in sites located in promoters (OR

~ 0.6, P = 1.1 × 10−4) (Fig. 3b). Furthermore, we found

that eQTMs were strongly enriched in DMS (OR ~

11.8, P < 1.93 × 10−216) and, importantly, in meQTL-

CpGs (OR ~ 33.2, P < 1 × 10−326) (Fig. 3c). Together,

these observations indicate that DNA methylation vari-

ation, in particular at sites that are differentially methyl-

ated across populations (DMS), is much more likely to be

under genetic control when associated with gene expres-

sion differences (eQTMs), than random CpG sites.

Exploring the underlying causality between regulatory

loci and gene expression

Because the respective roles of genetic and epigenetic fac-

tors in transcriptional regulation are not fully understood

[56], we next mapped eQTLs (FDR = 5%, see “Materials

and methods”) to identify the cases where DNA methyla-

tion, gene expression, and genetic variants show signifi-

cant associations between all pairs (Additional file 1:

Figure S11). We thus obtained 552 trios, each of them

consisting of one gene, one to various CpGs and one to

various SNPs (containing 68.1% of the genes detected in

the eQTM mapping). This suggested potential, causal re-

lationships between these variables—a latent, though chal-

lenging, question in epigenetics. To infer causality

between regulatory loci (i.e., eQTMs and eQTLs) and

gene expression variation for these specific trios, we first

used an elastic net model to build two intermediate vari-

ables measuring (i) DNA methylation variability attribut-

able to genetics for the trios presenting more than one

SNP and (ii) gene expression variability attributable to

DNA methylation for the trios presenting more than one

CpG (see “Materials and methods”).

We used a Bayesian approach [90] to assess potential

causal effects of a mediating variable M (DNA methyla-

tion) on the relationship between an independent vari-

able X (genetics) and a dependent variable Y (gene

expression) [91]. When comparing the performance of

this method with that of an approach based on partial

correlations, using simulated data and various genomic

scenarios, we found similar results between the two ap-

proaches in terms of sensitivity and specificity (Fig. 4a,

b; Additional file 1: Figure S12; see “Materials and

methods”). We then ran the mediation analysis on each

trio, adjusting for regular covariates (age and surrogate

variables), but also for the fourth and second PCs of

gene expression and DNA methylation, respectively. The

latter covariates were added because they likely capture

potential confounding factors inducing correlation be-

tween DNA methylation and expression, which would

violate the assumption of the causal inference model

(Additional file 1: Figure S13). Note that reverse
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causation was found to be unlikely in our experimental

setting and was thus not considered in our analyses

(Additional file 2: Supplementary Note 2).

At FDR = 5%, we identified 165 genes where the gen-

etic control of expression levels was mediated by DNA

methylation (i.e., α × β was significantly different from

zero, Fig. 4a), in at least one population. Remarkably, in

66 of these cases, mediation occurred through CpG sites

that are differentially methylated across populations

(DMS) (Additional file 6: Table S4). The proportion of

mediated genes whose expression was positively and

negatively correlated to DNA methylation was similar,

ranging from 26 to 31% (Fig. 4c). Expectedly, we found

that, among mediated genes, DNA methylation ex-

plained a significantly higher proportion of the variance

of gene expression than genetics (mean R2 = 23.4% ver-

sus 15.4%, respectively; Wilcoxon P = 3.3 × 10−11), in

contrast with the 387 non-mediated cases where we ob-

served the opposite trend (Wilcoxon P = 7.8 × 10−37)

(Fig. 4d).

We also found that CpG sites mediating gene expres-

sion were preferentially located in enhancers (OR ~ 2.5,

P = 4.0 × 10−21), highlighting again the major role of these

regions in epigenetic regulatory mechanisms [92–94].

These CpGs were depleted in promoters (OR ~ 0.7,

P = 1.4 × 10−2), which were otherwise enriched in

non-mediating CpGs (OR ~ 1.3, P = 5.9 × 10−3). Not-

ably, 86.6% of mediating CpGs fell directly into a

TF-binding site (TFBS), with respect to the expected

76.9% at the genome-wide level (OR ~ 1.9, Fisher’s

exact P = 8.64 × 10−7). This result suggests that DNA

methylation might actively regulate transcriptional

activity through the modulation of TF binding, a hy-

pothesis that requires experimental validation.

Interestingly, among mediated cases, we found key

genes of the immune response, such as NLRP2, RAI14,

NCF4, or ICAM4, and genes with functions related to

transcriptional activity, encoding zinc-finger proteins

(Additional file 6: Table S4). This suggests a more exten-

sive role of DNA methylation in regulating gene

Fig. 3 Correlations of DNA methylation with gene expression. a Networks of KEGG pathways of genes detected in the eQTM mapping.

b Genomic location of eQTMs, for positively and negatively associated CpG sites (light and dark yellow, respectively). Odds ratio were computed

against the general distribution of the 552,141 CpGs from our dataset. The distribution of eQTMs according to the direction of their effect on gene

expression is shown. c Proportions of different groups of CpG sites in all tested sites (left panel) and among the detected eQTMs (right panel)
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expression than the local associations described here,

through the regulation of DNA-binding protein activity.

Impact of immune perturbation on genetic and

epigenetic interactions

Finally, we sought to understand how DNA methylation

variation at the basal state affects transcriptional responses

to immune activation. We used RNA-sequencing data, ob-

tained from the same individuals, after exposure to various

stimuli: LPS activating TLR4 and Pam3CSK4 activating

TLR1/2, both pathways sensing bacterial components,

R848 activating TLR7/8, predominantly sensing viral nu-

cleic acids, and influenza A virus (IAV) [48]. We then

mapped response-QTMs (reQTMs) using fold changes

in gene expression between non-stimulated and stim-

ulated states, for all genes expressed in either condi-

tion (see “Materials and methods”).

We found 230 unique genes whose response to immune

activation was associated with DNA methylation in at

least one condition; most associations were context-spe-

cific, with only 7 genes detected in all conditions (Fig. 5a;

Additional file 5: Table S3). Furthermore, a 2.5-fold

increase was observed in the number of reQTM-genes de-

tected upon activation with viral-stimuli (R848 and IAV;

197 unique genes) with respect to those detected for bac-

terial ligands (LPS and Pam3CSK4; 78 unique genes)

(Fig. 5a). For example, we detected a reQTM upon R848

stimulation for CARD9 in EUB and CD1D upon IAV in-

fection in AFB, both genes known to play an important

role in host defense (Fig. 5b, c). Despite reQTMs and

eQTMs present a similar genomic distribution (Add-

itional file 1: Figure S14), we observed an important shift

towards positive associations between DNA methylation

and transcriptional responses, in particular to TLR ligands

(Fig. 5d). This shift was mainly accounted for by reQTMs

that present the strongest associations between DNA

methylation and gene expression in the non-stimulated

condition (Additional file 1: Figure S15), corresponding to

109 genes (47% of the total). This contrasts with the ca-

nonical model of negative associations primarily observed

at reQTMs presenting the strongest associations at the

stimulated state, corresponding to 131 genes (57% of the

total). Note that 10 genes were associated with reQTMs of

both groups.

Fig. 4 Inference of the causal effects of DNA methylation on gene regulation. a Representation of a simulated scenario, with the three varying

parameters (α, β, and τ). b Comparison of the mediation analysis (med) with a partial correlation approach (PartCor) using a range of different

simulated parameters for α (0.3–0.8), β (0.9–0.1), and τ (0.1–0.9). Note that the parameter range simulated for β and τ was adjusted so that we

kept 75% of the variance unexplained (random noise parameter γ = 0.25). The difference of the area under the curve (AUC) between the two

approaches is represented with different shades of red and blue. The sizes of the circles are proportional to the mean AUC of the two

approaches. Two examples of the ROC curves are shown in the upper part of the figure. c Number of mediated and non-mediated eQTM-genes

for negative and positive associations between DNA methylation and gene expression. The percentages of these two categories are also

indicated. d Proportion of variance of gene expression explained by DNA methylation (light gray) and genetics (dark gray), in mediated and

non-mediated cases
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To explore causal mediation effects of DNA methy-

lation in the context of immune activation, we

mapped response-QTLs (see “Materials and

methods”). Following our previous rationale (Add-

itional file 1: Figure S11), we identified 141 trios

(61.3% of the 230 reQTM-genes, Additional file 6:

Table S4). At FDR = 5%, we detected 40 genes

(28.4%) where the genetic control of their transcrip-

tional response was mediated by DNA methylation

(Fig. 5e). Although non-significant, we found a higher

proportion of mediation for genes whose response

was positively associated with DNA methylation, as

compared to negative associations, in particular for

viral challenges (OR ~ 2.0; Fisher’s exact P = 0.33)

(Additional file 1: Figure S16). Among mediated

genes in the viral conditions, the proportion of gene

expression variance explained by DNA methylation

was higher for positive than for negative associations,

again at odds with the non-stimulated condition

(Fig. 5f ). More generally, our analyses illustrate the

value of mapping reQTMs and studying the under-

lying patterns of causality, to uncover mechanisms

that might explain disparities in the way individuals

and populations respond to immune activation.

Discussion

Our population epigenetic results, obtained in the setting

of an innate immunity cell population, demonstrate exten-

sive differences in DNA methylation profiles between two

populations that differ in their genetic ancestry but share

the same present-day environment. Such population dif-

ferences were observed at the epigenome-wide level

(explaining ~ 12% of the total variance in DNA methyla-

tion) and involved 12,050 sites that were mostly located in

genes with functions related to cell periphery or immune

response regulation. Previous studies have searched for

ancestry-related differences in DNA methylation in vari-

ous human populations and cell types [16, 38–41, 43, 95].

Although comparisons across studies are complicated by

differences in experimental settings and statistical

thresholds used to detect ancestry-associated CpG

sites, these range from 299 between Caucasian- and

Asian/mixed-descent individuals living in Canada [16]

to 36,897 between European CEU and African YRI

[39]. An interesting insight that can be drawn from

our analyses is that genes involved in the activation

and regulation of immune responses tend to present

higher levels of DNA methylation in individuals of

European ancestry, with respect to those of African

Fig. 5 Effects of DNA methylation on transcriptional responses to immune stimulation. a Number of genes harboring reQTMs in single conditions

or combinations of stimulations. b, c Examples of reQTMs detected in this study. Lines indicate the fitted linear regression model, and gray

shades the 95% confidence intervals of these models. b The distribution of the expression values of CD1D at the non-stimulated (yellow) and

after IAV infection (purple) is plotted as a function of β values, for AFB individuals only. c The distribution of the expression values of CARD9 at

the non-stimulated (yellow) and upon R848 stimulation (blue) is plotted as a function of β values, for EUB individuals only. d Number of reQTM-

genes by condition and according to the direction of their association with DNA methylation. e Number of mediated and non-mediated reQTM-

genes per stimulation condition. The percentages of these two categories for each condition are also indicated. f Proportion of variance of gene

expression explained by DNA methylation, among negative (dark colors) and positive (light colors) associations, in mediated cases
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ancestry, mostly owing to genetic control. That up to

16% of immune-related genes that are hyper-methylated

in Europeans are also differentially expressed between

populations [48] could provide a mechanistic explanation

for the ancestry-related differences in transcriptional re-

sponses to bacteria reported in macrophages, where Euro-

pean ancestry is associated with lower inflammatory

responses [49].

Although variation in past environmental exposures

and socioeconomic factors may contribute to population

differences in DNA methylation, we found that 70% of

differentially methylated sites between African and

European ancestry groups were associated with at least

one meQTL. This indicates that population differences

in DNA methylation are mostly driven by DNA se-

quence variants [38, 40–42]. In some cases, a single gen-

etic variant can account for important population

differences at multiple CpG sites, as attested by the

trans-meQTL we detected at CTCF, whose local genetic

variation has been shown to alter distant DNA methyla-

tion patterns in whole blood [65]. We show that a CTCF

variant (rs7203742) regulates DNA methylation of 30

distant CpGs, 40% of which are differentially methylated

between populations. We also found that all CTCF

trans-regulated CpGs fall within a TFBS, confirming our

initial hypothesis about the mechanism by which a gen-

etic variant might alter DNA methylation at a distant

CpG site. Interestingly, 9 out of the 30 CTCF trans-regu-

lated CpGs fall within a TFBS of CTCF, while the

remaining 21 fall within a TFBS specific to other TFs such

as YY1, ESR1, or ZNF143. This observation is consistent

with a model of pioneer transcription factor activity [96]

and suggests that CTCF acts as a pioneer factor that will

generate changes in chromatin state that, in turn, will be-

come accessible for binding of secondary factors.

At the genome-wide level, we find that the quantitative

impact of DNA methylation on gene expression vari-

ation is lower than that reported by some previous stud-

ies, possibly reflecting differences in experimental

settings and statistical power (e.g., cell types and sample

sizes) [23, 65, 84, 89]. For example, a study of 204

healthy newborns detected substantial variation across

tissues in the number of genes whose expression levels

were associated with DNA methylation, ranging from

596 in fibroblasts to 3838 in T cells [23]. We detected, at

the non-stimulated state, 811 eQTM-genes (6% of the

total number of expressed genes), a figure that drops to

230 for reQTM-genes across stimulation conditions.

However, a limitation of our study is that we measured

DNA methylation at the basal state, while gene expres-

sion was obtained after 6 h. Studies including a more

comprehensive range of epigenetic marks obtained at

different time points—in different cell types and tissues

originating from individuals of various ancestries—are

needed to more precisely understand the interplay be-

tween these regulatory elements and quantify their re-

spective roles in the regulation of transcriptional activity.

The detected eQTMs were found to be drastically

enriched in genetic control (OR ~ 33.2, P < 1 × 10−326,

Fig. 3c), which highlights the coordinated action of gen-

etic and epigenetic factors in driving gene expression

variation but raises questions about the causal role of

DNA methylation [56]. Despite cautious interpretation

of causality in mediation analyses is required [97], our

analysis provides a first estimate of the potential direct

role of DNA methylation in regulating transcriptional

activity, in both resting and stimulated monocytes. At

the non-stimulated state, we find that ~ 20% of

eQTM-genes show evidence of a causal mediation effect

of DNA methylation. Although a similar extent of medi-

ation was found upon immune stimulation (~ 17%), we

detected specific patterns upon treatment with viral

challenges, where a higher occurrence of positive associ-

ations was observed among mediated cases. These find-

ings mostly reflected cases where high levels of DNA

methylation were associated with low gene expression in

the non-stimulated condition, thus requiring stronger

responses to reach high levels of gene expression upon

cell perturbation. These trends suggest a major, direct,

and context-specific role of DNA methylation in the

regulation of immune responses, whose complexity re-

quires further investigation.

Finally, we found that meQTLs, in particular those asso-

ciated with ancestry-related differences, are enriched in

GWAS hits related to immune disorders. This suggests

that DNA methylation has an important impact on the

cellular activity of monocytes and ultimately affect pheno-

typic outcomes. Nonetheless, a large fraction of the vari-

ance of DNA methylation and gene expression remains

unexplained. Additional work is needed to quantify the

relative impact of genetic, epigenetic, environmental, and

lifestyle factors in driving variation of DNA methylation

and gene expression, both in resting and stimulated cells.

Furthermore, although the causal mediation analyses pre-

sented in this study reinforce the notion that DNA methy-

lation can play a direct role in regulating gene expression

in humans [23, 98], monitoring the kinetics of variation in

DNA methylation and gene expression after exposure to

different infectious agents will broaden our understanding

of the interplay between these molecular phenotypes and

their impact on endpoint phenotypes.

Conclusion
Our study reveals extensive variation in DNA methyla-

tion profiles between individuals and populations, with

ancestry-related differences being mostly explained by

genetic variation. It also suggests that DNA methylation

can have a direct, causal impact on the transcriptional
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activity of primary monocytes, providing new insight

into the nature of the host factors that drive immune re-

sponse variation in humans.

Materials and methods

Sample collection and monocyte purification

The EvoImmunoPop collection consists of 156 individuals

(males between 20 and 50 years old, mean 31.5 years old)

from two different ancestries (78 of European and 78 of

African descent), who were recruited at the Center for

Vaccinology from the Ghent University Hospital (Ghent,

Belgium) [48]. For each participant, 300ml of whole blood

was collected into anticoagulant EDTA-blood collection

tubes and peripheral blood mononuclear cells (PBMCs)

were purified using Ficoll-paque density gradients

(#17-1440-03, GE Healthcare). Monocytes were positively

selected from purified PBMCs using magnetic CD14

microbeads (#130-050-201, MiltenyiBiotec), as per manu-

facturer’s instructions. All samples had a monocyte purity

higher than 90% with a mean value of 97%.

DNA methylation profiling and data normalization

Genomic DNA was extracted from the monocyte frac-

tion using a phenol/chloroform protocol followed by

ethanol precipitation. The DNA was then bisulfite con-

verted, and BC-DNA was then processed using the Illu-

mina Infinium MethylationEPIC BeadChip Kit (Illumina,

San Diego, CA) to obtain the methylation profile of each

individual at more than 850,000 CpG sites genome-wide.

In total, 184 samples were hybridized with the EPIC

array, including 172 unique samples and 12 technical

replicates. We removed any technically unreliable

probes: (i) potentially cross-hybridizing probes (83,635

probes), (ii) those located on the X and Y chromosomes

(17,229 probes), and (iii) probes overlapping SNPs that

present a frequency higher than 1% in at least one of the

studied populations (206,998 probes). These SNPs were

chosen based on our own genotyping dataset, as well as

on the 1000 Genomes project [99]. To control for the

quality of the probes and samples, we filtered out indi-

viduals with > 5% of probes associated with a detection

P value > 10−3, and then, probes with a detection P value

> 10−3 in one or more individuals (6833 probes). Follow-

ing this filtering process, 552,141 of the original 866,836

sites on the array were retained.

We calculated methylation levels from raw data, using

the R Bioconductor lumi package [100]. Given that the

M value has been shown to provide better detection sen-

sitivity than β values at extreme levels of modification

[68], we used the M value to run all statistical analysis

unless otherwise stated. Note that in some instances of

the text and figures, β values are reported for ease of

clarity and interpretation. M values were then adjusted

for background noise with the normal-exponential using

out-of-band probes (noob) from the R Bioconductor

minfi package [101]. Next, normalization for color bias

was performed using lumiMethyC with the “quantile”

method, and for methylated/unmethylated intensity vari-

ation using the lumiMethyN with the “ssn” method

[100]. Finally, we corrected for technical differences be-

tween type I and type II assay designs, by performing

beta-mixture quantile normalization [102]. To correct

for known batch effects and potential hidden confounders,

we used the sva function from the sva Bioconductor pack-

age [103] with age as a variable of interest. Additionally,

five EUB samples were removed because they presented

an excess of hemimethylated sites, leaving 89 EUB and 78

AFB samples. To obtain equal power in the two studied

populations, we down-sampled the European group to 78

samples by randomly removing 11 EUB samples, for an

overall final cohort of 156 individuals.

Extraction of differentially methylated sites (DMS)

To detect CpG sites presenting statistically different levels

of DNA methylation between AFB and EUB, we fitted a

linear regression model for each CpG site: M value ~

population + age + two surrogate variables + error, and

next applied an empirical Bayes smoothing to the standard

errors using the R Bioconductor limma pipeline [104]. P

values were adjusted using the Benjamini and Hochberg

method. DMS were extracted using a threshold of ad-

justed P value (< 0.01) and a difference in the mean β

value of each population |Δβ| > 5%.

Mapping of methylation quantitative trait loci (meQTLs)

All individuals were genotyped for a total of 4,301,332

SNPs on the Illumina HumanOmni5-Quad BeadChips

and went through whole-exome sequencing with the

Nextera Rapid Capture Expanded Exome kit, on the Illu-

mina HiSeq 2000 platform, with 100-bp paired-end reads.

Details of the processing of genotyping and whole-exome

sequencing data, together with imputation using the 1000

Genomes Project imputation panel [99], are reported in

ref. [48]. For the meQTL mapping, we filtered out SNPs

with a minor allele frequency < 5% in the populations

studied and kept a final dataset of 10,278,745 SNPs (i.e.,

corresponding to the merged genotyping and whole-ex-

ome sequencing dataset after imputation; 8,913,090 SNPs

in Africans and 6,178,808 SNPs in Europeans). Age, PC1

and PC2 of the genotype matrix, and two surrogate vari-

ables, as identified with the sva R package, were used as

covariates in the linear model.

We mapped meQTLs using the statistical framework

implemented in the MatrixEQTL R package [70]. For

local associations (i.e., distance SNP-CpG ≤ 100 kb), we

performed two independent mappings using (i) the dir-

ect linear model from the MatrixEQTL pipeline and (ii)

a Kruskal-Wallis rank test. Associations were considered
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significant when passing the 5% FDR threshold in both

mappings. Two models were considered: merging all in-

dividuals and including a binary variable adjusting for

ancestry or keeping the two populations separately. To

detect all possible independent SNPs regulating methyla-

tion at a single CpG site in cis, we regressed out geno-

types of all primary cis-meQTLs and then performed

cis-meQTL mapping on the regressed methylation data

to find secondary cis-meQTLs. We repeated this process

in a stepwise fashion until no additional independent

cis-meQTLs were detected. This allowed us to refine our

local meQTL mapping by detecting all possible inde-

pendent SNP-CpG associations.

For distant, trans-acting associations (i.e., distance be-

tween SNP and CpG ≥ 1Mb or on different chromo-

somes), we restricted our analysis to SNPs located in the

vicinity of transcription factor (TF) coding genes, to

limit the burden of multiple testing. Specifically, we se-

lected (i) all SNPs located less than 10 kb to the TSS of

any expressed TF in our dataset and (ii) SNPs detected

as cis-eQTLs for these TFs. For each SNP, we only inves-

tigated CpG sites that mapped at least 1Mb from the

SNP or located on other chromosomes, using a

Kruskal-Wallis rank test.

For both cis- and trans-meQTLs, FDR was computed

by mapping meQTLs on 100 datasets with the M values

permuted within each population. We then kept, after

each permutation, the most significant P value per CpG

site, across populations (probe-level FDR). Finally, we

computed the FDR associated with different P value

thresholds for cis or trans, and subsequently selected the

P value threshold that provided a 5% FDR: P = 1 × 10−5

and P = 1 × 10−9 for cis- and trans-meQTLs, respectively.

Investigating the genetic basis of population differences

in DNA methylation

We aimed at identifying the proportion of the popula-

tion differences in DNA methylation that was accounted

for by genetic variability. To do so, for the 8459 DMS

that were associated with at least one meQTL, we com-

puted the following ratio:

ExpDiff ¼ β� ΔDAF

ΔMeth

with β reflecting the effect of the derived allele of the

meQTL on methylation, ΔDAF the difference in allelic

frequencies between Europeans and Africans (DAFEUB −

DAFAFB), and ΔMeth the observed difference in the

mean levels of DNA methylation between European and

African individuals (MethEUB−MethAFBÞ.
Note that this ratio is not bound to [0:1], as the effect

of genetics onto the overall population differences in

DNA methylation can be counteracted by opposite

effects of independent origins (e.g., environmental fac-

tors or non-detected independent genetic effects).

Detecting population-specific meQTLs

We aimed at refining our meQTL mapping by detecting

population-specific meQTL effects (i.e., SNPs present at

similar frequencies in both populations but having different

effect sizes on DNA methylation between populations). To

do so, we used a Bayesian model selection approach to

identify specific and shared effects for each of the 69,702

CpGs that we detected as being associated with at least

one genetic variant. Specifically, for each CpG-SNP pair,

we computed the likelihood of three models:

lm Meth � SNP þ Popð Þ ðiÞ

lm Meth � SNPEUB þ Popð Þ ðiiÞ

lm Meth � SNPAFB þ Popð Þ ðiiiÞ

with SNPEUB coded 0,1,2 in EUB individuals and 0 in

AFB individuals, and SNPAFB coded 0,1,2 in AFB individ-

uals and 0 in EUB individuals. We next calculated the pos-

terior probability of each model assuming that all models

are equally likely a priori. We then set a threshold of 0.9 to

consider one of the models as supported by the data. Thus,

a meQTL is classified as EUB-specific if the posterior

probability of model (ii) is higher than 0.9, or AFB-specific

if the probability of model (iii) is higher than 0.9.

GWAS enrichment analyses

We used the NHGRI GWAS catalog [105] to first select

all significant SNPs that were significantly associated

with a complex trait or disease at a P < 1 × 10−8. Using

this set of GWAS hits, we next extracted all SNPs in LD

with each of these hits (R2 > 0.8) and classified the result-

ing final set of 166,248 SNPs according to their parental

Experimental Factor Ontology (EFO) term [75].

We then selected all meQTLs in our dataset that passed

the P value threshold corresponding to FDR 5% in our ini-

tial mapping, and filtered out meQTLs that were in LD

(R2 > 0.8) keeping one SNP per independent loci (56,574

independent SNPs). For the resampling set, we considered

all SNPs that were initially used for the meQTL mapping

and pruned them for LD (R2 > 0.8), yielding a final set of

921,466 SNPs. Resampling was performed using bins of al-

lelic frequencies at intervals of 5%.

Finally, we tested for fold enrichments of meQTLs in

GWAS hits, for each of the 17 parental EFO categories

[75]. The fold enrichment was calculated by comparing

the number of LD pruned-meQTLs that were found to

correspond to GWAS hits (or were in LD with GWAS

hits) with the expected number estimated through 10,000

resamples. P values associated to the fold enrichment were

calculated by fitting a normal distribution to the empirical
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distribution of our 10,000 resampled sets of SNPs. Confi-

dence intervals were computed using 10,000 resamples by

bootstrap. The same procedure was applied when search-

ing for enrichments of meQTLs specifically in GWAS hits

related to the 268 traits of the “Immune system disorder”

EFO parental term.

Expression quantitative trait methylation (eQTM) analysis

To identify associations between DNA methylation levels

and gene expression of nearby genes, we leveraged

RNA-sequencing data obtained from the same individuals,

both at the non-stimulated state (NS) and in response to

four immune stimuli [48]. Briefly, RNA-sequencing was

performed on the Illumina HiSeq2000 platform with

101-bp single-read sequencing with fragment size of

around 295 bp, and outputs of around 30 million

single-end reads per sample were obtained. A total of 763

RNA-sequencing samples from our filtered dataset of 156

donors were analyzed for gene expression profiling, in-

cluding 156, 151, 153, 148, and 155 samples for the NS,

LPS, Pam3CSK4, R848, and IAV conditions, respectively.

Details of cell culture, immune stimulation conditions,

and RNA-seq processing can be found in ref. [48].

Using the RNA-sequencing data from the NS condi-

tion, we mapped eQTMs (i.e., CpGs whose variation is

associated with gene expression) in a window of 100 kb

around the TSS of each gene (12,578 expressed genes in

primary monocytes). The associated P values and the co-

efficients of correlation between methylation profiles

and gene expression were obtained using Spearman’s

rank correlation. FDR was computed by mapping

eQTMs on 100 datasets with the M values permuted,

and kept, after each permutation, the most significant P

value per gene (gene-level FDR). We selected the P value

threshold that provided a 5% FDR (P = 5 × 10−5).

We also mapped eQTMs in the context of the response

to the various stimulations, namely response-QTMs

(reQTMs). To do so, the same procedure explained above

for the eQTM mapping was followed, using the fold

change of expression upon stimulation as a measure of

the host response to infection. Specifically, we calculated

the difference of the log2 of expression values between the

stimulated and non-stimulated states, corrected for the ef-

fect of low values of FPKM, for each gene expressed in at

least one of the two conditions.

Diff ¼ log2 1þ FPKMStimð Þ− log2 1þ FPKMNSð Þ

¼ log2
1þ FPKMStim

1þ FPKMNS

� �

FoldChange ¼ 1þ FPKMStim

1þ FPKMNS

¼ 2Diff

For the mapping of eQTMs and reQTMs, we con-

ducted two separate analyses: merging all individuals

and including ancestry as a covariate, or keeping the two

populations separately.

Expression quantitative trait loci (eQTL) analysis

We mapped expression quantitative trait loci (eQTLs)

using the MatrixEQTL R package [70], leveraging our

genotyping and expression data [48]. As for the meQTL

mapping, we filtered out SNPs with a minor allele fre-

quency < 5% in the populations studied and kept a final

dataset of 10,278,745 SNPs. Age and PC1/PC2 of the

genotype matrix were used as covariates in the linear

model. Two different models were used: merging all indi-

viduals and including ancestry as a covariate, or keeping

the two populations separately. We also mapped response

quantitative trait loci (reQTLs), using the fold change of

expression described above, instead of expression, and the

same covariates that we used for the eQTL mapping.

For both eQTLs and reQTLs, FDR was computed by

mapping eQTLs/reQTLs on 100 datasets with the ex-

pression values permuted within each population. We

then kept, after each permutation, the most significant

P value per gene, across populations (gene-level FDR).

Finally, we computed the FDR associated with different

P value thresholds for eQTLs or reQTLs, and subse-

quently selected the P value threshold that provided a

5% FDR: P = 5 × 10−5 and P = 5 × 10−6 for eQTLs and

reQTLs, respectively.

Simulations to infer causality

We simulated different scenarios to infer causal rela-

tionships between DNA methylation and gene expres-

sion. For each scenario, we started by randomly

selecting genomic blocks of 1 Mb each along the gen-

ome to keep realistic expectations of genetic structure.

We next randomly sampled SNPs in these blocks,

which we used to simulate methylation and gene ex-

pression data. For example, in a scenario where a gen-

etic variant influences DNA methylation variation that,

in turn, actively regulates gene expression (see Fig. 4a),

we followed the next steps:

(i)

Gi std ¼ Gi−Gi

� �

sd Gið Þ
(ii)

Mi ¼
ffiffiffiffi

αi
p � Gistd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−αið Þ
p

� εi

(iii)

Mi std ¼ Mi−Mi

� �

sd Mið Þ

(iv)
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Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

γ � βi
p

�Mistd þ
ffiffiffiffiffiffiffiffiffiffiffiffi

γ � τi
p � Gistd

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γ � βi þ τi
� �� �

q

� ζ i

where Gi is the genotype of the ith sampled variant and

Gi_std the standardized value of its genotype; Mi is the sim-

ulated methylation data and Mi_std its standardized methy-

lation value; Ei is the simulated gene expression data; αi is

the proportion of variance of Mi that is explained by Gi,

and γ is a noise parameter that corresponds to the total

proportion of variance of Ei that is explained by Gi and

Mi. βi and τi are the proportions of explained variance that

are attributable to Gi and Mi respectively (satisfying βi + τi
= 1). Finally, εi and ζi are random, normally distributed re-

siduals. Note that in the simulation presented in Fig. 4a, b,

we used a gamma of 0.25, so that 75% of the variance of

gene expression remained unexplained.

Detection of genetic variants-DNA methylation-gene

expression trios

To infer causality between regulatory loci and gene expres-

sion variation, we considered eQTLs that were also de-

tected as meQTLs, and, out of this subset, we kept only

those for which the meQTL-CpG had previously been

identified as an eQTM of the eQTL-gene (Additional file 1:

Figure S11). When multiple SNPs or CpGs where present

in a trio, we used an elastic net model, to build linear pre-

dictors of (i) gene expression based on DNA methylation

variability for trios with multiple CpGs and (ii) DNA

methylation based on genetic variability for trios with mul-

tiple SNPs. These predictors were then used as summary

variables for DNA methylation variability (i) or genetic

variability (ii). Specifically, the glmnet function from the R

package glmnet [106] was used to fit the generalized linear

model via penalized maximum likelihood, with an elastic

net mixing parameter α of 0.5. The strength of the penalty

λ1se was chosen as the largest value of lambda such that

the error was within 1 standard deviation of the minimum

lambda, when performing k-fold cross validation with the

cv.glmnet function. Finally, the generic R function predict

was used to build the optimal linear predictor in each case.

For the trios presenting more than one SNP, we also used a

predictor of gene expression based on genetic variability,

as summary variable for the genetic variability, and found

no differences in our simulation-based mediation results

when compared to building the summary variable from a

predictor of DNA methylation (data not shown).

Mediation analyses

For conducting causal mediation analyses, we used a

Bayesian approach as implemented in the mediation R

package [90]. Briefly, this approach estimates causal

effects of a mediating variable M (DNA methylation) on

the relationship between an independent variable X

(genetics) and a dependent variable Y (gene expression).

In this scenario, the global effect of X on Y can be writ-

ten as ρX→ Y = τ + α · β, where τ is the specific effect of X

on Y, α the specific effect of X on M, and β the specific

effect of M on Y. With this, the product α·β represents

the mediation effect of G on Y, through M. The mediate

function of the mediation R package was used to com-

pute point estimates for average causal mediation effects,

as well as 1000 simulation draws of average causal medi-

ation effects. The empirical distribution of simulated ef-

fects was used to fit a normal distribution, which was

subsequently used to compute empirical P values for the

H0 hypothesis “α·β = 0.” We used the R function p.adjust

with method “fdr” to correct at a FDR = 5%.

For comparison purposes with the mediation analyses,

we conducted on simulated data a partial correlation ap-

proach to test for independence between expression and

methylation levels when accounting for genetic variability.

We used the pcor.test function from the R package ppcor

[107] to compute P values of the partial correlation be-

tween simulated expression and methylation data.
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