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Abstract

Man has probably used since his existence plants and plant-derived compounds for his health care and well-being. �is has led to the development of life-saving 
drugs for treating a multitude of conditions including infectious, cardiovascular, malignant, and diabetic disease. More recently, the amazing biodiversity represented 
by the world’s oceans have been realized to represent an equally and exceptionally rich source of valuable bioactive compounds. �e majority of marine organisms 
have an evolutionary history that dates back to the Cambrian, some 500 million years ago. Since then, these organisms have dealt successfully with competitors and 
predators by developing a unique arsenal of highly e�ective secondary metabolites for their defense, reproduction, and communication. Many of these chemicals a�ect 
metabolic pathways that are common to humans and are involved in critical physiological functions. �us, these substances often possess meaningful pharmacological 
properties. For these reasons, marine organisms may represent precious resources for developing drug candidates, cosmetics, nutritional supplements, and molecular 
probes for improving our well-being. �is paper addresses the signi�cance of bioactive compounds from marine invertebrates to the development of new drugs.

Introduction 

Historically, terrestrial plants and microorganisms have been 
important natural sources for developing new medicines [1,2]. In fact, 
approximately 75% of the twenty most commonly used hospital drugs, 
and approximately 20% of the hundred most prescribed drugs are 
derived from natural sources [3]. A few examples are antibiotics such 
as penicillin and streptomycin derived from the fungus Penicillium 
chrysogenum (Trichocomaceae), and aminoglycosides such as 
gentamicin and tobramycin from Streptomyces and Micromonospora 
bacteria, respectively; the narcotic morphine and the antitussive 
codeine derived from the opium poppy Papaver somniferum L. 
(Papaveraceae); the cardiotonic digoxin from the foxglove Digitalis 
purpurea L. (Plantaginaceae); the antimalarial quinine derived from 
the bark of Cinchona spp (Rubiaceae); and the skeletal muscle relaxant 
tubocurarine from the stem of Chondrodendron tomentosum Ruiz & 
Pavón (Menispermaceae) that is used for general anesthesia [1,2].

�ese and many other examples underscore the importance of 
plant-derived compounds - particularly those from tropical rain forests 
- to new drug discovery and development activities [1,2]. However, 
the world's oceans may represent an equally important resource 
for discovering and developing new therapeutics. �is statement is 
based on two important pieces of evidence. Firstly, the oceans cover 
more than 70% of the earth's surface and contain more than 200,000 
species of invertebrates and algae as well as an unknown number of 
microorganisms, only a relative handful of which has been studied [4]. 
Secondly, the relatively small number of marine organisms evaluated 
to date - mostly algae and invertebrates - has already yielded thousands 
of chemical compounds that have found medical applications ranging 
from algae-based skin care products [5,6] to established antineoplastic 
agents such as cytarabine [7].

�is paper provides the rationale for marine drug discovery and 
development, addresses a number of bioactive compounds from marine 
invertebrates, elaborates about their mechanisms of action, focuses on 

their potential clinical usefulness and applicability, and re�ects on the 
prospects for new discovery and development activities based on the 
exploration of these compounds. �e compounds have been grouped 
on the basis of the taxonomic groups ([sub]phyla) in which they have 
been encountered (Table 1).

Background

Why do marine species including invertebrates produce such an 
abundance of compounds with unusual chemical structures and unique 
mechanisms of action upon which molecular modeling and chemical 
synthesis of new drugs can be based? An important part of the answer 
to this question lies in the fact that many of them are sessile organisms 
that live in densely populated habitats where competition for space 
and resources is intense. Examples are reef-building corals, sponges, 
sea fans, bryozoans, and tunicates. Indeed, a super�cial examination 
of a coral reef habitat reveals an astonishing density of such plants 
and animals. All of them compete with each other for food and space, 
must avoid attack by predators and being fouled or overgrown, need 
to reproduce successfully, and must ward o� microbial infections. For 
these purposes, they have developed an exceptional arsenal of secondary 
metabolites for their defense, reproduction, and communication [8,9].

Some of these chemicals are toxic or noxious, conferring protection 
against predators; others suppress the growth and reproduction of 
rivals, thus preventing their overgrowth and crowding out and allowing 
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them to maintain space; and still others serve as natural defenses against 
microbial infections [8,9]. As many of these chemicals also interact 
with enzymes and metabolic pathways involved in human diseases, 
they o�en represent valuable lead compounds for the development of 
new drugs for treating human diseases [8,9]. If, for example, a certain 
sponge produces a chemical that prevents a coral from invading its 
space by interfering with the coral’s proliferation and cell division, 
that compound may also be e�ective in inhibiting the uncontrolled 
growth of cancer in humans. In fact, several marine-derived chemical 
compounds have been developed as antineoplastic agents, while 
some are under preclinical or clinical evaluation as a treatment for 
cancer. And more comprehensive studies on the bioactivities of these 
substances may well open the door to the development of many other 
medical applications ranging from novel antivirals to drugs against 
Alzheimer’s disease.

Bioactive compounds from Porifera

�e phylum Porifera (sponges) is evolutionarily considered the 
oldest group of existing animals, and probably represents one of the 
most important sources of marine natural products for developing 
new drugs. �eir sessile life-style and abundant diversity - roughly 
2,800 di�erent species - were probably the driving evolutionary 
forces to develop their unique defensive toxins which have potent 
pharmacological activities. Notably, exploration of sponges as sources 
of new drugs led in the 1950s to the identi�cation of a number of unusual 
arabinose nucleosides in Tectitethya crypta (Tethyidae) in the waters 
o� Bimini Islands, Bahamas [10], and the subsequent development 
of the antimetabolite cytarabine (cytosine arabinoside, ara-C, or 
Cytosar®), an essential component of combination chemotherapeutic 
regimes for treating several hematological malignancies [7]. Further 
exploration of marine sponges for their medicinal potential led to 
the identi�cation of some highly interesting bioactive compounds 
including bisindole alkaloids, contignasterol, debromohymenialdisine, 
(+)-discodermolide, halichondrins, and girolline.

Bisindole alkaloids

�e bisindole alkaloids cis-3,4-dihydrohamacanthin B and 

bromodeoxytopsentin have been isolated from the South African 
sponge Topsentia pachastrelloides Topsent, 1892 (Halichondriidae). 
Interest in these sponge metabolites arose following their potent and 
diverse pharmacological activities - including antimicrobial activity 
- in various preclinical models [11]. Further exploration of cis-3,4-
dihydrohamacanthin B and bromodeoxytopsentin revealed potent and 
selective interference with pyruvate kinase (PK), a key hub protein in 
the interactome of methicillin-resistant Staphylococcus aureus (MRSA) 
as well as inhibition of the growth of S. aureus and MRSA in vitro 
[12,13]. MRSA - also known as the ‘superbug’ - is an exceptionally 
drug-resistant pathogenic bacteria that is responsible for a considerable 
number of fatalities in many public healthcare facilities throughout the 
world where resistant bacteria are selected due to pressure generated by 
the overuse of antibiotics [14,15].

Since PKs are evolutionarily highly-conserved rate-limiting 
enzymes for the irreversible conversion of phosphoenolpyruvate into 
pyruvate during glycolysis, they have been recognized as unprecedented 
targets for mechanistically novel antibiotics [16]. Indeed, targeting 
MRSA PK may represent a novel strategy for developing much 
needed new antibiotics against this drug-resistant pathogen [12]. 
�is prospect not only spurred further research on natural marine 
bisindole alkaloids [17,18], but also stimulated e�orts directed at the 
synthesis of analogues with original chemical structures [19,20]. So far, 
however, the potent MRSA PK inhibition recorded in vitro could not 
be translated to meaningful MRSA antibacterial activity in vivo [18]. 
Still, the identi�cation of these lead compounds holds the promise for 
the development of e�cacious antibiotics against MRSA and other 
multidrug-resistant bacteria.

Contignasterol

�e polyhydroxysteroid contignasterol (IZP-94005) was �rst 
isolated from the sponge Petrosia contignata �iele, 1899 (Petrosiidae) 
in Papua New Guinea in the early 1990s [21]. �is compound 
prevented histamine release by rat peritoneal mast cells induced by IgE, 
presumably by inhibiting phospholipase C activity [22]. Furthermore, 
contignasterol signi�cantly inhibited acute antigen-induced 

 Phylum   Species (Family)  Compound   (Potential) clinical application(s) 

 Porifera  TopsentiapachastrelloidesTopsent, 1892 (Halichondriidae)  Bisindole alkaloids  Against bacterial infections including those caused by MRSA

Petrosiacontignata Thiele, 1899 (Petrosiidae) Contignasterol Against asthma and hemodynamic disorders

Stylotellaaurantium Kelly-Borges &Bergquist, 1988 
(Halichondriidae)

Debromohymenialdisine Against cancer, Alzheimer'sdisease, and osteoarthritis

Discodermiadissoluta Schmidt, 1880 (Theonellidae) (+)-Discodermolide Against cancer 

Halichondria okadaiKadota, 1922 (Halichondriidae) Halichondrins Against cancer 

PseudaxinyssacantharellaLévi, 1983 (Halichondriidae) Girolline Against malaria 

Cnidaria Pseudopterogorgiaelisabethae Bayer 1961 (Gorgoniidae) Pseudopterosins Against skin irritation, as analgesics, for wound-healing, and 
against inflammation

Jellyfish-associated marine fungi - Against microbial infections

Nemertea Paranemertesperegrina Coe, 1901 (Emplectonematidae) Anabaseine Against Alzheimer's disease

Mollusca Dolabellaauricularia Lightfoot, 1786 (Aplysiidae) Dolastatin 10 Against cancer 

Elysiarufescens Pease, 1871 (Plakobranchidae) Kahalalide F Against cancer and skin conditions

SpisulapolynymaStimpson, 1860 (Mactridae) Spisulosine Against cancer 

Conusspp. Linnaeus, 1758 (Conidae) Ziconotide Against chronic pain 

Bryozoa Bugulaneritina Linnaeus, 1758 (Bugulidae) Bryostatin 1 Against cancer and Alzheimer's disease

Tunicata Lissoclinum sp. (Didemnidae) Mandelalides Against cancer

EcteinascidiaturbinataHerdman, 1880 (Perophoridae) Trabectedin Against cancer 

 Aplidiumalbicans Milne-Edwards, 1841 (Polyclinidae) Plitidepsin Against cancer 

Hemichordata  CephalodiscusgilchristiRidewood, 1908(Cephalodiscidae) Cephalostatin 1  Against cancer  

Table 1. Bioactive compounds with potential clinical applicability derived from a number of marine species of invertebrates grouped according to the phyla in which they have been 
encountered.
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bronchoconstriction in vitro as well as in vivo [23], and prevented 
allergen-induced plasma protein exudation in the tracheobronchial 
tree of sensitized guinea pigs [24]. All these observations pointed 
towards an important role for contignasterol as an anti-allergic, more 
speci�cally, anti-asthmatic drug. In addition, contignasterol inhibited 
platelet aggregation suggesting anti-thrombolytic activity [25]. Based 
on these and other observations, contignasterol is now being evaluated 
as a candidate for treating respiratory and hemodynamic disorders 
[25].

Debromohymenialdisine

Debromohymenialdisine is an alkaloid originally isolated from 
the marine sponge Stylotella aurantium Kelly-Borges & Bergquist, 
1988 (Halichondriidae). �is organism is encountered in the shallow 
waters around the Republic of Palau, an island country in the western 
Paci�c Ocean. Debromohymenialdisine inhibited cancer cell growth 
by a novel mechanism of action, viz. selective blockage of two kinases 
involved in the G

2
 checkpoint [26]. �is led to massive apoptosis in 

some cancer types [27] which was much more pronounced in vivo 
than in vitro [26] but the induction of only moderate cytotoxicity as 
well as radioprotection to normal cells [26-29]. For all these reasons, 
debromohymenialdisine is undergoing evaluation as an anticancer 
agent [30]. As aberrant kinase activities have also been linked to 
Alzheimer's disease [31], debromohymenialdisine is being tested as a 
remedy against this condition [32]. In the meantime, this compound 
has been licensed for commercial development as a possible treatment 
for osteoarthritis as it slowed joint and cartilage deterioration in 
laboratory animals [33].

(+)-Discodermolide

(+)-Discodermolide is a natural polyketide that was isolated in 
1990 from the Bahamian deep-sea sponge Discodermia dissoluta 
Schmidt, 1880 (�eonellidae) (Figure 1) [34]. Preclinical studies 
showed that (+)-discodermolide potently inhibited the proliferation 
of several cultured (multidrug-resistant) cancer cell lines [35] by 
stabilizing their microtubules, leading to arrest of cell division in the 
M phase of the cell cycle [36]. �e drug showed promising activity 
against pancreatic cancer and various other (inherently) drug-resistant 
malignancies [37], as well as appreciable synergy with paclitaxel in 
lung cancer [38]. Other noteworthy properties of (+)-discodermolide 

are immunosuppressive activity [39] and potent acceleration of cell 
senescence [40]. For these reasons, clinical studies have been initiated 
to evaluate (+)-discodermolide for its e�cacy against solid tumors, 
paclitaxel-resistant tumors, and/or in combination with paclitaxel.

Halichondrins

Halichondrins are polyether macrolides that were �rst isolated 
from the Japanese sponge Halichondria okadai Kadota, 1922 
(Halichondriidae) [41]. Initial studies with halichondrin B revealed 
extraordinary in vitro and in vivo anticancer activity [42] by potent 
binding to tubulin at a site close to, but distinct from the vinca site, 
leading to alteration of tubulin depolymerization [43]. However, 
further studies were hindered by a lack of the natural product. For this 
reason, research e�orts were redirected to the deep-water Paci�c sponge 
Lissodendoryx sp. (Coelosphaeridae) that was available at su�ciently 
large quantities to yield halichondrins to continue their evaluation and 
development. �is resulted in the isolation of isohomohalichondrin 
that showed encouraging preclinical anticancer activity [44]. �is 
compound also prevented microtubule assembly [45] and caused 
delayed S phase progression, mitotic block, and apoptosis in cancer cell 
lines [46]. Isohomohalichondrin B as well as a number of its synthetic 
analogues [47] are currently in clinical trials in patients with a wide 
range of malignancies.

Girolline

Girolline (or girodazole) is a 2-aminoimidazole derivative isolated 
from the New Caledonian sponge Pseudaxinyssa cantharella Lévi, 1983 
(Halichondriidae) [48]. �is compound was of interest as a potential 
anticancer agent, as it inhibited protein synthesis in eukaryotic 
cells at the termination steps rather than at the initiation or chain 
elongation steps like other known inhibitors such as emetine and 
homoharringtonine [49]. However, further development of girolline 
as an anticancer agent was discontinued when phase I clinical trials 
showed that it caused severe hypertension [50]. Fortunately, additional 
studies on girolline’s bioactivity demonstrated inhibition of the growth 
of Plasmodium falciparum in vitro and in vivo as well as in vitro 
synergistic activity with chloroquine [51]. �ese observations suggest 
that girolline may represent a lead compound for new drugs to �ght 
malaria.

Bioactive compounds from Cnidaria

�e phylum Cnidaria contains over 10,000 species of aquatic, mostly 
marine animals and includes, among others, sessile sea anemones and 
corals as well as motile jelly�sh and box jellies. �ese organisms are also 
called nettle-bearers because they attack their prey with their poisonous 
stinging cells called cnidoblasts. �e venom of some species is extremely 
potent and their stings are very painful and can even be fatal to humans. 
�e Cnidaria have yielded a few compounds with important biological 
activity such as the pseudopterosins. Furthermore, at least one species 
of Cnidaria harbors fungi that synthesize antimicrobials, presenting 
the opportunity of a novel way to produce these substances.

Pseudopterosins

�e pseudopterosins are tricyclic diterpenepentose glycosides 
isolated from the sea whip Pseudopterogorgia elisabethae Bayer 
1961 (Gorgoniidae), a Caribbean so� coral species (Figure 2) [52]. 
�ese compounds possess notable anti-in�ammatory and analgesic 
properties that exceed the potencies of existing cyclooxygenase-
inhibiting non-steroidal anti-in�ammatory drugs [53-55]. �ey not 
only represent a new class of natural products [52], but also act through 

 

From: www.bu.edu
Figure 1. The deep-sea sponge Discodermia dissoluta (Theonellidae)
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a novel mechanism that involves prevention of eicosanoid biosynthesis 
by inhibiting phospholipase A2, 5-lipoxygenase, and cyclooxygenase 
activity, and by preventing degranulation of leukocytes and the 
subsequent liberation of lysosomal enzymes [53,56,57]. For these 
reasons, extracts from P. elisabethae have been incorporated in a line of 
Estèe Lauder cosmetic products for treating skin irritation [58], while 
particularly pseudopterosins A to D are being evaluated for their use 
as analgesics as well as wound-healing and anti-in�ammatory drugs 
[59-61].

Jelly�sh-associated marine fungi

�e jelly �sh Nemopilema nomurai Kishinouye, 1922 
(Rhizostomatidae) - also known as Nomura’s jelly�sh - is probably 
one of the largest cnidarians in the world, growing up to 2 meters 
in diameter and weighing up to 200 kilograms [62]. It is most o�en 
encountered in the waters of China, Korea, and Japan where it appears 
since 2003 in massive numbers, probably as a result of the favorable 
condition in these waters [63]. N. nomurai is toxic type of giant 
jelly�sh [63]; its sting is painful and has been associated with adverse 
cardiovascular [64] as well as cytotoxic and hemolytic e�ects [65].

More recently, ethyl acetate extracts from cultivable fungi living 
in association with N. nomurai were found to exhibit meaningful 
activity towards the pathogenic bacteria Staphylococcus aureus 
(Staphylococcaceae) and Salmonella entrica (Enterobacteriaceae) and 
the plant pathogenic fungi Rhizoctonia solani (Ceratobasidiaceae) 
and Botrytis cinerea (Sclerotiniaceae) [66]. Importantly, the yield and 
type of the antimicrobials varied along with the cultivation conditions 
[66]. �ese observations suggest that N. nomurai - considered of low 
nutritional and economic value - may become a novel reservoir for the 
production of antibacterial and antifungal compounds.

Bioactive compounds from Nemertea

�e Nemertea comprise a phylum of so�-bodied worm-like 
invertebrate animals also known as ribbon worms because of their 
unsegmented and smooth body. About 1,400 species are known, the 
majority of which are marine, but some are freshwater, and a few live 
on land [67]. Most nemerteans are carnivores feeding on annelids, 
clams, and crustaceans [67]. For this purpose, many possess a proboscis 
that turns inside-out to emerge just above the mouth, coils around the 

prey, paralyzes it by sticky, venomous secretions, and draws it into its 
mouth [68]. Others have a stylet, a calcareous barb, with which they 
stab the prey many times to inject toxins and digestive secretions a�er 
which it is swallowed whole [68].�e venom is also used as a feeding 
deterrent against predation [69]. An important bioactive compound 
from nemertean venom is anabaseine.

Anabaseine

Anabaseine is a nicotinoid alkaloid that was isolated in the early 
1970s from various nemertine worms including Paranemertes peregrina 
Coe, 1901 (Emplectonematidae) (Figure 3) [70]. However, anabaseine 
had already been synthesized in the laboratory in the 1930s as an 
analogue of nicotine, and has more recently been found as a venom 
in the ant species Nemertines and Aphaenogaster [69]. �e venom acts 
as an agonist of acetylcholine on peripheral neuromuscular nicotinic 
receptors [71]. In vertebrates, however, it stimulates neuromuscular 
nicotinic receptors in the central and peripheral nervous system [71], 
causing depolarization of neurons and release of both dopamine and 
norepinephrine [71]. As such, it has the potential as a treatment of 
cognitive function loss. A synthetic anabaseine analogue, DMXBA 
(GTS-21) has exhibited memory-enhancing e�ects in recipients 
[70]. Both anabaseine and DMXBA are under clinical evaluation as a 
treatment for Alzheimer's disease.

Bioactive compounds from Mollusca

With over 130,000 living species, the Mollusca comprise the second 
largest animal phylum a�er the Arthropoda. �ey have an evolutionary 
history extending back to the Precambrian, roughly 555 million years 
ago. �is phylum includes slugs, snails, squids, cuttle�sh, octopuses, as 
well as a large variety of marine shell�sh such as clams, mussels, and 
oysters. Arthropods are the most common marine animals, occupying 
virtually every niche in the oceans. Exploration of this phylum has 
led to the identi�cation of various unusual structures with exciting 
biological activities such as dolastatin 10, kahalalide F, spisulosine, and 
ziconotide.

Dolastatin 10

�e linear pentapeptide dolastatin 10 was isolated from the marine 
sea hare Dolabella auricularia Lightfoot, 1786 (Aplysiidae) which 

 

Figure 2. The sea whip Pseudopterogorgia elisabethae (Gorgoniidae)
From: reefcorner.com

 

Figure 3. The nemertine worm Paranemertes peregrina (Emplectonematidae)
From: soundwaterstewards.org
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can be found in the Indian Ocean as well as the Western and North-
western Paci�c [72]. However, this compound is not actually produced 
by D. auricularia but by blue-green algae grazed by this sea hare [73]. 
Dolastatin 10 binds to the vinca/peptide region of tubulin resulting 
in inhibition of microtubule assembly, the formation of tubulin 
aggregates, and disruption of mitosis [74]. It also induces tumor cell 
apoptosis by targeting the oncoprotein bcl-2 that is overexpressed 
in certain cancers [75]. Phase II clinical trials with single-agent 
dolostatin 10 against a wide range of tumors did not show meaningful 
antineoplastic activity [76]. Still, this agent and several analogues are 
currently under evaluation in combination drug regimens against 
di�cult-to-treat malignancies such as malignant melanoma as well as 
renal and pancreatic cancer [77].

Kahalalide F

Kahalalide F is so far the only known member of the kahalide 
family of peptides and has been isolated from the Hawaiian 
herbivorous marine sacoglossan mollusk Elysia rufescens Pease, 1871 
(Plakobranchidae) [78,79]. Like dolastatin 10, the mollusc produces 
kahalalide F as a secondary metabolite from substances in its diet of 
(green) algae [78,79]. Kahalalide F acts as a cytotoxin that disrupts 
lysosomal membranes in (tumor) cells, thereby initiating apoptosis 
[80,81]. It also interferes with the expression of genes involved in DNA 
replication and cell proliferation thereby inhibiting tumor spread and 
growth [80,81]. �e drug showed promise against a broad range of 
tumors and is in clinical trial in patients with, among others, prostate 
cancer [82,83]. It is also being tested for its therapeutic e�cacy against 
several dermatological conditions [82].

Spisulosine

Spisulosine is a sphingoid-type base that was �rst isolated from the 
North Arctic surf clam Spisula polynyma Stimpson, 1860 (Mactridae) 
[84]. �is substance exhibited potent cytotoxicity in preclinical 
studies [84,85] through an unprecedented mechanism of action: the 
induction of changes in the shape of the cytoskeleton [85]. �us, 
spisulosine prevented the formation of actin stress �bers in cultured 
cells - probably by decreasing the activity of Rho proteins - resulting 
in perturbation of cell adhesion, migration, and morphogenesis [85] 
and eventually apoptosis [86]. Spisulosine is currently under clinical 
evaluation as an antitumor agent [87]. However, S. polynyma reaches 
reproductive maturity only at an age of 5 to 8 years which hampered a 
regular supply of spisulosine from this source. For this reason, e�orts 
are being dedicated to the production of a more rapidly growing 
variant of S. polynyma that can be maintained in aquaculture in order 
to commercially produce su�cient spisulosine for drug development 
purposes [88].

Ziconotide

Ziconotide (or SNX-111 or Prialt®) is a synthetic form of a newly 
described chemical family of short peptides (25 to 30 amino acids in 
length) called conotoxin peptides [89], and is probably among the 
most exciting marine natural compounds ever identi�ed. Conotoxin 
peptides were �rst extracted from the venom of the predatory cone 
snails Conus geographicus Linnaeus, 1758, and Conus magus Linnaeus, 
1758 (Conidae) (Figure 4) [90]. �ese snails live in the coral reefs 
surrounding Australia, Indonesia, and the Philippines, and hunt and 
kill prey using the powerful neurotoxins in their venom [91]. Each 
species of cone snail produces its own cocktail of unique venoms 
containing dozens of nerve toxins, some of which instantly shock the 
prey while others cause paralysis [91]. Ziconotide was molded on the 

basis of the peptides found in cone snail venom due to their potential 
to act as pain-killing drugs [92].

Ziconotide is administered through intrathecal injection because it 
does not cross the blood-brain barrier [93]. It precisely blocks N-type 
calcium channels in pain-transmitting nerve cells, rendering them 
unable to transmit pain signals to the brain [93,94] while the rest of 
the nervous system continues to function properly [93,94]. Obviously, 
this represents an important advantage of ziconotide over currently 
available opiate pain killers. Of note, ziconotide’s e�cacy in treating 
pain exceeds that of morphine by ��y to several thousand times 
[93,94], but because it is non-addictive it may be suitable for long-
term use. Ziconotide also does not cause the dreadful side-e�ects of 
morphine such as sedation and respiratory depression [93,94]. As a 
result, this drug has been approved for the management of chronic 
pain in patients su�ering from among others, AIDS and cancer.

Bioactive compounds from Bryozoa

�e phylum Bryozoa comprises approximately 5,000 species of 
colony-forming aquatic invertebrate animals that build networks of 
branching tubes attached to the sea bed. Bryozoans are also known 
as moss animals because of the similarity of the branching colonies 
with moss. �e small animals attach to aquatic plants, woody debris, 
stones, and even snail shells, and are o�en responsible for biofouling 
on ships’ hulls, docks, marinas, and o�shore structures. �ey typically 
extend a crown of retractable tentacles lined with cilia (the lophophore) 
into the current to sieve small dri�ing food particles out of the water. 
Most bryozoans produce deterrent chemicals that protect them from 
predation by making them unpalatable to their attackers [95]. Several 
of such compounds belong to the group of bryostatins [95].

Bryostatin 1

Bryostatin 1 is a member of a group of twenty di�erent macrolide 
lactones �rst isolated from extracts of the bryozoan marine invertebrate 
Bugula neritina Linnaeus, 1758 (Bugulidae) (Figure 5) [95]. Together 
with other bryostatins, this compound probably defends the highly 
vulnerable larval stages of B. neritina from �sh predation [95]. Due to its 
capacity to potently modulate protein kinase C activity [96], bryostatin 
1 has been evaluated as an anticancer agent [96]. In preclinical studies, 
it inhibited cell growth and angiogenesis, stimulated cell di�erentiation 
and apoptosis, and acted synergistically with various other anti-cancer 
drugs [96]. However, when tested as a single agent in phase II trials in 
tumor patients, it demonstrated only moderate activity while toxicities 

 

Figure 4. The predatory marine cone snail Conus gheographicus (Conidae)
From: www.duikvakanties.net
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were substantial [96]. For these reasons, research focus has shi�ed to 
combinations of bryostatin 1with other antitumor agents [96].

Bryostatin 1 also produced very promising results in enhancing 
memory in animal models. It increased the duration of memory 
retention of a sea snail by over 500% [97], improved learning capacity 
in laboratory animals [98] including a transgenic a mouse model of 
Alzheimer's disease [99], and alleviated brain damage in ischemically 
brain-injured rats [100]. �ese observations signify potential 
therapeutic applications for bryostatins other than those related to 
neoplastic disease.

Bioactive compounds from Tunicata

�e Tunicata comprise a subphylum of about 2,150 species of 
marine invertebrates with a unique outer covering or ‘tunic’ that is 
formed from proteins and carbohydrates and serves as an exoskeleton. 
Various species are known as sea squirts (because they contract their 
bodies sharply and squirt out water when disturbed), sea pork or sea 
liver (because of the resemblance of their dead colonies to pieces of 
meat), or sea tulips (because of their colorful bodies on slender stalks). 
Tunicates have a water-�lled, sac-like body and two tubular openings 
through which they draw in and expel water for �lter-feeding. Some 
species accumulate large amounts of vanadium, lithium, iron, niobium, 
or tantalum in vacuoles in the presence of sulphuric acid, and deposit 
these substances just below the outer surface of their tunic in order to 
deter predation [101]. Others produce distasteful organic compounds 
as chemical defenses against predators [102]. Such compounds - among 
others, mandelalides, trabectedin, and plitidepsin - have potentially 
useful medicinal properties.

Mandelalides

Mandelalides A to D are variously glycosylated, unusual polyketide 
macrolides isolated in 2012 from the newly described South African 
tunicate Lissoclinum sp. (Didemnidae) [103]. Strikingly, mandelalides 
A and B exhibited cytotoxicity at nanomolar concentrations in 
human tumor cell lines [103]. However, these compounds could only 
be obtained at too low quantities from the tunicate to allow studies 
on their mechanism(s) of action and molecular targets (s). For this 
reason, several successful e�orts have been undertaken to provide 
a reliable synthetic supply of particularly mandelalide A, the most 
active compound of this series of marine macrolides [104-107]. �is 
was expected to open the door for biochemical and pharmacological 

studies with these promising cytotoxic compounds.

Unfortunately, the previously reported potent biological activity 
of the naturally-occurring mandelalides A and B [103] could not 
be reproduced with synthetic mandelalide A [104,107]. So far, the 
reasons for this discrepancy are not known. However, applying 
shotgun metagenomic sequencing of DNA extracted from Lissoclinum 
sp, it could be deduced that the mandelalides were not produced by 
Lissoclinum sp. but by a bacterial symbiont of the tunicate belonging 
to the phylum Verrucomicrobia [108]. It is hoped that this discovery 
will shed more light on the precise con�gurations of the bioactive 
mandelalides in order to continue the further development of this 
exciting class of marine compounds.

Trabectedin

Trabectedin (or ecteinascidin 743, ET-743, or Yondelis®) is a 
tetrahydroisoquinoline alkaloid that was originally isolated from 
the Caribbean sea squirt Ecteinascidia turbinata Herdman, 1880 
(Perophoridae) (Figure 6) found in the West Indies around the roots of 
intertidal and subtidal mangroves [84]. Subsequent studies found that 
the compound is in fact produced by Candidatus Endoecteinascidia 
frumentensis, a microbial symbiont of the tunicate [109]. Preclinical 
and early clinical studies showed appreciable activity of trabectedin 
against a range of tumor types including so� tissue sarcomas [110,111]. 
�is occurs through a unique mechanism of action: the production 
of superoxide near the nuclear DNA of tumor cells resulting in DNA 
backbone cleavage and tumor cell apoptosis [112]. Importantly, 
only cells engaged in active gene transcription undergo apoptosis 
[112], suggesting that trabectedin has substantial speci�city to cancer 
cells which in general exhibit greatly accelerated transcription and 
translation rates when compared to normal cells.

Trabectedin also interfered with the mdr1 gene [113] that encodes 
for the plasma membrane-bound P-glycoprotein which confers 
multidrug resistance to cancer cells by actively transporting anticancer 
drugs out of the cells. �is suggests a role for trabectedin as a key 
ingredient in combination chemotherapy regimens to prevent tumor 
cells from developing resistance to the other drugs. Trabectedin has 
been granted orphan status against advanced so� tissue sarcomas [114] 
and is currently undergoing clinical trials for the treatment of various 
other malignancies [115].

 

Figure 6. The Caribbean sea squirt Ecteinascidia turbinate (Perophoridae)
From: bioweb.uwlax.edu

 

Figure 5. The bryozoan Bugula neritina (Bugulidae)
From: www.roboastra.com
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Plitidepsin

Plitidepsin (or dehydrodidemnin B or Aplidin®) is a member 
of a class of cyclic depsipeptides that can be extracted from the 
Mediterranean sea squirt Aplidium albicans Milne-Edwards, 1841 
(Polyclinidae) [116] but is currently produced by chemical synthesis 
[117]. Plitidepsin exhibited marked anticancer properties in preclinical 
studies [118,119]. �ese e�ects are believed to occur through multiple 
mechanisms including rapid and persistent activation of apoptosis 
[120] and interruption of the tumor cell cycle at the G

1
-G

2
 border [121], 

as well as inhibition of ornithine decarboxylase receptor and vascular 
endothelial growth factor receptor expression involved in the growth 
and vascularization of certain tumor types [121]. Notably, plitidepsin 
seemed to exhibit a high speci�city for tumor cells and to induce low 
toxicity to the normal tissues [120,121]. �e drug has been granted 
orphan status in Europe in 2003 for treating acute lymphoblastic 
leukemia [122] and is being developed for the potential treatment of a 
variety of cancers [123].

Bioactive compounds from Hemichordata

�e Hemichordata comprise a relatively small phylum (only a 
few hundred species) of worm-like marine invertebrates [124]. �ey 
feed on small particles of organic matter either as �lter feeders of as 
substrate eaters [124], and can be found both in shallow coastal waters 
and in the deeper seas [124]. �eir body can be distinguished into a 
short proboscis, a collar which may bear tentacles, and a trunk which 
contains the digestive and reproductive organs [124].

Hemichordata have provided important insights into the evolution 
of the Deuterostomia because of their pharyngeal gill slits [124,125]. 
Some of these marine are also known to produce and accumulate 
various toxic substances - such as halogenated phenols and pyrroles 
[126] - that may or may not deter predators [126]. More recently, 
cephalostatin 1 has emerged as a highly interesting bioactive compound 
from a marine tube worm.

Cephalostatin 1

Cephalostatin 1 is a bis-steroidal pyrazine alkaloid isolated from 
the small hemichordate Cephalodiscus gilchristi Ridewood, 1908 
(Cephalodiscidae) [127] that can be encountered at the South Africa’s 
temperate southern coast [128]. Evaluation in the in vitro screen of 
the US National Cancer Institute showed that cephalostatin 1 is an 
extremely potent inhibitor of cell proliferation, inhibiting tumor cell 
growth at subnanomolar to nanomolar concentrations [127,129]. 
Furthermore, its unique cytotoxicity pro�le in this screen suggested 
a novel mechanism of action that turned out to involve activation of 
anew, unusual pathway for apoptosis: the selective induction of Smac/
DIABLO (second mitochondria-derived activator of caspases/direct 
inhibitor of apoptosis-binding protein with a low isoelectric point) as a 
mitochondrial signaling molecule [127,130,131]. Notably, this process 
occurred without the release of cytochrome c from the mitochondria 
[127,130,131] but required caspase 9 activation [127] following 
stimulation by endoplasmic reticulum stress-associated caspase 4 
[129].

�ese observations suggest that cephalostatin 1 may be particularly 
useful for treating chemo-resistant malignancies. For this reason, 
this compound is now in preclinical development. Unfortunately, 
the availability of this compound as well as other cephalostatins from 
C. gilchristi - their only known natural source - is extremely limited, 
which restricts their further evaluation and subsequent preclinical 
development.

Future prospects and concluding remarks

�e extraordinary biological and chemical diversity of marine 
invertebrates addressed in this paper illustrates the potential of this 
largely untapped source for the discovery and development of new 
therapeutics. However, this enterprise poses unprecedented challenges 
to molecular biologists, pharmacologists, clinical chemists, and 
chemical ecologists who are active in this comparatively new scienti�c 
�eld. Apart from technological, �nancial, and regulatory issues, many of 
these challenges are related to the supply issue: how can the sustainable 
use of these resources be ensured? Indeed, the regular supply of raw 
material is a major limiting factor for the further pharmaceutical 
development of many marine-derived compounds.

O�en, the bioactive compound of interest is present in trace 
amounts in the organism, and supply from wild harvest poses 
many logistic problems and usually does not provide enough of the 
compound for even preclinical studies. For instance, the sponge D. 
dissoluta must be harvested at a minimum depth of thirty-three meters 
to obtain the relative modest content of 0.002% of the light-sensitive 
drug discodermolide [34], and roughly one tonne of animals is needed 
to extract one gram of trabectedin [84] or bryostatin [95] while about 
�ve grams are needed for a clinical study [84,95].

Attempts to solve these problems through total synthesis have o�en 
proved di�cult due to the structural complexity of the compounds of 
interest [132]. More success has been achieved with hemi-synthesis 
starting from a more readily available natural precursor [133] and the 
synthesis of structurally simpler analogues with a similar biological 
pro�le and in some cases greater pharmacological potency [134,135]. 
Controlled harvesting, aquaculture of the source organism, in vitro 
production through cell culture, and transgenic production have 
also proved feasible alternatives to obtain certain bioactive marine 
compounds in su�cient quantities [136,137].

More recently, an increasing number of natural products from 
higher animals have been found to ultimately derive from a bacterial 
symbiont. A few examples have been given throughout this paper 
[73,78,108]. �ese ‘misses’ could for an important part be attributed 
to genome sequencing and genomics that largely relied on cultivated 
clonal cultures. �e application of metagenomics - the direct genetic 
analysis of genomes contained with an environmental sample - 
provides access to the functional gene composition of entire microbial 
communities [138-140]. �us, metagenomics may help uncovering the 
enormous functional gene diversity in marine samples, aiding to the 
identi�cation and production of drug candidates from microbial origin 
for pre-clinical and clinical development.

�ese advances, together with new technologies to explore the 
oceans of our planet (such as probes, sensors, and miniaturized 
tools that can function in harsh environments) will one day help to 
explore marine invertebrates and other deep sea resources to their full 
potential. Undoubtedly, this will lead to the discovery and development 
of unprecedented new medical treatments, nutritional supplements, 
pesticides, cosmetics, and other commercial products for the bene�t 
of mankind.
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