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Abstract We examine an extension of the SM Higgs sector

by a Higgs triplet taking into consideration the discovery of

a Higgs-like particle at the LHC with mass around 125 GeV.

We evaluate the bounds on the scalar potential through the

unitarity of the scattering matrix. Considering the cases with

and without Z2-symmetry of the extra triplet, we derive con-

straints on the parameter space. We identify the region of the

parameter space that corresponds to the stability and metasta-

bility of the electroweak vacuum. We also show that at large

field values the scalar potential of this model is suitable to

explain inflation.

1 Introduction

The revelation of the Higgs boson [1–3] in 2012 at the Large

Hadron Collider (LHC) confirmed the existence of all the

Standard Model (SM) particles and showed the Higgs mech-

anism to be responsible for electroweak symmetry breaking

(EWSB). So far, the LHC, operated with pp collision energy

at
√

s ∼ 8 and 13 TeV, has not found any signature of new

physics beyond the standard model (BSM). However, vari-

ous theoretical issues, such as the hierarchy problem related

to the mass of the Higgs, mass hierarchy and mixing patterns

in the leptonic and quark sectors, suggest the need for new

physics beyond the SM. Different experimental observations,

such as the non-zero neutrino mass, the baryon–antibaryon

asymmetry in the Universe, the mysterious nature of dark

matter (DM) and dark energy, and inflation in the early Uni-

verse indicate the existence of new physics. Moreover, the

measured properties of the Higgs boson with mass ∼125

GeV are consistent with those of the scalar doublet as pre-

dicted by the SM. However, the experimental data [4] still

comfortably allow for an extended scalar sector, which may

also be responsible for the EWSB.

a e-mail: phd11125102@iiti.ac.in; khanphysics.123@gmail.com

The present experimental values of the SM parameter

of the Lagrangian indicate that if the validity of the SM is

extended up to the Planck mass (MPl = 1.2 × 1019 GeV), a

second, deeper minimum is located near the Planck mass such

that the EW vacuum is metastable. The transition lifetime of

the EW vacuum to the deeper minimum is finite τEW ∼ 10300

years [5–16]. The EW vacuum remains metastable even after

adding extra scalar particles to the SM, which has been dis-

cussed in Refs. [15–19].

In this work, we add a real hypercharge Y = 0 scalar

triplet to the SM. In the literature, this model is termed the

hyperchargeless Higgs triplet model, HTM (Y = 0) [20].

We consider both the neutral C P-even component of the SM

doublet and the extra scalar triplet take part in the EWSB.

Including radiative corrections, we check the validity of the

parameters of the model up to the Planck mass MPl. We

review various theoretical and experimental bounds of this

model. In this work, we especially discuss the unitary bounds

of the quartic couplings of the scalar potential. To the best

of our knowledge, the unitary bounds of this model were not

discussed in the literature. Next, we impose a Z2-symmetry

such that an odd number of scalar particles of the triplet do

not couple with the SM particles. The lightest neutral scalar

particle does not decay and becomes stable. This scalar field

can be taken as a viable DM candidate which may fulfill

the relic abundance of the Universe. In this context, it is

instructive to explore whether these extra scalars can also

prolong the lifetime of the Universe. In this model, we find

new regions in the parameter space of this model in which

the EW vacuum remains metastable. We also consider that

the extra neutral scalar field (also compatible as a viable dark

matter candidate) can act as an inflaton. We show that this

scalar field is able to explain the inflationary observables.

A detailed study of the HTM (Y = 0) parameter space,

which is valid up to 1 TeV, has been performed in Refs.

[21]. Two different renormalization schemes, electroweak

precision, and decoupling of Higgs triplet scenario have been
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discussed in Ref. [22]. Using the electroweak precision test

(EWPT) data and a one-loop correction to the ρ parameter,

the Higgs mass range has been predicted in Refs. [23–27].

The detailed structure of the vacuum of the scalar potential

at tree level has been studied in Ref. [28]. The constraints

on the parameter spaces from the recent LHC μγ γ and μZγ

data have been discussed in Ref. [29]. The LHC and future

collider experiments with high luminosity can be used as an

useful tool to detect these extra scalar particles through vector

bosons scatterings [30]. More recently, the inert scalar triplet

has been investigated in the context of dark matter direct

and indirect detection [31–33]. The heavier inert fields can

decay through one loop via extra Majorana fermions [34,35].

This model has the required ingredients to realize a success-

ful leptogenesis which can explain the matter asymmetry in

the Universe [34,35]. Multi-component dark matter has been

investigated [36,37] in HTM with extra scalar multiplets of

the SU (2) representation.

The paper is organized as follows. Section 2 starts with

a detailed description of the HTM (Y = 0) model. We dis-

cuss detailed constraints in Sect. 3. Considering the light-

est Z2-odd neutral particle as a viable DM, we analyze the

scalar potential up to the Planck mass and identify regions of

parameter space corresponding to the stable and metastable

EW vacuum in Sect. 4. We explain inflation as well in Sect. 5.

Finally we conclude in Sect. 6.

2 Model

We consider a model with a real Higgs doublet, �, and a

real, isospin I = 1, hypercharge Y = 0 triplet T . The extra

scalar triplet consists of a pair of singly charged fields and a

C P-even neutral scalar field. The doublet and triplet scalar

are conventionally written as [22]

� =
(

G+
1

1√
2
(v1 + h0 + iG0)

)

, T =

⎛

⎝

η+

v2 + η0

−η−

⎞

⎠ .

(2.1)

The kinetic part of the Lagrangian is given by

Lk = | Dμ� |2 +
1

2
| DμT |2 , (2.2)

where the covariant derivatives are defined by

Dμ� =
(

∂μ + i
g2

2
σ a W a + i

g1

2
Y Bμ

)

� and

DμT =
(

∂μ + ig2ta W a

)

T , (2.3)

where W a
μ(a = 1, 2, 3) are the SU (2)L gauge bosons, cor-

responding to three generators of SU (2)L group and Bμ is

the U (1)Y gauge boson. The σ a (a = 1, 2, 3) are the Pauli

matrices, and ta can be written as follows:

t1 =
1

√
2

⎛

⎝

0 1 0

1 0 1

0 1 0

⎞

⎠ , t2 =
1

√
2

⎛

⎝

0 −i 0

i 0 −i

0 i 0

⎞

⎠ ,

t3 =

⎛

⎝

1 0 0

0 0 0

0 0 −1

⎞

⎠ . (2.4)

The scalar potential is such that both the neutral C P-even

component of the SM doublet and the extra scalar triplet

receive vacuum expectation values (VEVs) and thus take

part in the EWSB. After EWSB, one of the linear combi-

nations of charged scalar fields of the scalar doublet and the

triplet is eaten by the W boson, which becomes massive,

and other orthogonal combinations of these fields become

massive charged scalar fields. Similarly, a pseudoscalar of

the scalar doublet becomes the longitudinal part of the mas-

sive Z gauge boson. This scalar may give rise to a signature

through the scattering of vector bosons [30] in collider exper-

iments. The spontaneous EWSB generates masses for the W

and Z bosons, thus:

M2
W =

g2
2

4

(

v2
1 + 4v2

2

)

, and M2
Z =

g2
2

4c2
θ

v2
1 ,

where cW ≡ cos θW = g2/

√

g2
1 + g2

2 and sW ≡ sin θW . The

scalar doublet VEV v1 and the triplet VEV v2 are related to

the SM VEV by vSM(≡ 246.221 GeV) =
√

v2
1 + 4v2

2 .

One can see that this model violates custodial symmetry

at tree level,

ρ =
M2

W

M2
Z c2

W

= 1 + 4
v2

2

v2
1

. (2.5)

The experimental value of ρ is 1.0004 ± 0.00024 [38] at 1σ .

Hence, δρ ≈ 0.0004 ± 0.00024 and we will adopt the bound

δρ ≤ 0.001. This puts stringent constraints on v2 and we find

that v2 should be less than 4 GeV.

The tree-level scalar potential with the Higgs doublet and

the real scalar triplet is invariant under SU (2)L × U (1)Y

transformation. This is given by

V (�, T ) = μ2
1 | � |2 +

μ2
2

2
| T |2 +λ1 | � |4 +

λ2

4
| T |4

+
λ3

2
| � |2| T |2 +λ4�

†σ a�Ta . (2.6)

We have the following minimization conditions of the tree-

level scalar potential:

μ2
1 =

1

2
{2λ4v2 − (2λ1v

2
1 + λ3v

2
2)}, (2.7)

μ2
2 =

1

2v2
{λ4v

2
1 − λ3v

2
1v2 − 2λ2v

3
2}. (2.8)
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After electroweak symmetry breaking, the squared mass

matrix can be expressed as 6 × 6 for the scalar fields

(G±
1 , η±, η0 and h0). This matrix is composed of three 2 × 2

submatrices with bases, (G+
1 , η+), (G−

1 , η−) and (h0, η0).

After rotating these fields into the mass basis, we get four

physical mass eigenstates (H±, h, H). The remaining two

states (G±) and G0 become massless Goldstone bosons.

The physical masses of the particles are given by

M2
h =

1

2

[

(B + A) −
√

(B − A)2 + 4C2
]

,

M2
H =

1

2

[

(B + A) +
√

(B − A)2 + 4C2
]

,

M2
H± = λ4

(v2
1 + 4v2

2)

2v2
, (2.9)

where

A = 2λ1v
2
1, B =

λ4v
2
1 + 4λ2v

3
2

2v2
, and

C = −λ4v1 + λ3v1v2. (2.10)

The mixing between the doublet and triplet in the charged

and C P-even scalar sectors are, respectively, given by
(

h

H

)

=
(

cγ sγ

−sγ cγ

)(

h0

η0

)

, (2.11)

(

G±

H±

)

=
(

cβ sβ

−sβ cβ

)(

G±
1

η±

)

, (2.12)

where

sγ (≡ sin γ ) =

√

√

√

√

√

(B − A)2 + 4C2 − (B − A)

2
√

(B − A)2 + 4C2
and

tan β =
2v2

v1
.

In the large μ2
2 and small v2 limits, one can express sin γ

and sin β as

sγ =
√

√

√

√

√

1

2
−

1

2

√

1 + 16
v2

2

v2
1

≈ 0 and

sβ =
2v2

√

v2
1 + 4v2

2

≈ 0.

In these limits, the quartic λ1,2,3 and λ4 can be written as

λ1 =
M2

h

2v2
1

, λ2 =
2(M2

H − M2
H±)

v2
1s2

β

,

λ3 =
2(M2

H± − (sγ /sβ)M2
H )

v2
1

, λ4 =
sβ M2

H±

v1
. (2.13)

In the same limits, if MH± and MH are very heavy com-

pared with Mh , then MH± and MH become degenerate (see

Eqs. (2.9) and (2.10)). If the mass difference between MH±

and MH is large, then the quartic couplings λ2,3 will violate

the perturbativity and unitarity bounds (see Sects. 3.2 and

3.3).

The SM gauge symmetry, SU (2)L , prohibits direct cou-

pling of the SM fermions with the scalar fields of the triplet.

The couplings of the new scalar fields (H, H±) with SM

fermions are generated after the EWSB. The strengths of

H f̄ f (the f are the up, down quarks and charged leptons)

are proportional to sin γ . The couplings H+ν̄l l
− and H+ūd

are proportional to sin β.

3 Constraints on the hyperchargeless Higgs triplet

model

The parameter space of this model is constrained by the-

oretical considerations like the absolute vacuum stability,

perturbativity, and unitarity of the scattering matrix. In the

following, we will discuss these theoretical bounds and the

constraints of the Higgs to diphoton signal strength from the

LHC and the electroweak precision measurements.

3.1 Vacuum stability bounds

A necessary condition for the stability of the vacuum comes

from requiring that the scalar potential is bounded from

below, i.e., it should not approach negative infinity along

any direction of the field space for large field values. For

h0, η0,± ≫ v1,2, the quadratic terms μ2
1|�|2,

μ2
2

2
|T |2 and

λ4�
†σ a�Ta of the scalar potential in Eq. (2.6) are negligi-

bly small compared with the other quartic terms, so the scalar

potential is given by

V (h0, η0, η±) =
1

4

[

λ1(h
0)4 + λ2(η

2 + 2η+η−)2

+λ3(h
0)2(η2 + 2η+η−)

]

. (3.1)

The potential can be written in a symmetric matrix with basis

{(h0)2, (η0)2, η−η+}. Using the copositivity criteria [104],

one can calculate the required conditions for the absolute sta-

bility/bounded from below of the scalar potential. The tree-

level scalar potential V (�, T ) ≡ V (h0, η0, η±) is absolutely

stable if

λ1(�) ≥ 0, λ2(�) ≥ 0, λ3(�) ≥ −2
√

λ1(�)λ2(�).

(3.2)

The coupling constants are evaluated at a scale � using

RGEs. In this study, we use the SM RGEs up to three loops

which have been given in Refs. [52–55]. The triplet contri-

butions are taken up to two loops which are presented in

Appendix A. If the quantum corrections are included to the

scalar potential, then there is a possibility to form a minimum

along the Higgs field direction near the Planck mass MPl. For
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negative λ1(�) the minimum at the energy scale � becomes

deeper than the EW minimum and vice versa. In these situa-

tions, the above conditions in Eq. (3.2) become more compli-

cated. These modifications will be shown in Sect. 4.2. As λ3

gives a positive contribution to the running of λ2, λ2 remains

positive up to the Planck mass MPl. Hence, it is clear that no

extra minimum will develop along the new scalar field direc-

tions. The sign and the value of λ3 can change the Higgs

diphoton signal strength and the stability of the EW vac-

uum. The importance of the sign of λ3 will be discussed in

Sects. 3.5 and 4.3.

3.2 Perturbativity bounds

To ensure that the radiatively improved scalar potential

V (�, T ) remains perturbative at any given energy scale (�),

one must impose the following conditions:

| λ1,2,3 |� 4π and

∣

∣

∣

λ4

�

∣

∣

∣
� 4π. (3.3)

3.3 Unitarity bounds

The unitarity bound on the extended scalar sectors can be

calculated from the scattering matrix (S-matrix) of different

processes. The technique was developed in Refs. [39,40] for

the SM and it can also be applied to the HTM (Y = 0). The

S-matrix for the HTM (Y = 0) consists of different scalar–

scalar, gauge boson–gauge boson, gauge boson–scalar scat-

tering amplitudes. Using the Born approximation, the scat-

tering cross-section for any process can be written as

σ =
16π

s

∞
∑

l=1

(2l + 1)|al(s)|2, (3.4)

where s = 4E2
C M is the Mandelstam variable, and EC M

is the center of mass energy of the incoming particles. The

al are the partial wave coefficients corresponding to specific

angular momenta l. This leads to the following unitarity con-

straint: Re(al) < 1
2

. At high energy the dominant contribu-

tion to the amplitude al of the two-body scattering processes

a, b → c, d comes from the diagram involving the quartic

couplings. Far away from the resonance, the other contribu-

tions to the amplitude from the scalar mediated s-, t-, and

u-channel processes are negligibly small. Also, in the high

energy limit, the amplitude of scattering processes involv-

ing longitudinal gauge bosons can be approximated by the

scalar amplitude in which gauge bosons are replaced by their

corresponding Goldstone bosons. For example, the ampli-

tude of the W +
L W −

L → W +
L W −

L scattering is equivalent to

G+G− → G+G−. This is known as the equivalence the-

orem [40–43]. So to test the unitarity of HTM (Y = 0),

we construct the S-matrix which consists of only the scalar

quartic couplings.

The scalar quartic couplings in the physical bases G±, G0 ,

H±, h and H are complicated functions of λ’s, γ, β. The

hhhh vertex is 6(λ1 cos4 γ + λ3 cos2 γ sin2 γ + λ2 sin4 γ ).

It is difficult to calculate the unitary bounds in the physical

bases. One can consider the non-physical scalar fields bases,

i.e., G±
1 , η±, G0, h0 and η0 before the EWSB. Here the cru-

cial point is that the S-matrix, which is expressed in terms

of the physical fields, can be transformed into a S-matrix

for the non-physical fields by making a unitary transforma-

tion [44,45].

Different quartic couplings in non-physical bases are

obtained by expanding the scalar potential of Eq. (2.6) which

are given by

{G0 G0 G0 G0} = 6λ1,
{

G+
1 G+

1 G−
1 G−

1

}

= 4λ1,
{

G+
1 G−

1 h0 h0
}

= 2λ1, {G0 G0 η0 η0} = λ3,

{h0 h0 η0 η0} = λ3,

{

G0 G0 η+ η−
}

= λ3,
{

h0 h0 η+ η−
}

= λ3,

{

G0 G0 G+
1 G−

1

}

= 2λ1,

{G0 G0 h0 h0} = 2λ1, {h0 h0 h0 h0} = 6λ1,
{

G+
1 G−

1 η0 η0
}

= λ3, {η0 η0 η0 η0} = 6λ2,

{

G+
1 G−

1 η+ η−}

= λ3,

{

η0 η0 η+ η−
}

= 2λ2, (3.5)

{

η+ η+ η− η−}

= 4λ2.

The full set of these non-physical scalar scattering processes

can be expressed as a 16 × 16 S-matrix. This matrix is com-

posed of three submatrices of dimensions 6 × 6, 5 × 5, and

5 × 5 which have different initial and final states.

The first 6 × 6 sub-matrix, M1, corresponds to scat-

tering processes whose initial and final states are one of

h0 G+
1 , G0 G+

1 , η0 G+
1 , h0 G+

1 , G0 η+, and η0 η+.

Using the Feynman rules in Eq. (3.5), one can obtain M1

= diag( 2λ1, 2λ1, 2λ1, λ3, λ3, λ3).

The sub-matrix M2 corresponds to scattering processes

with one of the following initial and final states: h0 G0,

G+
1 η−, η+ G−

1 , η0 G0, and h0 η0. Similarly, one can cal-

culate M2 = diag( 2λ1, λ3, λ3, λ3, λ3).

The third sub-matrix, M3, corresponds to scattering fields

(G+
1 G−

1 , η+ η−, G0 G0
√

2
, h0 h0

√
2

, and
η0 η0
√

2
). The factor 1√

2

has appeared due to the statistics of identical particles. M3

is given by

M3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4λ1 λ3

√
2λ1

√
2λ1

λ3√
2

λ3 4λ2
λ3√

2

λ3√
2

√
2λ2√

2λ1
λ3√

2
3λ1 λ1

λ3
2√

2λ1
λ3√

2
λ1 3λ1

λ3
2

λ3√
2

√
2λ2

λ3
2

λ3
2

3λ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.6)
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Eigenvalues of M3 are 2λ1, 2λ1, 2λ2, and 1
2

(6λ1 + 5λ2±
√

(6λ1 − 5λ2)2 + 12λ2
3

)

.

Unitary constraints of the scattering processes demand

that the eigenvalues of the S-matrix should be less than 8π .

3.4 Bounds from electroweak precision experiments

Electroweak precision data has imposed severe bounds on

new physics models via the Peskin–Takeuchi parameters,

S, T, U [46]. The additional contributions from this model

are given by [21,26]

S ≃ 0, (3.7)

T =
1

8π

1

sin2 θW cos2 θW

[

M2
H + M2

H±

M2
Z

−
2M2

H± M2
H

M2
Z (M2

H − M2
H±)

log

(

M2
H

M2
H±

)]

≃
1

6π

1

sin2 θW cos2 θW

(�M)2

M2
Z

, (3.8)

U = −
1

3π

(

M4
H log

(

M2
H

M2
H±

)

(3M2
H± − M2

H )

(M2
H − M2

H±)3

+
5(M4

H + M4
H±) − 22M2

H± M2
H

6(M2
H − M2

H±)2

)

≃
�M

3π MH±
, (3.9)

where �M = MH± − MH . S is proportional to sin β. The

experimental value of the parameter ρ demands the triplet

VEV v2 to be less than 4 GeV [38]. Hence, the contributions

to the S parameter from the triplet scalar fields are negligible.

MH± and MH are almost degenerate for MH±,H ≫ Mh . The

contributions to the parameters T and U from this model are

also negligibly small [47].

3.5 Bounds from LHC diphoton signal strength

As the dominant production cross-section of h at LHC is

coming through gluon fusion, the Higgs to diphoton signal

strength μγ γ can be written as

μγ γ =
σ(gg → h → γ γ )H T M

σ(gg → h → γ γ )SM

=
σ(gg → h)H T M

σ(gg → h)SM

Br(h → γ γ )HTM

Br(h → γ γ )SM
. (3.10)

We use the narrow width approximation as Ŵtotal
h /Mh → 0.

The Higgs h to f f̄ and V V (V stands for vector bosons)

couplings are proportional to cos γ , so they μγ γ can be sim-

plified as

μγ γ = cos2 γ
Ŵtotal

h,SM

Ŵtotal
h,HTM

Ŵ(h → γ γ )HTM

Ŵ(h → γ γ )SM
. (3.11)

The charged Higgs H± will alter the decay width of h → γ γ ,

Zγ through one loop, which implies Ŵ(h → γ γ, Zγ ) ≪
Ŵtotal

h . Also, if the mass of the extra scalar particles (H T =
H, H±) happen to be lighter than Mh/2, then they might con-

tribute to the invisible decay of the Higgs boson. Using the

global fit analysis [48] we see that such an invisible branch-

ing ratio is less than ∼ 20%. In Eq. (3.11), the first ratio

provides a suppression of ∼0.8–1. For MH,H± > Mh/2, the

ratio becomes
Ŵtotal

h,SM

Ŵtotal
h,HTM

≈ 1
cos2γ

. Hence, the Higgs to diphoton

signal strength can be written as

μγ γ ≈
Ŵ(h → γ γ )HTM

Ŵ(h → γ γ )SM
. (3.12)

In HTM, the additional contributions to Ŵ(h → γ γ ) at one

loop due to the H± is given by [49]

Ŵ(h → γ γ )HTM =
α2 M3

h

256π3v2

∣

∣

∣

∣

∣

∣

∑

f

N c
f Q2

f y f F1/2(τ f )

+yW F1(τW ) + Q2
H±

vμh H+ H−

2M2
H±

F0(τH±)

∣

∣

∣

∣

∣

2

, (3.13)

where τi = M2
h/4M2

i . Q f , Q H± denote the electric charges

of the corresponding particles. N c
f is the color factor. y f

and yW denote the Higgs couplings to f f̄ and W +W −.

μh H+ H− = {2λ4sin βcos βcos γ + cos β2(λ3v1cos γ +
4λ2v2sin γ ) + sin β2(λ4sin γ + λ1v1cos γ + λ3v2sin γ )} ≈
λ3vSM stands for the coupling constant of the h H+H− ver-

tex. The loop functions F(0, 1/2, 1) can be found in Ref [49].

Recently, the ATLAS [50] and CMS [51] collaborations

have measured the ratio of the prediction of the diphoton

rate μγ γ of the observed Higgs to the SM prediction. The

present combined value of μγ γ is 1.14+0.19
−0.18 from these exper-

iments [4].

In Ŵ(h → γ γ )HTM (see Eq. (3.13)), a positive λ3 leads

to a destructive interference between H T and SM contribu-

tions and vice versa. One can see from Eq. (3.13) that the

contribution to the Higgs diphoton channel is proportional to
λ3

M2
H±

. If the charged scalar mass is greater than 300 GeV, then

the contribution of H± to the diphoton signal is negligibly

small.

Now we present our results for the central values of the

SM parameters such as the Higgs mass Mh = 125.7 GeV, the

top mass Mt = 173.1 GeV, the Z boson mass MZ = 91.1876

GeV, and the strong coupling constant αs = 0.1184. We take

the triplet vev v2, λ4 and the other quartic couplings λ1,2,3

as input parameters. Hence, depending on these parameters

the mixing angle γ can vary in between 0 and π/2. The

triplet scalar masses also become arbitrarily heavy. Here,
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Fig. 1 The allowed region (green) from the unitarity, perturbativity and absolute stability which is valid up to the Planck mass MPl. The region

between the black-dashed line is allowed from the EWPT data at 2σ

we assume that no new physics shows up below the Planck

mass MPl. We examine the renormalization group (RG) flow

of all couplings and establish bounds on the heavy scalar

masses under the assumption that the parameters are valid

up to the Planck mass MPl. In this calculation, we use the

SM RGEs up to three loops [52–55] and the triplet contri-

butions up to two loops. We first calculate all couplings at

Mt . To find their values at Mt , one needs to take into account

different threshold corrections up to Mt [5,6,15,16,76,77].

Using the RGEs, we evolve all the coupling constants from

Mt to the Planck mass MPl. By this procedure we obtain

new parameter regions which are valid up to the Planck mass

MPl.

We show the allowed region (green) in the MH±–MH

plane for this model in Fig. 1. We demand that the EW vac-

uum of the scalar potential remain absolutely stable and do

not violate the perturbative unitarity up to the Planck mass

MPl. One can also obtain the parameter spaces, correspond-

ing to the metastable EW vacuum, which are seen to be small

in this plane. Furthermore, we impose the EWPT constraints

on the parameters so that the region between the black-dashed

lines survives.

In Fig. 1, we show the allowed region for fixed central

values of all the SM parameters. In the left panel, we present

the plot for the choice of the quartic couplings λ2,3 = 0.1

and triplet VEV v2 = 3 GeV. In the right panel, we use the

value of the triplet VEV v2 = 1 GeV. We vary the quartic

coupling λ1 and dimensionful mass parameter λ4 to calculate

the neutral C P-even Higgs mass MH , the charged Higgs

mass MH± and the mixing angle γ . These scalar masses

increase, whereas the mixing angle decreases with λ4. We

find that the EW vacuum becomes unbounded from below

for λ1 � 0.128. The theory also violates unitarity bounds for

λ1 � 0.238 before the Planck mass MPl. One can see from

Fig. 1a, the allowed region becomes smaller for the larger

values of heavy scalar masses. In most of the parameter space

the running couplings either violate unitary or perturbativity

bounds before the Planck mass MPl.

As λ2,3 stabilize the scalar potential, we will get a wider

green region for smaller scalar masses, but this will violate

the unitarity bound in the higher mass region. We find that the

EW vacuum becomes unbounded from below for the values

of the quartic couplings λ1 � 0.027 and λ2,3 = 0.285. We

also check that the choice of the quartic couplings λ1 �

0.05 and λ2,3 = 0.285 will violate unitary and perturbativity

bounds before the Planck mass MPl. One can also understand

from the expressions of Eq. (2.13) that if we decrease the

value of v2, the area of the allowed region from the stability,

unitary and perturbativity bounds will increase. We show the

plot in Fig. 1b for the choice of v2 = 1 GeV.

If the vacuum expectation value of the scalar triplet

becomes zero, then the minimization condition of the scalar

potential given in Eq. (2.8) is no longer valid. The mass

parameter μ2 becomes free and the parameter λ4 does not

play any role in the stability analysis. In the next section, we

will show the detailed stability analysis in the presence of

extra Z2-symmetry in this model.

4 Dark matter in HTM (Y = 0)

We impose a Z2 symmetry on this model such that the scalar

triplet is odd under this transformation, i.e., T → −T ,
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Fig. 2 The thin blue band corresponds to the relic density, �h2 =
0.1198 ± 0.0026 (3σ) from the combined data of WMAP and

Planck [63]. a The mass difference �M (green line) and the effective

annihilation cross-section (black line) as a function of the dark matter

mass for the portal coupling λ3(MZ ) = 0.10. b The relic density �h2 as

a function of the DM mass MDM(≡ MH ) (red line) for λ3(MZ ) = 0.10

whereas the SM fields are even under this transformation. In

the literature, the HTM including the Z2-symmetry is known

as the inert triplet model (ITM) [31]. In this model, the term

λ4 H†σ a�Ta is absent in the scalar potential in Eq. (2.6),

which implies λ4 = 0. The Z2-symmetry prevents the triplet

scalar to acquire a VEV, i.e., v2 = 0. The potential can have

a minimum along the Higgs field direction only. The EWSB

is driven by the SM Higgs doublet. The scalar fields of the

triplet do not mix with the scalar fields of SM doublet. After

the EWSB, the scalar potential in Eq. (2.6) is then given by

V (h, H, H±)

=
1

4

[

2μ2
1(h + v)2 + λ1(h + v)4 + 2μ2

2(H2 + 2H+ H−)

+ λ2(H2 + 2H+ H−)2 + λ3(h + v)2(H2 + 2H+ H−)

]

.

(4.1)

Here, v ≡ vSM and the masses (see Eq. (2.9)) of the scalar

fields1 h, H and H± are given by

M2
h = 2λ1v

2,

M2
H = μ2

2 +
λ3

2
v2,

M2
H± = μ2

2 +
λ3

2
v2. (4.2)

At tree level the mass of the neutral scalar H and the charged

particles H± are degenerate. If we include a one-loop

1 For v2 = 0, the notation in Eq. (2.1) H ≡ η0 and H± ≡ η± are the

physical scalar fields.

radiative correction, the charged particles become slightly

heavier [56,57] than the neutral ones. The mass difference

between them is given by

�M = (MH± − MH )1-loop

=
αMH

4π

[

f
( MW

MH

)

− c2
W f

( MZ

MH

)]

, (4.3)

with f (x)=− x
4

{

2x3 log(x)+(x2−4)
3
2 log

(

x2−2−x
√

x2−4
2

)}

.

It has been shown in Refs. [56,57] that the mass split-

ting between charged and neutral scalars remains ∼ 150

MeV for MH = 0.1–5 TeV. In Fig. 2a, we show the vari-

ation �M (green line) with the MH (≡ MDM) mass. As

the Z2-symmetry also prohibits the couplings of an odd

number of scalar fields of the triplet with the SM particles,

H can serve as a viable DM candidate which may satu-

rate the measured DM relic density of the Universe. In this

work, we use the software package FeynRules [60] along

with micrOMEGAs [61,62] to calculate the relic density of

the DM. As �M is very small, the effective annihilation

cross-section is dominated by the co-annihilation channels

H H± → SM particles [59]. Although it is dominated by

the co-annihilation channel, we need a very small Higgs por-

tal coupling λ3 to obtain the correct relic density. The effec-

tive annihilation cross-section (see the black line in Fig. 2a)

decreases rapidly with �M for the DM mass below 500 GeV

and becomes ∼ 10−26 cm3s−1 around MDM = 2000 GeV.

We obtain the relic density in the right ballpark.
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In Fig. 2b, we present the plot for the relic density as a

function of the DM mass for the fixed Higgs portal coupling

λ3(MZ ) = 0.10. The light-red band is excluded from the

Higgs invisible decay width [58]. There are two deep regions

in the relic density band (red line). The first one is situated

near the DM mass MDM ≈ 45 GeV. It is due the resonance

of the s-channel H H± → SM fermions processes, mediated

by the vector bosons W ±. The second one is situated near

the DM mass MDM ≈ Mh/2 for the Higgs-mediated H H →
SM fermions processes. There is another, shallower region

located around the DM mass MDM = 100 GeV, which is due

to the dominant contributions coming from H H±, H H →
gauge bosons channels.

For 500 GeV, we find that the total cross-section 〈σv〉 ∼
10−25 cm3s−1, so the relic density becomes ∼ 0.01. In this

region, the dominant channels are H, H± → Z W ±, γ W ±

(∼ 35, ∼ 10%) and H±, H± → Z W ± (∼ 25%). We

also check that the smaller dark matter mass along with the

Higgs portal coupling λ3 (within the perturbative limit) does

alter the relic density only in the third decimal place. If

we increase the DM masses, then the effective annihilation

cross-section decreases. This is mainly due to the mass sup-

pression. We get a DM relic density in the right ballpark for

DM masses greater than 1.8 TeV.

One can see that the mass splitting �M attains saturation

for MDM > 700 GeV. Hence, the relic density is mainly reg-

ulated by the Higgs-mediated s-channel processes, although

the contributions are small. We check that the Higgs portal

coupling λ3 can be varied in between 0 to 1 for the DM mass

1850–2200 GeV to get the right relic density. For example,

we obtain the relic density �h2 = 0.1198 for λ3 = 0.001

and MDM = 1894.5 GeV. We get the same relic density for

λ3 = 0.8 and MDM = 2040 GeV. However, the running cou-

plings will violate the unitary and perturbativity bounds for

λ3 � 0.6.

The non-observation of DM signals in direct detection

experiments at XENON 100 [64,65], LUX [66] and LUX-

2016 [67] put severe restrictions [33] on the Higgs portal

coupling λ3 for a given DM mass. In this model, we check the

parameter regions which are satisfying the relic density and

are allowed by the recent LUX-2016 [67] and XENON1T-

2017 [68] data.

4.1 Metastability in ITM (Y = 0)

As in the SM the EW vacuum is metastable, it is important to

explore if ITM has any solution in its reserve. As the scalar

WIMP H protected by Z2-symmetry can serve as a viable

DM candidate, it is interesting to explore if they help prolong

the lifetime of the Universe. The effective Higgs potential

gets modified in the presence of these new extra scalars.

The one-loop effective Higgs potential in ms scheme and

the Landau gauge is given by

V SM+IT
1 (h) = V SM

1 (h) + V IT
1 (h), (4.4)

where [69–73]

V SM
1 (h) =

5
∑

i=1

ni

64π2
M4

i (h)

[

ln
M2

i (h)

μ2(t)
− ci

]

. (4.5)

ni is the number of degrees of freedom and M2
i (h) =

κi (t) h2(t)−κ ′
i (t). ni , ci , κi and κ ′

i can be found in Eq. (4) in

Ref. [69]. t is a dimensionless parameter which is expressed

in terms of the running parameter μ(t) = MZ exp(t).

The contributions to the effective Higgs potential from

the new scalars (H, H±) of the inert scalar triplet are given

by [21]

V IT
1 (h) =

∑

j=H,H+,H−

1

64π2
M4

j (h)

[

ln

(

M2
j (h)

μ2(t)

)

−
3

2

]

,

(4.6)

where M2
j (h) = 1

2
λ j (t) h2(t) + μ2

2(t), with λH,H±(t) =
λ3(t). In the present work, in the Higgs effective potential,

SM contributions are taken up to two-loop level [5,6,74,75]

and the IT scalar contributions are considered up to one loop

only [21].

For h ≫ v, the quantum corrections to the Higgs potential

are reabsorbed in the effective running coupling λ1,eff , so that

the effective potential becomes

V SM+IT
eff (h) ≃ λ1,eff(h)

h4

4
, (4.7)

with

λ1,eff(h) = λSM
1,eff(h) + λIT

1,eff(h) , (4.8)

where the expression of λSM
1,eff(h) up to two-loop quan-

tum corrections can be found in Ref. [5] and λIT
1,eff(h) =

e4Ŵ(h)

[

3λ2
3

256π2

(

ln
(

λ3
2

)

− 3
2

)

]

, with Ŵ(h) =
∫ h

Mt
γ (μ) d

ln μ. The wave function renormalization of the Higgs field is

taken into account by the anomalous dimension γ (μ). Here,

all running coupling constants are evaluated at μ = h, ensur-

ing that the potential remains within the perturbative domain.

We first calculate all couplings with the threshold correc-

tions [5,6,15,16,76,77] at Mt . Then we evolve all the cou-

plings up to the Planck mass MPl using our own computer

codes incorporating the RG equations. Here, the SM effects

in the RGEs are taken up to three loops [52–55] and IT con-

tributions are considered up to two loops (see Appendix A).

We choose a specific benchmark point MDM(≡ MH ) =
1897 GeV, Mh = 125.7 GeV and αs (MZ ) = 0.1184, so

that it can give the right DM density of the Universe. The

corresponding values of all quartic couplings λ1,2,3 at Mt =
173.1 GeV and MPl = 1.2 × 1019 GeV are presented in

Table 1. For this benchmark point, we show the evolution of

the running of the quartic couplings (λ1,2,3) in Fig. 3. We
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Table 1 A set of values of all quartic coupling constants at Mt and MPl

for MDM = 1897 GeV

λ1 λ2 λ3

Mt 0.127054 0.10 0.10

MPl − 0.00339962 0.267706 0.206306

Fig. 3 RG evolution of the couplings λ1,2,3 for the set of parameters

in Table 1 with DM mass MDM = 1897 GeV

find that this specific choice of benchmark point with the

top mass2 Mt = 173.1 GeV and the central values of other

SM parameters leads to a metastable EW vacuum. It implies

that the βfunction of the Higgs quartic coupling λ1 becomes

zero at very high energy scale and remains positive up to the

Planck mass MPl. We find that a deeper minimum is situated

at that high energy scale before the Planck mass MPl. We also

check that the EW vacuum remains metastable (one-sided)

for the quartic coupling λ2 ≤ 0.1, the Higgs portal coupling

λ3 ≤ 0.15 and the DM mass MDM ≥ 1900 GeV. We obtain

the stable EW vacuum (> 99.99% confidence level, one-

sided) for the choice of the parameters λ2 = 0.1, λ3 = 0.3

and MDM = 1915 GeV. The running couplings will violate

the unitary and perturbativity bounds for λ3 � 0.6. In the

following subsections, we will discuss the metastability of

the EW vacuum of the scalar potential.

4.2 Tunneling probability

Using the experimentally measured values of the SM param-

eters at the EW scale, when analyzing the SM scalar potential

at higher energy scales, one encounters the so-called metasta-

2 As the βfunction of the Higgs quartic coupling, λ1 contains − 6y4
t

16π2

(see Eq. (A1)), the values of the Higgs quartic couplings λ1 at very high

energies are extremely sensitive to Mt .

bility of the EW vacuum [5–7,15,16]. Since a second (true)

minimum, deeper than the EW minimum, is situated near the

Planck mass, there exists a non-zero probability that the EW

minimum will tunnel into the second minimum. The tunnel-

ing probability of the EW vacuum to the true vacuum at the

present epoch can be expressed as [5,78,79]

P0 = 0.15
�4

B

H4
e−S(�B ), (4.9)

where S(�B) is the minimum action of the Higgs potential

of a bounce of size R = �−1
B and is given by

S(�B) =
8π2

3|λ1(�B)|
. (4.10)

It becomes minimum when λ1(�B) is minimum, i.e.,

βλ1(�B) = 0. In this work, we neglect loop [78] and gravi-

tational corrections [80,81] to the action as in Refs. [15,16].

A finite temperature also affects to EW vacuum stabil-

ity [78,82,83]. In this work, we consider field theory in the

zero-temperature limit.

In the ITM, the additional scalar fields give a positive

contribution to βλ1 (see Eqs. (A1) and (A2). Due to the

presence of these extra scalars, a metastable EW vacuum

goes towards the stability, i.e., the tunneling probability P0

becomes smaller. We first calculate the minimum value of

λ1,eff of Eq. (4.8). Putting this minimum value in Eq. (4.10),

we compute the tunneling probability P0. As the stability

of the EW vacuum is very sensitive to the top mass Mt , we

show the variation of the tunneling probability P0 as a func-

tion of Mt in Fig. 4a. The right band in Fig. 4a corresponds

to the tunneling probability for our benchmark point. We

present P0 for the SM as the left band to see the effect of

the additional IT scalar. We also display 1σ error bands in

αs (light-gray) and Mh (light-red). One can see from this fig-

ure that the effect of αs on the tunneling probability is larger

than the effect of Mh . To see the effect of the ITM parameter

spaces, we plot P0 as a function of the Higgs portal coupling

λ3(MZ ) in Fig. 4b for different choices of λ2(MZ ). We keep

the fixed central values of all SM parameters. Here, the DM

mass MDM is also varied with λ3 to get the DM relic density

�h2 = 0.1198.

The additional IT scalar fields in the IT model improve

the stability of the EW vacuum as follows:

• If 0 > λ1(�B) > λ1,min(�B), then the vacuum is

metastable.

• If λ1(�B) < λ1,min(�B), then the vacuum is unstable.

• If λ2 < 0, the potential is unbounded from below along

the H and H±-direction.

• If λ3(�I) < 0, the potential is unbounded from below

along a direction in between H and h and also H± and h.
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Fig. 4 a Tunneling probability P0 dependence on Mt . The left band

(between dashed lines) corresponds to the SM. The right one (between

dotted lines) is for I T model for a DM mass MH = 1897 GeV. Dark

matter constraints are respected for these specific choice of parameters.

The light-green band stands for Mt at ±1σ . b P0 is plotted against the

Higgs DM coupling λ3(MZ ) for different values of λ2(MZ )

In the above λ1,min(�B) = −0.06488
1−0.00986 ln(v/�B )

and �I rep-

resents any energy scale for which λ1 is negative [15,16].

4.3 Phase diagrams

In order to show the explicit dependence of the electroweak

stability for different parameters of the ITM, we present var-

ious kinds of phase diagrams.

In Fig. 5a, we calculate the confidence level for our bench

mark points MDM = 1897 GeV, λ2(MZ ) = 0.10 and

λ3(MZ ) = 0.10 by drawing an ellipse passing through the

stability line λ = βλ = 0 in the Mt –Mh plane. If the area of

the ellipse is χ times the area of the ellipse, it represents the

1σ error in the same plane. This factor χ is the confidence

level of the stability of EW vacuum. We develop a proper

method to calculate this factor and the tangency point for the

stability line. In this case, the confidence level of metasta-

bility is decreased (one-sided) with αs(MZ ), i.e., the EW

vacuum moves towards the stability region. We obtain the

similar factor in the αs(MZ )–Mt plane. In this case, the con-

fidence level decreases with Mh . One can see from the phase

diagrams in Fig. 5 that the stable EW vacuum is excluded at

1.2 σ (one-sided).

If the ITM is valid up to the Planck mass, which also

saturates the DM abundance of the Universe, then the confi-

dence level vs. λ3(MZ ) phase diagram becomes important to

realize where the present EW vacuum is residing. In Fig. 6,

we vary the DM mass with λ3(MZ ) to keep the relic den-

sity at �h2 = 0.1198. One can see that the EW vacuum

approaches the stability with larger values of λ2,3(MZ ). The

EW vacuum becomes absolutely stable for λ3(MZ ) ≥ 0.154

and λ2(MZ ) ≈ 0.10 (see the blue line in Fig. 6). We show

this phase diagram for central values of the SM parameters.

Moreover, if we increase the top mass and/or decrease the

Higgs mass along with αs(MZ ), then the size of the region

corresponding to the metastable EW vacuum will increase.

We see that the conditions of a DM mass MDM ≥ 1912 GeV,

λ3(MZ ) ≥ 0.31 and λ2(MZ ) ≥ 0.1 are required to stabilize

the EW vacuum for Mt = 174.9 GeV, Mh = 124.8 GeV and

αs(MZ ) = 0.1163.

In Fig. 7, we show the allowed parameter spaces in the

λ3(MZ )–MH± plane for central values of the SM parame-

ters and λ2(MZ ) = 0.1. The lower (red) region is excluded

since the scalar potential becomes unbounded from below

along the direction in between H± and h. In this region,

the effective Higgs quartic coupling is negative and at the

same time λ3 remains negative up to the Planck mass MPl.

We obtain the parameter space with negative λ3(MZ ), which

is also allowed from metastability. In this case, λ3 becomes

positive at the scale �B and remains positive up to the Planck

mass MPl. The EW vacuum is absolutely stable in the green

region. The upper red region violates unitary bounds. The

right side of the black dotted line is allowed from μγ γ at 1σ .

5 Inflation in HTM (Y = 0)

Observations of super-horizon ansiotropies in the CMB

data, measured by various experiments such as WMAP and

Planck, have established that the early Universe underwent
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Fig. 5 Phase diagrams in a the Mh–Mt plane and b the Mt –αs(MZ )

plane ITM. Regions of absolute stability (green), metastability (yellow),

instability (red) of the EW vacuum are also marked. The gray zones rep-

resent error ellipses at 1, 2 and 3σ . The three boundary lines (dotted,

solid and dotted red) correspond to αs(MZ ) = 0.1184 ± 0.0007

Fig. 6 Dependence of confidence level at which the EW vacuum sta-

bility is excluded (one-sided) or allowed on λ3(MZ ) and λ2(MZ ) in

ITM. Regions of absolute stability (green) and metastability (yellow)

of EW vacuum are shown for λ2(MZ ) = 0.1

a period of rapid expansion. This is known as inflation.

This can solve a number of cosmological problems, such

as the horizon problem, the flatness problem and the mag-

netic monopole problem of the present Universe. If the elec-

troweak vacuum is metastable, then the Higgs is unlikely to

play the role of an inflaton [84–92] in the SM. Therefore,

Fig. 7 Phase diagram in λ3(MZ )–MH± plane in ITM. The right side

of the black dotted line is allowed from the signal strength ratio of

μγ γ within 68% confidence level and the left side is excluded at 1σ . In

the metastable region, the Higgs portal coupling λ3(MZ ) is negative;

however, beyond the scale �B it is greater than zero

extra new degrees of freedom are needed in addition to the

SM ones to explain inflation in the early Universe [93–98].

Here, we study an extension of the Higgs sector with a real

triplet scalar T in the presence of large couplings ζh,H to the

Ricci scalar curvature R. This theory can explain inflation

in the early Universe at the large field values in the scale

invariance Einstein frame.
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In this model, the action of the fields in a Jordan frame is

given by

S j =
∫ √

−gd4x

[

LSM +
1

2
(∂μ�)†(∂μ�) +

1

2
(∂μT )†(∂μT )

−ζh R|�|2 − ζH R|T |2 − V (�, T )

]

. (5.1)

In the present work, we consider H as an inflaton. The Higgs

h can also act as an inflaton for the stable EW vacuum. In

order to calculate the inflationary observables such as the

tensor-to-scalar ratio r , the spectral index ns and the running

of the spectral index nrs, we perform a conformal transfor-

mation from Jordan frame to Einstein frame, so that the non-

minimal coupling ζH of the scalar field to the Ricci scalar

disappears.

The transformation is given by [99]

g̃μν = �2gμν, � =

√

1 + ζH

H2

M2
Pl

. (5.2)

The action of Eq. (5.1) in the Einstein frame can be written

as

S =
∫ √

−gd4x

[

1

2
(∂μχ)†(∂μχ) − V (χ)

]

, (5.3)

where

dχ

dH
=

√

�2 M2
Pl + 6ζ 2

H H2

�4 M2
Pl

. (5.4)

The scalar potential V (χ) is then given by

V (χ) = λ2

M4
Pl

4ζ 2
H

(

1 + exp

(

−

√

2χ

3MPl

))−2

. (5.5)

We plot this potential in Fig. 8 for the choice of the bench

mark point ζH = 1 and λ2 = 10−9. One can also get the same

plot for the parameters ζH = 104 and λ2 = 0.1. However,

this choice of the parameters violates the unitary bound. One

can see that the potential has the ability to explain slow-roll

inflation.

One can define the slow-roll parameters ǫ, η and ζ in terms

of the potential by

ǫ =
1

2

(

1

V

dV

dχ

)2

, η =
1

V

d2V

dχ2
, and ζ =

1

V 2

dV

dχ

d3V

dχ3
.

The inflationary observable quantities such as the tensor-to-

scalar ratio r , the spectral index ns and the running of the

spectral index nrs are defined as

r = 16ǫ, ns = 1 − 6ǫ + 2η, and

nrs = −2ζ − 24ǫ2 + 16ηǫ (5.6)

Fig. 8 Inflation potential in the Planck unit for ζH = 1 and λ2 = 10−9

and the number of e-folds is given by

N =
∫ χend

χstart

V

dV/dχ
dχ (5.7)

where χstart (χend) is the initial (final) value when inflation

starts (ends). At χstart, ǫ is 1. We calculate the χend from

Eq. (5.7) for N = 60.

At the end of inflation, we get

r = 0.0037, ns = 0.9644, and nrs = −6.24 × 10−4,

(5.8)

which is allowed by the present experimental data at 1σ [100,

101]. Hence, the neutral component of the triplet scalar can

simultaneously serve as an inflaton and dark matter particle

as well.

6 Discussion and conclusions

The measurements of the properties of the Higgs-like scalar

boson detected at the Large Hadron Collider on 4th July 2012

are consistent with the minimal choice of the scalar sector.

But the experimental data of the Higgs signal strengths and

the uncertainties in the measurement of other standard model

parameters still allow for an extended scalar sector. We have

taken an extra hyperchargeless scalar triplet as new physics.

First, we have assumed that the extra neutral C P-even com-

ponent of the scalar triplet has also participated in the EWSB.

We have shown the detailed structure of the tree-level scalar

potential and mixing of the scalar fields. We have also dis-

cussed the bounds on the VEV (v2) of the neutral C P-even

component of the scalar triplet from the ρ-parameter. To the

best of our knowledge the full expressions of the unitary

bounds on the quartic couplings of the scalar potential in

this model have not yet been presented in the literature. We

have shown these unitary bounds in this model. As the SM

gauge symmetry SU (2)L prohibits the coupling of SM neu-

123



Eur. Phys. J. C (2018) 78 :341 Page 13 of 16 341

trinos with the neutral C P-even component (η0) of the scalar

triplet, the model does not lead to neutrino masses. But the

model is still interesting, as it can play a role in improving the

stability of the Higgs potential. We have taken into account

various threshold corrections to calculate all the couplings

at Mt . Then using three-loop SM RGEs and two-loop triplet

RGEs, we have evolved all the couplings up to the Planck

mass MPl. We have shown the allowed region in the MH±–

MH plane. We have demanded that the EW vacuum of the

scalar potential remain absolutely stable and do not violate

the perturbative unitarity up to the Planck mass MPl. We have

discussed the constraints on the parameter spaces from the

recent LHC μγ γ and μZγ data. Furthermore, only a very

small region of the parameter space is shown to survive on

imposing the EWPT constraints.

Astrophysical observations of various kinds, such as

anomalies in the galactic rotation curves and gravitational

lensing effects in bullet clusters, have indicated the existence

of DM in the Universe. In the ITM, the extra scalar fields

are protected by a discrete Z2-symmetry which ensures the

stability of the lightest neutral particle. We have verified that

the mass of the neutral scalar particle (H ) is slightly lighter

than the mass of the charged particle (H±) so that the con-

tributions coming from co-annihilation between H and H±

play a significant role in the relic density calculation. In the

low mass region, the co-annihilation rates are quite high so

that the dark matter density is found to be much smaller than

the right relic density �h2 = 0.1198 ± 0.0026 of the Uni-

verse. We have obtained the relic density in the right ballpark

for a DM mass greater than 1.8 TeV. In this context, we have

shown how the presence of an additional hyperchargeless

scalar triplet improves the stability of the Higgs potential. In

this study, we have used state of the art next-to-next-to lead-

ing order (NNLO) for the SM calculations. We have used

the SM Higgs scalar potential up to two-loop quantum cor-

rections which is improved by three-loop renormalization

groups of the SM couplings. We have taken into account

the contributions to the effective Higgs potential of the new

scalars at one loop only. These contributions are improved

by two-loop renormalization groups of the new parameters.

In this paper, we have explored the stability of the EW min-

imum of the new effective Higgs potential up to the Planck

mass MPl. We have presented new modified stability condi-

tions for the metastable EW vacuum. We have also shown

various phase diagrams in various parameter spaces to show

the explicit dependence of the EW (meta)stability on vari-

ous parameters. For the first time, we have identified new

regions of parameter space that correspond to the stable and

metastable EW vacuum, which also provides the relic den-

sity of the DM in the Universe as measured by the WMAP

and Planck experiments. In the present paper, we have also

shown that the extra neutral scalar field H can play a role in

inflation and can serve as a dark matter candidate. The scalar

potential can explain inflation for large scalar field values.

We have obtained the inflationary observables as observed

by the experiments.
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Appendix A: Two-loop beta functions for IT model

In this study, we use the SM RGEs up to three loops which

have been given in Refs. [52–55]. The triplet contributions

(λ2,3) are taken up to two loops which have been generated

using SARAH [102,103].

In the HTM (Y = 0), the RGEs of the couplings (χi =
g1,2,3, λ1,2,3 and Yl,u,d ) and dimensionful mass parameters

(μ1,2 and λ4) are defined as

βχi
=

∂χi

∂ ln μ
=

1

16π2
β(1)

χi
+

1

(16π2)2
β(2)

χi
.

For μ > MH , the RGEs of the scalar quartic couplings

λ1,2,3 and the mass parameter λ4 are given by

β
(1)
λ1

= +
27

200
g4

1 +
9

20
g2

1 g2
2 +

9

8
g4

2 −
9

5
g2

1λ1 − 9g2
2λ1 + 24λ2

1

+
3

2
λ2

3 + 12λ1Tr
(

Yd Y
†
d

)

+ 4λ1Tr
(

YlY
†
l

)

+ 12λ1Tr
(

YuY †
u

)

− 6Tr
(

Yd Y
†
d Yd Y

†
d

)

− 2Tr
(

YlY
†
l YlY

†
l

)

− 6Tr
(

YuY †
u YuY †

u

)

, (A1)

β
(2)
λ1

= −
3411

2000
g6

1 −
1677

400
g4

1 g2
2 −

317

80
g2

1 g4
2 +

277

16
g6

2 +
1887

200
g4

1λ1

+
117

20
g2

1 g2
2λ1 −

29

8
g4

2λ1 +
108

5
g2

1λ2
1

+ 108g2
2λ2

1 − 312λ3
1 + 5g4

2λ3 + 12g2
2λ2

3 − 15λ1λ
2
3 − 2λ3

3

+
1

20

(

− 5
(

64λ1

(

− 5g2
3 + 9λ1

)

− 90g2
2λ1 + 9g4

2

)

+ 9g4
1 + g2

1

(

50λ1 + 54g2
2

))

Tr
(

Yd Y
†
d

)

−
3

20

(

15g4
1 − 2g2

1

(

11g2
2 + 25λ1

)

+ 5
(

− 10g2
2λ1 + 64λ2

1 + g4
2

))

Tr
(

YlY
†
l

)

−
171

100
g4

1Tr
(

YuY †
u

)
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+
63

10
g2

1 g2
2Tr

(

YuY †
u

)

−
9

4
g4

2Tr
(

YuY †
u

)

+
17

2
g2

1λ1Tr
(

YuY †
u

)

+
45

2
g2

2λ1Tr
(

YuY †
u

)

+ 80g2
3λ1Tr

(

YuY †
u

)
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(

YuY †
u

)

+
4

5
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1Tr
(

Yd Y
†
d Yd Y

†
d
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− 32g2
3Tr

(

Yd Y
†
d Yd Y

†
d
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(

Yd Y
†
d Yd Y

†
d

)

− 42λ1Tr
(

Yd Y †
u YuY
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d
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−
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(
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(
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†
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−
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YuY †
u YuY †

u
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(

YuY †
u YuY †

u

)
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(

YuY †
u YuY †

u
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(
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)
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(
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)

+
1
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(
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2

− 16
(
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(
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. (A8)

Forμ < MH , βλ1 = βλ1(λ2,3 = 0) andβλ2,3,4 = 0, where

Yu = yu, yc, yt are the Yukawa couplings of up, charm and

top quark, Yd = yd , ys, yb for down, strange and bottom

quark. Yl represents the Yukawa couplings for the charged

leptons. In our work, we have included the contribution only

from the top quark. Since the other Yukawa couplings are

very small, they do not alter our result. We have also taken

into account the contributions to the beta functions of the

gauge couplings g1,2,3 of the new physics. The importance

of the mass parameters μ1,2 and λ4 are found to be negligible

in the stability analysis.
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