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The sequencing revolution driven by high-throughput technologies has generated a huge amount of marine microbial

sequences which hide the interaction patterns among microbial species and environment factors. Exploring these

patterns is helpful for exploiting the marine resources. In this paper, we use the complex network approach to mine

and analyze the interaction patterns of marine taxa and environments in spring, summer, fall and winter seasons.

With the 16S rRNA pyrosequencing data of 76 time point taken monthly over 6 years, we first use our MtHc

clustering algorithm to generate the operational taxonomic units (OTUs). Then, employ the k-means method to divide

76 time point samples into four seasonal groups, and utilize mutual information (MI) to construct the four correlation

networks among microbial species and environment factors. Finally, we adopt the symmetrical non-negative matrix

factorization method to detect the interaction patterns, and analysis the relationship between marine species and

environment factors. The results show that the four seasonal microbial interaction networks have the characters of

complex networks, and interaction patterns are related with the seasonal variability; the same environmental factor

influences different species in the four seasons; the four environmental factors of day length, photosynthetically active

radiation, NO2+ NO3 and silicate may have stronger influences on microbes than other environment factors.
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INTRODUCTION

Marine microbes account for most of the oceanic

activities. They are responsible for 98% primary ocean

production and mediate all biogeochemical processes like

the flow of nitrogen, carbon, and energy in the ocean [1].

However, most ecological functions and roles among

microbial communities and environmental factors are

poorly understood, owing to the dilute, microscopic

nature of the planktonic microbial community [2]. With

the development of high-throughput DNA sequencing

technologies that yield a mass of reads of small-subunit

rRNA gene (16S rRNA/18S rRNA) and DNA, it is

possible for us to describe the compositions of microbial

communities, their diversity and how communities may

change across space, time or experimental treatments

based on these sequence data [3]. However, most of the

current analytical approaches of describing and compar-

ing the structure of communities often focus on the total

numbers of taxa, the relative abundances of individual

taxa and the extent of phylogenetic or taxonomic overlap

between communities or community categories [1,3–5].

Although some researchers used the network analysis to

explore co-occurrence pattern in soil and ocean [2,6–9],

they just used the over-fitting clustering method of

operational taxonomic units (OTUs), and adopted the

linear correlation approaches (e.g., Pearson or Spearman)

to construct the correlation networks for showing the co-

occurrence pattern of microbes. They did not mine the

communities of networks for further showing the

structures of co-occurrence patterns. Clustering the

rRNA sequences into OTUs with high accuracy is an
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essential requirement for downstream analysis, such as

obtaining true taxonomic diversity profile of an environ-

mental sample, constructing the correlation networks of

microbes and environmental factors. Exploring the

interaction patterns among microbes and environment

factors can offer new insight into the structure of complex

microbial communities, reveal the niche spaces shared by

the community members, identify habitat affinities or

shared physiologies, and find how the environment

influences the microbes, that could guide more experi-

mental settings. In this paper, we will construct the spring,

summer, fall and winter correlation networks of microbes

and environments by using k-means clustering method,

mutual information (MI) correlation computing approach

and our effective MtHc OTUs clustering algorithm [10],

then, introduce a symmetrical non-negative matrix

factorization (s-NMF) method to detect the interaction

patterns among marine microbes and environments. The

aim is to understand the relationship among microbes,

environments and seasonal variability and try to deter-

mine the microbial interaction pattern difference among

seasons and find which environmental factors are closely

related with marine microbes.

RESULTS AND DISCUSSION

For exploiting the correlation and co-occurrence patterns

of microbes and environments from rRNA read data, we

first need an effective clustering method and a reference

database to assign the reads to known microbial taxa for

obtaining the abundance of species, then, quantify the

similarity of two species distributions with a similarity

measure (for environment traits, treating them as addi-

tional “species”), in the end, we select all significant

pairwise relationships to construct four seasonal microbial

correlation networks, and detect the communities with s-

NMF. Due to the superior performance of MtHc [10] than

other four state-of-the-art clustering methods (MSClust

[11], ESPRIT-Tree [12], CROP [13] and BEBaC [14]), we

select MtHc method to generate the OTUs in this paper.

Topology analysis of four seasonal microbial
correlation networks

In order to analyze the microbial diversity and the

relationship among OTUs and environmental factors in

spring, summer, fall, and winter seasons, we need to

construct the correlation networks. In general, mutual

information (MI) is a natural generalization of the

correlation since it can measure the nonlinear dependency

and topology sparseness between variables [15]. Here, we

use MI to measure the similarity between two species and

obtain the significant pairwise relationships with permu-

tation test. The four seasonal microbial correlation

networks are shown in Figure 1. We also compute their

topological parameters including the average degree,

average clustering coefficient, average power law degree,

and modularity and compare them with their correspond-

ing random networks. The comparison results of

topological parameters of four seasonal networks and

their random networks are summarized in Table 1.

From Table 1, we can see that there is little difference in

the topological parameters among spring, summer, fall

networks, but there is bigger difference between winter

network and other three seasonal networks. These results

indicate that the interaction patterns among microbes and

environments in winter are significantly different from

spring, summer and fall seasons. Compared with random

networks, four seasonal microbial correlation networks

have bigger average clustering coefficient, average power

law degree, and modularity, indicating that the four

seasonal microbial associate networks have some char-

acters of complex network.

Interaction patterns detected by s-NMF in seasonal
microbial networks

We first used some annotation strategies, such as, BLAST

against Greengenes [16], SIVA [17] and RDP [18], to get

the annotation information of OTUs at taxonomic level,

then adopted s-NMF to mine the four seasonal microbial

networks. The structures of interaction patterns detected

by s-NMF are shown in Figure 2, from which we can see

that the community (or interaction pattern) numbers

detected with s-NMF are 4, 3, 3 and 6 in spring, summer,

fall and winter networks, respectively. The community

number of winter network is more than that of other three

seasonal networks, which indicates that the seasonal

variability might have the greatest influence on the marine

microbe diversity. We also find that some environmental

factors are strongly correlative with some special

microbes. For instance, in spring microbial network

(M1), the environmental factor E12 (NO2+NO3) is

correlative with OTU57 (SAR11), OTU65 (SAR11),

OTU73 (SAR11) and OTU177 (Roseovarius). In summer

microbial network (M1), E12 is correlative with OTU40

(Pelagibacter) and OTU52 (Pelagibacter). In fall micro-

bial network (M1), E12 is correlative with OTU40

(Pelagibacter), OTU33 (Pelagibacter), OTU149 (Pela-

gibacter), OTU183 (Roseovarius), OTU67 (Pelagibac-

ter), OTU135 (Pelagibacter), OTU256 (Cyanobacteria),

OTU44 (Pelagibacter), OTU101 (SAR11). In winter

microbial network, E12 is correlative with OTU132

(Pelagibacter) and OTU228 (Roseovarius).

We also analyzed in detail the composition of some

communities which include more environmental factors

in the four seasonal networks. The community M1 in

spring network is composed of 6 environmental factors
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(E1, E4, E5, E6, E12, and E14) and 40 OTUs in which the

30 OTUs come from Bacteria, 8 from organelle, and 2

OTUs have not been annotated. For the 30 Bacteria

OTUs, 21 OTUs are identified in class level as

Alphaproteobacteria, 9 OTUs as Gammaproteobacteria.

For 8 organelle OTUs, 6 OTUs come from Chloroplast

and 2 OTUs from Mitochondria. The community M1 in

summer network is composed of 8 environmental factors

Figure 1. Four correlation networks in spring, summer, fall and winter seasons with MI(□—OTU, Δ—environmental

factor).

Table 1. The topological parameters of four seasonal correlation networks and their corresponding random networks.

Seasonal networks Random networks

Spring Summer Fall Winter Spring Summer Fall Winter

Node Number 161 175 208 216 161 175 208 216

Edge Number 413 647 572 980 413 647 572 980

Avg. degree 5.367 5.932 5.123 10.752 5.367 5.932 5.123 10.752

Avg. power law degree 1.241 1.267 1.387 0.812 0.643 0.423 0.671 0.016

Avg. clustering coefficient 0.231 0.271 0.228 0.389 0.012 0.021 0.023 0.038

Modularity 0.565 0.553 0.512 0.371 0.381 0.337 0.412 0.221
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Figure 2. The communities (or interaction patterns) amongmicorbies and environment factors detected by s-NMF in four

seasonal networks (□—OTU, Δ—environmental factor).
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(E2, E4, E5, E9, E12, E14, E17 and E18) and 46 OTUs

which belong to Bacteria. 24 OTUs are identified in class

level as Alphaproteobacteria, 19 OTUs as Gammapro-

teobacteria, 2 OTUs as Verrucomicrobiae, 1 OTU as

Sphingobacteria. The community M1 in fall network

contains 9 environmental factors (E1, E2, E3, E5, E9,

E10, E12, E13 and E14) and 48 OTUs in which 43 OTUs

come from Bacteria, 5 OTUs from organelle. For 43

Bacteria OTUs, 36 OTUs are identified in class level as

Alphaproteobacteria, 3 OTUs as Betaproteobacteria, 3

OTUs as Gammaproteobacteria, 1 OTU as Actinobac-

teria. The community M1 in winter network consists of 6

environmental factors (E2, E6, E7, E11, E12 and E15)

and 49 OTUs in which 41 OTUs come from Bacteria and

8 OTUs from Chloroplast. For 41 Bacteria OTUs, 32

OTUs are identified in class level as Alphaproteobacteria,

2 OTUs as Betaproteobacteria, 4 OTUs as Gammapro-

teobacteria, 1 OTU as Flavobacteria, 1 OTU as

Cyanobacteria, 1 OTU as Verrucomicrobiae. M3 in

winter network consists of 3 environmental factors (E3,

E14 and E16) and 30 OTUs in which the 29 OTUs come

from Bacteria and 1 OTU has been not annotated. For 29

Bacteria OTUs, 13 OTUs are identified in class level as

Alphaproteobacteria, 12 OTUs as Betaproteobacteria, 3

OTUs as Actinobacteria, 1 OTU as Cyanobacteria. M4 in

winter network includes 3 environmental factors (E5, E16

and E18) and 20 OTUs in which the 18 OTUs come from

Bacteria, 1 OTU is Chloroplast and 1 OTU is unknown.

For 18 Bacteria OTUs, 13 OTUs are identified in class

level as Alphaproteobacteria, 2 OTUs as Betaproteobac-

teria, 3 OTUs as Gammaproteobacteria.

From Figure 1, we can find that four seasonal networks

jointly includes the environment factors of E2 (day

length), E5 (photosynthetically active radiation), E12

(NO2+NO3) and E14 (silicate), which indicates that the

four environmental factors may strongly influence the

microbes than other environment factors.

From Figure 2, we can see that the structure of

communities in four seasons is significantly different, for

example, two communities of fall seasonal network

contains more than 7 environment factors, and one

community of summer seasonal network contains 8

environment factors, while the communities of spring

and winter seasonal networks just contain less than 6

environment factors, meaning that same environmental

factors influence different species in four seasons, and

more environment factors jointly influence the microbes

in fall and summer seasons.

The community structural analysis of four seasonal

microbial networks shows that a large fraction microbial

interaction in class level occurs among Alphaproteobac-

teria, Betaproteobacteria and Gammaproteobacteria.

The community dense in spring, summer and fall

networks is bigger than that of winter network. The

correlative relationships between OTUs (taxa) are stron-

ger than that of OTU and environmental factor, which

may indicate that biological rather than physical factors

can be more important in defining the fine-grain

community structure.

Community alignment among four seasons

In order to study the evolution of microbes among four

seasons, we align the communities between two seasons

with MAGNA network alignment method [19]. MAGNA

can optimize any measure of alignment quality, topolo-

gical or biological and of node or edge conservation. The

aligning results of communities in four seasons are shown

in Figure 3, from which we can see that several

communities of one season evaluate into one commu-

nities of another season, and one community of one

season evaluates several communities of another season.

Figure 3. Evolutionary relationship of microbial communities among four seasons. The score on the line is the similarity

value between two communities.
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For example, M1, M2 and part of M3 in spring season

evaluate into M3 in summer, and M2 in fall season

evaluates into M1, M2, M4 and M6 in winter.

CONCLUSIONS

Microbial interaction networks provide further investiga-

tion angle for microbial community structure and

ecological mechanism. As more and more environmental

microbiomics data is available, developing the novel

methods to explore the potential correlation/interaction

patterns among microbial taxa and environmental factors

will play a key role in the field of environmental and

ecological system biology research. Considering the

urgent requirement that needs novel network analytical

approaches to move beyond the basic description of

compositions and diversity of microbial communities, we

use our MtHc OTU clustering method and MI correlation

computing approach to construct four seasonal microbial

networks from marine 16S rRNA sequences, and employ

s-NMF algorithm to detect the potential interaction

patterns among microbes and environments. The results

show that the four seasonal marine microbial correlation

networks have characters of complex networks; the

marine microbial interaction patterns are related with

the seasonal variability, e.g., the community dense in

spring, summer and fall networks is bigger than that of

winter network; the interaction between microbe and

environmental factor in four seasonal networks is

significantly different, that is, the same environmental

factors influence different species; the environmental

factors of day length, photosynthetically active radiation,

NO2+NO3 and silicate may strongly influence the

microbes than other environment factors. Although

these interesting analyze results do not demonstrate that

we have a comprehensive view of interactions within

marine microbial interaction patterns, our analysis

method is more feasible and interesting for exploring

the unseen patterns emerged in the complex dataset.

MATERIALS AND METHODS

Datasets

The 16S rRNA sequence data and environmental factor

data used in this paper were downloaded from http://

vamps.mbl.edu/index.php, which include 969,400

sequences and 18 environmental factors from 76 time

point seawater samples taken monthly over 6 years at a

temperate marine coastal site in the West English Channel

[7]. The 18 environmental factors are serial day (E1), day

length (E2), DX1 (E3), DX2 (E4), photosynthetically

active radiation (E5), North Atlantic Oscillation data (E6),

primary productivity (E7), daily primary productivity

(E8), mixed layer depth (E9), the concentrations of

ammonia (E10), chlorophyll(E11), NO2+NO3 (E12),

salinity (E13), silicate (E14), SRP (E15), temperature

(E16), total organic carbon (E17) and total organic

nitrogen (E18).

Due to the marine climatic changes, it is not fit for

partition the four seasons according to the months [20].

Here, according to the environmental data of 6 years, we

first use k-means method to cluster the 76 samples into

four groups which correspond to the spring, summer, fall

and winter seasons. This seasonal partition way can better

reflect the local seasonal changes. As a result, 15, 24, 17

and 20 of the 76 samples are arranged into winter, spring,

summer and fall seasons respectively. The 16S rRNA

sequence numbers of winter, spring, summer and fall

seasons are 174,885, 256,596, 244,046 and 293,873

respectively. In order to establish the seasonal correlation

networks of microbes and environmental factors at the

taxonomic level (e.g., species, genus), the 16S rRNA

sequences are grouped into species-level operational

taxonomic units (OTUs) with our MtHc algorithm [10],

which resulted in 8,299 OTUs. MtHc method can

accurately estimate the number of species and achieve

better cluster quality.

MtHc algorithm

Most heuristic clustering methods are sensitive to the

selected seeds that represent the clusters, and a change in

the order of the input sequences may alter the clustering

results significantly. Hierarchical clustering methods

(either based on average-linage or complete-linkage)

consider all the sequences in a cluster when forming

clusters, which can add the computational burden. Model-

based clustering methods and network modularity-based

method often have a higher computational complexity,

and do not easily deal with the massive 16S rRNA data.

To address these problems, we proposed MtHc method in

previous work [10] to cluster massive 16S rRNA

sequences into OTUs. Comparing with the existing

OTU clustering methods, MtHc can achieve higher

cluster quality and lower time complexity for millions

of 16S rRNA sequences, and also bypass the selection of

hard distance threshold. In view of the better clustering

performance of MtHc, and dataset containing 969,400

sequences, we select our MtHc method to generate the

OTUs in this paper.

MtHc consists of three main phrases: searching motifs,

generating crude clusters and merging these crude clusters

into OTUs. Suppose all the 16S rRNA sequences can

construct a complete weighted network, where sequences

are viewed as nodes, each pair of sequences is connected

by an imaginary edge, and the distance of a pair of

sequences represents the weight of the edge. The process
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of MtHc method [10] can be simply described as: step 1,

heuristically search the motif that is defined as n-node

sub-graph (in the present study, n = 3, 4, 5), in which the

grammar-distance between any two nodes is less than a

threshold. Step 2, use the motif as a seed to form

candidate cluster by computing the distances of other

sequences with the motif. Step 3, hierarchically merge the

candidate clusters to generate the OTUs by only

calculating the distances of motifs between two clusters.

By selecting a threshold �, a series of sequence motifs are

searched from the imaginary complete weighted network

constructed with all the 16S rRNA sequences. Based on

these motifs, MtHc forms a series of crude clusters, then

merging them into OTUs by defining another threshold τ.

We have discussed in detail how to select these two

parameters in our previous work [10].

Correlation networks modeling

In order to explore the interaction patterns among marine

microbes and environments and find the marine microbial

seasonal variability, we should construct the four seasonal

microbial correlation networks. Suppose vector X� and Y�
represent OTU and environmental factor respectively.

X�=[x�1, x�2, :::, x�s, :::, x�S ],   ð�=1, :::, 8299Þ (1)

Y�=[y�1, y�2, :::, y�s, :::, y�S ],   ð�=1, :::,18Þ (2)

where x�s is the �-th OTU abundance value in the s-th

sampling, that is, x�s equals the ratio of the sequence

number N�s contained in the �-th OTU and the total

sequence number Ns contained in the s-th sampling, y�s is

the �-th environmental factor value in the s-th sampling.

To reduce the sequencing effort bias, x�s is set to zero if

N�s<5. For reducing the false higher correlation between

vectors, we also remove these OTU vectors which contain

less than 3 non-zero elements. After these processing, we

obtain 702 OTUs vectors, in which spring season contains

144, summer 161, fall 194 and winter 203 OTUs,

respectively. Then, four microbial abundance matrixes

and four environment factor matrixes of spring, summer,

fall and winter seasons are produced by normalizing every

OTU and environment factor vector with zero-mean

normalization method.

Because mutual information (MI) can capture non-

linear dependencies and topology sparseness between

variables [15], we use MI to compute the correlations

between variables.

MIðX ,Y Þ=–

X

x∈X , y∈Y

pðx, yÞlog
pðx, yÞ

pðxÞpðyÞ
(3)

where p(x, y) is the joint probability distribution of X and

Y, and p(x) and p(y) are the marginal probability

distributions of X and Y respectively.

The permutation test is used to calculate the statistical

significance. We considered that there are robust correla-

tions between OTU-OTU and OTU-environmental factor

vector if P-value£0.01, and there is a robust correlations

between environmental factor vectors if P-value£0.05.

In the end, the four marine microbial association networks

(Figure 1) of spring, summer, fall and winter seasons are

constructed. These four seasonal networks are weighted

and undirected.

Symmetrical non-negative matrix factorization
(s-NMF) algorithm

A weighted network contained n nodes can be described

by an adjacency matrix A=[Aij]n�n, where Aij³0. The

feature matrix O of the network can be calculated from A,

which represents the node-node similarity.

Suppose that n nodes can be grouped into r overlapping

cliques (or communities). Then, a clique-node similarity

non-negative matrix W=[wki]r�n is introduced to repre-

sent the similarity degree between node and clique, where

wki indicates the closeness degree between node i and

clique k. Because
X

r

k=1

WkiWkj is an approximation of

similarity between node i and node j, and O represents

the node-node similarity, then, we can use Oij to estimate
X

r

k=1

WkiWkj. Thus, our task is that minimize the function

FG.

min
W³0

FGðO,W Þ=kO –W
T
Wk2F

=

1

2

X

ij

[ðO –W
T
W Þ∘ðO –W

T
W Þ]ij (4)

where A∘B is the Hadamard product (or element-by-

element product) of matrices A and B. This optimization

problem can be solved by a symmetrical non-negative

matrix factorization (s-NMF) method which is an

improved method of non-negative matrix factorization

(NMF) [21]. The iteratively updated rule of s-NMF can be

described as follows:

W kþ1=W k ∘
[W kO]

[W kW
T
kW k ]

(5)

where
[A]

[B]
is the Hadamard division (or element-by-

element division) of matrices A and B. The stable points

of Equation (5) can only fall into the set of NMF’s

stationary points, hence guaranteeing the convergence of

s-NMF. NMF has been proved that it converges to a

stationary point in many cases.
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By normalizing the column of W , we get the fuzzy

membership degree matrix U . The clique of correspond-

ing to the largest element of each column in U is

determined as the final membership clique of each node.

That is, if U ki is the maximum in the column i, the node i

is classified to the clique k.

In order to determine the optimal number of community

r, we iteratively increase r and choose the one which

results in the highest modularity Q [22].

Q=
1

2m

X

ij

wij –
kikj

2m

� �

δðCi,CjÞ

where m is the sum of weighted edges, wij is the weight of

edge connecting nodes i and j, ki is the degree of node i. If

node i and j are grouped to the same cluster, δðCi,CjÞ=1,

and otherwise δðCi,CjÞ=0.
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