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Exploring the interactions among factors impeding the diffusion 

of prefabricated building technologies: Fuzzy Cognitive Maps

Abstract

Purpose

This study aims to identify the interactions of factors impacting the widespread adoption of 

prefabricated building technologies and the intervention strategies to facilitate the development of 

prefabrication based on Fuzzy Cognitive Maps (FCMs).

Design/methodology/approach

Through in-depth interviews with six stakeholder groups, namely the government, developers, 

designers, contractors, manufacturers and researchers, thirteen critical factors were identified and 

used to construct stakeholder-grouped FCMs, which were further aggregated into a collective FCM. 

The complexity and density of the collective FCM, and the centrality of factors in the FCM were 

examined. Subsequently, a series of “what-if” simulations of the collective FCM were conducted to 

analyze the effectiveness of different interventions in promoting prefabrication.

Findings

The results show that three factors including market demand, cost, and policies and regulations have 

been mentioned by all stakeholder groups. However, these factors were ranked differently by 

stakeholder groups, implying that different stakeholder groups perceive the barriers to prefabricated 

building technologies differently. FCM simulations show that strengthening policies and regulations 

yield the strongest overall effect stimulating prefabrication, alleviating the organizational and 

environmental barriers more than the technological barriers, while improving the knowledge and 

expertise alleviate the technological barriers more. These measures need to be accompanied by other 

approaches, such as reducing cost and improving quality.

Research and practical implications

It is a tough task to promote prefabrication as it is affected by numerous barriers with complex 

interactions, which have been overlooked by previous studies. This study clearly shows which 
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strategy could tackle which barriers to prefabrication through the FCM simulations. This provides 

valuable references for the enterprises’ decision making and the governments’ policymaking to 

facilitate the diffusion of prefabricated building technologies.

Originality/value

Few studies aim to analyze the interactions among the barriers to prefabrication, while this study 

specifically investigates this issue by illustrating the complex interactions using Fuzzy Cognitive 

Maps (FCMs). Few studies also aim to identify the intervention strategies promoting prefabrication 

based on a quantitative approach, while this study employs FCM simulations to directly simulate 

the effectiveness of different strategies to facilitate prefabrication in a quantitative manner.

Keywords: Approach, simulation, technology, innovation, construction. 
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Introduction

Buildings worldwide account for more than 40% of the global carbon dioxide (CO2) emissions and 

generate various environmental impacts (Darko et al., 2017; Pons & Wadel, 2011; Zhou et al., 2017). 

Prefabricated building technologies, where a significant amount of building components is manufactured in 

a controlled offsite environment before being transported to site for efficient assembly, have been proposed 

as a sustainable alternative to conventional onsite construction (Gan et al., 2018a; Zhang et al., 2014). Since 

the building process is improved by mechanization and automation, it is easier to reuse and recycle building 

materials (Pons et al., 2011), especially when modular components are involved. Consequently, significant 

benefits have been observed including productivity improvement, cost reduction, less construction waste, 

less emissions, reduction of energy and water consumption, less labour demand and better safety (Chen et 

al., 2010; Kamali & Hewage, 2017; Mao et al., 2015; Pan et al., 2012; Polat, 2008; Zhong & Wu, 2015). 

However, prefabricated building technologies are still not widely adopted. Multiple studies have been 

conducted to explore the factors impeding the diffusion of prefabricated building technologies by using 

various methods such as exploratory factor analysis, importance index, fuzzy set theory, etc (Lovell & Smith, 

2010; Mao et al., 2015; Pan et al., 2012; Polat, 2010; Rahman, 2014). Although a range of barriers to its 

implementation has been identified, limited studies have explored the interactions between those barriers. 

Construction innovation is embedded in industry networks involving many interconnected elements (Chang 

et al., 2015; Winch, 1998). The factors impeding the diffusion of prefabricated building technology are 

interrelated, generating a complex system which is hard to be studied due to the difficulty in measuring the 

interactions among those factors quantitatively (Rajaram & Das, 2010). Meanwhile, the uptake of 

construction innovation requires the involvement of various stakeholders, whose behavior is influenced by 

their perceptions of these barriers (Vanwindekens et al., 2013; Xue et al., 2017). Few studies investigated 

how various groups of stakeholders perceive the interrelationships among the barriers to prefabrication. 

One quantitative model that is able to investigate the interactions among factors is Fuzzy Cognitive Map 

(FCM). FCM has been successfully applied in various areas, such as agriculture, environment and energy 

(Kyriakarakos et al., 2014; Lopolito et al., 2011; Zhang et al., 2013). However, the application of FCM to 

the diffusion of construction innovations is very limited. This study utilizes FCM to explore factors 

impacting the diffusion of prefabricated building technologies with three objectives: (1) to identify the 

barriers to the diffusion of prefabricated building technologies based on interviews with various stakeholders, 
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(2) to identify the interactions among those factors by using FCM and (3) to simulate how the interrelated

factors impact each other dynamically, so that the effectiveness of different interventions to facilitate 

prefabrication could be revealed. By identifying and simulating the interrelated factors impacting 

prefabrication, this study can facilitate effective and efficient policy-making and decision-making for 

promoting prefabricated building technologies in the future. 

Literature analysis 

Due to the unique industrial characteristics, such as one-of-a-kind nature, site production, and temporary 

organization, the construction industry is well known for its low level of innovation (Chang et al., 2016; 

Chang & Lu, 2017b). The diffusion of prefabricated building technologies remains slower than anticipated 

(Gan et al., 2018b; Xue et al., 2017). Several studies have explored the factors impeding the diffusion of 

prefabricated building technologies. With reference to the TOE (Technology-Organization-Environment) 

framework which has been extensively adopted in the research field of construction innovation (Wei et al., 

2015; Xue et al., 2017), barriers to prefabrication can be categorized into three categories, namely 

technological factors, organizational factors and environmental factors. 

The technological factors impacting prefabrication refer to the disadvantages of prefabricated building 

technologies comparing with the conventional construction approach. Higher cost has been regarded as a 

factor significantly impeding the diffusion of prefabrication (Mao et al., 2016). Besides, poor quality (Kamali 

et al., 2017), the monotonous appearance (Zhai et al., 2014), and the constraints of logistics (Polat, 2008) 

also impede the adoption of prefabricated building technologies. The organizational factors explain the 

organizational constraints hindering the adoption of prefabrication by construction firms. The traditional 

project process and business models have been argued prohibiting the use of prefabrication (Nadim & 

Goulding, 2011; Zhang et al., 2014). The lack of knowledge and expertise also constrains the use of 

prefabrication (Polat, 2008, 2010). The poor design and manufacturing capacity of manufactures has also 

been highlighted as important organizational barriers (Gan et al., 2018b). The environmental factors 

emphasize the context where a firm conducts its business. The lack of social acceptance and limited market 

demand present a significant challenge for the diffusion of prefabrication (Mao et al., 2015; Nadim et al., 

2011; Zhai et al., 2014). The lack of codes and standards, as well as inadequate supporting policies and 
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regulations could also result in the difficulty in adopting prefabrication (Gan et al., 2018b; Zhai et al., 2014; 

Zhang et al., 2014). 

Although these previous studies identified some factors impacting prefabricated building technologies, 

there is a significant gap of knowledge. Most previous studies use statistical methods to propose importance 

rankings of the factors impacting prefabrication, and the policy suggestions are proposed mostly in a 

subjective manner based on these rankings (Gan et al., 2018b). However, this approach neglects the complex 

interactions among the factors. Some factors may not be rated with high importance, but could have various 

linkages with other factors, and thus become central in promoting prefabrication. Ideally, the effectiveness 

of different strategies to facilitate prefabrication need to be quantitatively simulated considering the complex 

interactions among the factors impacting prefabrication, rather than subjectively assumed based on the 

isolated importance rankings of the impacting factors. Actually, most previous studies focus on identifying 

the various factors impacting prefabrication, while the interactions among these factors seem neglected. 

By specifically responding to this gap of knowledge using FCM, this study aims to provide important 

implications theoretically, methodologically and practically. Theoretically, few studies aim to analyze the 

interactions among the barriers to prefabrication, while this study aims to specifically investigate this issue. 

Methodologically, this study employs FCM simulations with the aim to directly simulate the effectiveness 

of different strategies to facilitate prefabrication in a quantitative manner. Practically, this study aims at 

clearly showing which strategy could tackle which barrier to prefabrication through the FCM simulations. 

This provides valuable references for the enterprises’ decision making and the governments’ policymaking 

to facilitate the diffusion of prefabricated building technologies.

Fuzzy Cognitive Map 

FCM is a soft computing approach that models complex systems by using experts’ knowledge and 

perceptions (Obiedat & Samarasinghe, 2016). It produces a signed directed graph consisting of nodes 

standing for the concepts within a system and connections representing the causal relationships among 

concepts (Misthos et al., 2017). The graphical representation of FCM demonstrates the concepts that can 

exert influence on other concepts, showing the interconnections between concepts and how much the 

influence is. Based on the signed directed graph, FCM can model the effect of different interventions on the 
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systems by altering the initial values of the concepts and subsequently conducting computer simulations 

(Meliadou et al., 2012; Reckien, 2014). 

The application of FCM in previous studies

FCM is able to specify the relationships between related concepts of a system and identify its structural 

properties and dynamics (Azadeh et al., 2014). Meanwhile, FCM can extract knowledge from diverse 

sources, such as different stakeholder groups, and thus it could reveal the areas of consensus and diverging 

views from stakeholder groups (Bosma et al., 2017). Because of its above merits, FCM has been used in 

various areas of studies, such as politics (Christen et al., 2015; Kontogianni et al., 2012), social-ecological 

systems (Obiedat et al., 2016; Vanwindekens et al., 2013), socio-economical systems (Kontogianni et al., 

2013), the agriculture sector (Rajaram et al., 2010; Vanwindekens et al., 2013), urban management (Olazabal 

& Pascual, 2016), environment management (Azadeh et al., 2014; Zhang et al., 2013), and the energy sector 

(Huang et al., 2013). However, the applications of FCM in the area of construction innovation are very 

limited. As Li et al. (2014) highlighted, the diffusion of prefabricated building technology is highly complex. 

With the aid of FCM, the complex interactions among the factors impacting prefabricated building 

technologies can be identified which is valuable for effective policy-making promoting prefabrication 

(Huang et al., 2013). 

Procedures of FCMs 

FCM construction and aggregation

Nodes in the FCM represent the concepts in the system. They are connected by signed and weighted arcs 

which stand for causal relationships amongst the concepts (Shen et al., 2017). Concepts are interconnected 

with arcs (eij) with different weights (wij). The interconnection eij between two concepts Ci and Cj indicates 

causal flows from Ci to Cj, and the weights can express positive, negative or neutral causality and take values 

in the space [-1, 1] (Kyriakarakos et al., 2014).

Condensation is used to aggregate the variables of individual FCM into higher–level FCM (Misthos et 

al., 2017; Reckien, 2014). As the quantitative condensation approach has limitations such as information 

loss, the qualitative condensation approach has been strongly recommended (Obiedat et al., 2016). In 

qualitative condensation approach, similar or related variables were grouped into high-level categories, with 

Page 6 of 30Engineering, Construction and Architectural Management

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

© Emerald Publishing Limited. 

This AAM is provided for your own personal use only.  

It may not be used for resale, reprinting, systematic distribution, emailing, or for any other commercial purpose without the permission of the publisher. 



Engineering, C
onstruction and A

rchitectural M
anagem

ent

7

the connection weights summed into an overall linguistic value first and then defuzzied into numerical values 

in the interval [-1, 1] (Özesmi & Özesmi, 2004; Zhang et al., 2013). 

FCM indices

An FCM analysis is conducted by using the Graph Theory and Social Network Analysis (Misthos et al., 

2017). Generally, graph indices, including the density and complexity indices, are used to analyze the content 

and structure of FCMs, and the centrality index is used to measure the relative importance of each concept 

within individual FCM (Bosma et al., 2017; Misthos et al., 2017; Özesmi et al., 2004). 

The density of a FCM is an index of connectivity, representing how connected or sparse the maps are 

(Zhang et al., 2013). To measure the density [D], the number of connections is divided by the maximum 

number of connections possible between concepts (Özesmi et al., 2004).

where, N is the number of variables and C is the number of connections. 

As for the variables (nodes), there are three categories of nodes based on their out-degree and in-degree, 

namely receivers, transmitters and the ordinary nodes. Receivers have a positive in-degree and zero out-

degree, while transmitters have a positive out-degree and zero in-degree. By contrast, the ordinary variables 

have a non-zero in-degree and out-degree (Zhang et al., 2013). The share of the number of receiver variables 

(R) with respect to the total number of transmitter variables (T) is used to denote the index of the complexity

[Com] of a map (Bosma et al., 2017; Zhang et al., 2013). 

The centrality [Cen] is an index used to measure the level of connectedness of a variable with other 

variables (Bosma et al., 2017). It is measured by the summation of variables’ out-degree and in-degree 

(Misthos et al., 2017). The calculation equation of out-degree od(Ci) and in-degree id(Ci) is as follows:

where N is the number of nodes connected from node Ci in the FCM, and (wij) is the weight of the 

connection from node Ci to node Cj.

1

( )
N

i ij

j

od C w




1

( )
N

iji

j

id c w
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where N is the number of nodes connected to node Ci in the FCM, and (wij) is the weight of the connection 

entering node Ci from node Cj.

FCM Simulation

The system simulation can help to explore how the studied system evolves in different scenarios (Bosma 

et al., 2017). The mathematical model of FCM consists of a [1×n] state vector which includes the values of 

the concepts and a [n× n] weight matrix W, gathering the weight wij of the interconnections amongst 

concepts in the FCM (Büyüközkan & Vardaloğlu, 2012). The dynamics of the FCM model are illustrated by 

these matrices and updated through iteration with other concepts (Shen et al., 2017). At each simulation step, 

the value Ai of a concept Ci is calculated by computing the effect of the interconnected variable cj on the 

specific variable ci (Kosko, 1986). After a set of iterations, the values of concepts will evolve until being 

stabilized at a fixed point, and then, a final vector A is obtained.

where is the value of concept Ci at step k+1, is the value of concept Cj at step k, f is the 
( +1)
i

kA ( )k

jA

threshold function, Wij is the weight of the interconnection between Ci and Cj.

Research procedure

Data collection

Primary data for this study were collected through semi-structured interviews with critical stakeholders 

relevant to prefabricated building technologies in Chongqing, China. As a large and densely populated urban 

center located in Southwestern China, Chongqing has a large construction sector (Gan et al., 2018a). In 2016, 

the GDP growth rate of Chongqing was 10.7%, 4% higher than the national average. The urbanization rate 

is expected to rise from 60.9% in 2015 to above 75% in 2030 according to the Population Development Plan 

of Chongqing City (2016-2030) issued by the Chongqing Municipal Government in 2017. This suggests 

there will be a high volume of building practices in Chongqing in the future. The steel and automobile 

industries are the economic pillars for Chongqing, demonstrating that Chongqing possesses strong 

manufacturing capability needed for the promotion of prefabricated building technologies (Arif & Egbu, 

2010; Pan et al., 2011). In 2016, the Chongqing Municipal Government issued Guidance on Accelerating 

( 1)

1

( * )
N

k k k

i ji

j i
j

A f A A W
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the Industrial Innovations for Applications of Steel Structure to promote steel-structure prefabricated 

buildings. However, the construction industry in Chongqing is still dominated by the traditional onsite 

construction methods, partially resulting in the issues of poor quality, excessive time and the mismatch 

between design and construction (Pan et al., 2011). The total floor space under construction in Chongqing 

was 219.7 million m2 in 2015 (CQSB, 2015). According to the Chongqing Urban-rural Construction 

Committee, the buildings adopting prefabricated building technologies only account for less than 5% of new 

building construction in 2016.

Six categories of stakeholders including government, developers, designers, contractors, manufacturers 

and researchers in Chongqing were chosen because of their critical role in prefabrication (Li et al., 2014; 

Teng et al., 2017; Xue et al., 2017). Despite great influence exerted on prefabricated buildings (Li et al., 

2014), house buyers were not chosen due to their limited knowledge and expertise. Each interview was 

conducted with one interviewee, providing participants with more freedom and flexibility so that they can 

discuss the problem from their own knowledge and perceptions (Obiedat et al., 2016). In total, 39 individuals 

agreed to participate in the interviews. The profiles of interviewees were presented in Table 1. 53.8% of the 

interviewees had more than 5 years of experience in the field of prefabricated building technologies, 

including 17.9% of interviewees with more than 10 years of experience. 12.9% of the interviewees are from 

government agencies, and other interviewees represent developers (15.4%), contractors (20.5%), designers 

(17.9%), manufacturers (15.4%) and researchers (17.9%). 

<Insert Table 1 here>

The semi-structured interviews took place during September and October 2017. Each interview lasted for 

at least 35 minutes. Before each interview, the methodology of FCM was explained to the interviewees. 

Once the participants understood the process of FCM, they were asked to list impeding factors to the 

adoption of prefabricated building technologies. They were given sufficient time to contemplate any factors 

they considered important (Bosma et al., 2017). Then, they were required to describe the type of 

interconnected relationships among these factors and assess the strength of these relationships. Arrows were 

used to indicate how these factors interrelate and the fuzzy set of the linguistic variables were adopted to 

describe the strength of the impact that one factor has on the other. With reference to similar research, e.g., 
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Kyriakarakos et al. (2014) and Büyüközkan et al. (2012), the adopted linguistic variables comprise: 

negatively very strong, negatively strong, negatively medium, negatively weak, zero, positively weak, 

positively medium, positively strong and positively very strong.

Data analysis

The data analysis proceeds based on the framework shown in Fig.1. There are five main steps in the data 

processing process, as marked in Fig. 1. Firstly, by using in-depth qualitative interviews, factors impacting 

the diffusion of prefabrication technologies were identified, along with the weights of the relationships 

amongst factors. The identified factors and weights obtained from each interviewee were used to construct 

the individual FCM. Then, the various individual FCMs were aggregated into stakeholder-grouped FCM 

through the approach of qualitative condensation. 

<Insert Fig. 1. here>

Fig.1. Research procedure and methodologies

Regarding the stakeholder-grouped FCMs, two analyses were conducted, namely the comparative 

analysis of graph indices (the density and complexity indices), as well as the identification of the most 

frequently mentioned factors by each stakeholder group, which help to identify the most important 

impediments to the diffusion of prefabricated building technologies (Zhang et al., 2013). In this study, the 

most frequently mentioned factors were those mentioned by at least two-thirds of interviewees in a 

stakeholder group. The stakeholder-grouped FCMs were then aggregated into a collective FCM through 

condensation. Three types of analyses were subsequently employed to examine the collective FCM, namely 

the graph indices analysis, centrality indices analysis and the FCM simulations. The centrality indices 

analysis helps to identify the most central factors in the collective FCM. These factors are the basis of the 

following FCM simulations, which produce a series of “what-if” scenarios to test the effects of various 

interventions to promote prefabrication. The various interventions were reflected by the proportional 

changes made to the identified most central variables in the collective FCM. After the simulation, 

comparisons between the new state and the previous state of the FCM variables reveals the influence of the 

intervention on the system outcomes. The intervention that could lead to the largest absolute value of the 
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difference between the new state and previous state of the FCM variables is the most effective intervention 

to promote the diffusion of prefabrication technologies. 

Results 

Stakeholder-grouped FCMs

The contents mentioned by interviewees were classified and grouped into 13 factors from three 

perspectives namely the technological, organizational and environmental perspectives, as shown in Table 2 

(Xue et al., 2017). Factors related to technology include cost, logistics, quality and aesthetics, and the 

organizational factors impacting prefabrication include manufacturing capability, project process, project 

management, knowledge and expertise, and business model. Apart from these factors which could be 

influenced by the enterprises related to prefabrication, some external factors could also impact the diffusion 

of prefabrication technologies such as market demand, social climate, codes and standards, as well as policies 

and regulations. 

<Insert Table 2 here>

After the completion of each interview, one FCM was created for each interviewee, resulting in a total 

of 39 FCMs providing a direct understanding of each participant’s knowledge and perceptions. The number 

of citations of each factor in these FCMs revealed the top 7 most frequently mentioned factors in each 

stakeholder group, as shown in Table 3. In general, the most frequently mentioned factors were mainly 

related to the technological and environmental aspects. Three factors, namely cost, market demand, and 

policies and regulations, were most frequently mentioned by all stakeholder groups. This suggests there is a 

common perception that the prefabricated building technologies are strongly affected by these factors. For 

S1 (the government), S2 (developers), S4 (contractors) and S5 (researchers), the factors were relatively 

evenly distributed in the three aspects, while for S3 (designers) and S6 (manufacturers), the factors in the 

technology and environment aspects were more frequently mentioned than other aspects. Some factors were 

ranked in the top 7 most frequently mentioned factors only in one stakeholder group, e.g., aesthetic 

performance by S3 (designers), and business model by S2 (developers). 
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<Insert Table 3 here>

The stakeholder-grouped FCMs are composed of the factors and their relationships. According to Azadeh 

et al. (2014), only the interactions between factors with the value more than 0.05 or less than -0.05 need to 

be retained in the FCM. The graph indices obtained from the stakeholder-grouped FCMs are presented in 

Table 4. It is interesting to note that there is a similar structural property existing in all the stakeholder groups. 

Specifically, the number of transmitter concepts in all stakeholder groups was 1, and the number of receiver 

concepts in all stakeholder groups was 0. Similarly, the number of ordinary concepts in all stakeholder 

groups was 12. The high number of ordinary factors indicates that most factors have mutual relationships 

with each other, namely being influenced by and influencing other factors simultaneously (Christen et al., 

2015).

<Insert Table 4 here>

Collective FCM

The stakeholder-grouped FCMs were further combined into the collective FCM. The UCINET software 

visualizes the collective FCM as shown in Fig 2. The last column of Table 4 shows the graph indices of the 

collective FCM. There is only one transmitter factor and the rest are all ordinary factors. This is consistent 

with all the stakeholder-grouped FCMs. The density equals to 0.308, which indicates the connectivity among 

factors was moderate. 

<Insert Fig. 2. here>

Fig.2. The visualization of collective FCM

As shown in Table 5, all factors in the technology aspect have a higher value of in-degree than that of 

out-degree, which indicates that these factors are more likely to be influenced by other factors rather than 

influencing other factors. Thus, the technological factors have a receiver character. On the contrary, all 

factors in the organizational aspect have an equal or higher value of out-degree than that of in-degree, 
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suggesting they are more of a transmitter character. As for the factors in the environmental aspect, some of 

them are more influenced by other factors while the others such as F13 (policies and regulations) influence 

other factors more. A closer examination of the collective FCM reveals that the connections starting from 

organizational factors largely end on technological factors, and the connections end on organizational factors 

are mainly from factors in the environmental aspect. This indicates that the organizational factors can exert 

influence on the technological factors and are also affected by factors in the environmental aspect. 

<Insert Table 5 here>

As shown in Table 5, three factors have high centrality indices, namely F8 (knowledge and expertise), 

F1 (cost) and F13 (policies and regulations). Meanwhile, with the centrality indices higher than the mean 

(0.59), three factors can also be regarded as central factors, namely F10 (market demand), F6 (project process) 

and F3 (quality). Thus, there are a total of six important factors, playing a central role in the collective FCM. 

These six central factors were chosen to run the ‘what-if’ simulations. The initial steady state was obtained 

by multiplying the adjacency matrix with the initial steady state vector. For the simulations, these six factors 

were set to 0 one by one to represent that the corresponding barrier was eliminated, which is an intervention, 

resulting in six simulations. By using the software of MATLAB, the steady state of each “what-if’” scenario 

was obtained, as shown in Table 6. By summing up the DF of all the factors in each “what-if’” scenario, the 

accumulative effect of each intervention on other 12 factors was obtained, as shown in the last row of Table 

6. It can be concluded that changing policies and regulations has the largest accumulated effect on other

factors. Similarly, strengthening knowledge and expertise, and market demand also has strong effects on 

other factors. By contrast, at this stage it seems emphasizing cost, quality and project process has a relatively 

low 

<Insert Table 6 here>

Specifically, in the “what-if” scenario of F13 (policies and regulations), the simulation shows tackling 

the policy barriers could lead to relatively strong changes in F12 (codes and standards), F8 (knowledge and 

expertise) and F9 (business model), as well as moderate changes in F2 (logistics), F5 (manufacture 
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capability), and F6 (project process). Following stressing policies and regulations, enhancing market demand 

generate the second strongest cumulative effects on promoting prefabricated building technology. The 

simulation shows that after this intervention, the higher decreasing barriers are F9 (business model), F8 

(knowledge and expertise), and F5 (manufacture capability), followed by F1 (cost). Similarly, in the 

simulation of F8 (knowledge and expertise), tackling knowledge barriers could lead to relatively strong 

changes in F12 (codes and standards), F2 (logistics), and F4 (aesthetic performance), and relatively moderate 

changes in F3 (quality), F7 (project management), and F11 (social climate). It seems that working on policies 

and regulations could alleviate the organizational and environmental barriers more than the technological 

barriers, while enhancing market demand generate strong effects on technological and organizational 

barriers. By contrast, improving the knowledge and expertise alleviate the technological barriers more. The 

other three “what-if” scenario simulations show a relatively weak effect. Specifically, regarding the 

simulation of project process, large effects are shown on the barriers of F2 (logistic), F4 (aesthetic 

performance), and F7 (project management). Similarly, improving quality and reducing cost both could 

decrease the bottlenecks regarding to F10 (market demand) and F11 (social climate). This revealed that 

addressing the issue of “cost” and “quality” can alleviate the barriers in the environmental aspect.

Discussions and implications

The results shown in Table 3 indicate three factors, namely cost, marker demand, policies and regulations, 

were perceived by all stakeholders as important barriers to the diffusion of prefabricated building 

technologies. The importance of market demand was overlooked by previous studies, e.g., Zhang et al. 

(2014), Polat (2010), Jaillon and Poon (2008), Pan et al. (2007) and Zhai et al. (2014). As Mao et al. (2015) 

highlighted, it is the market demand that directly influences the popularity of construction technology. Lack 

of market demand prohibits stakeholders to adopt innovative approaches to construction (Chang et al., 

2017a). Furthermore, it is important to note that some barriers were particularly critical for certain 

stakeholders. For instance, aesthetic performance was only mentioned by S3 (designers) frequently, and 

business model was only mentioned by S2 (developers) frequently. Market demand was the most frequently 

mentioned factor by S1 (government) and S6 (manufacturer), but it is at the bottom of the most frequently 

mentioned factor lists of S3 (designer) and S4 (contractor). Stakeholders tend to concern more about the 

inhibitors impeding their own activities with less attention to other factors (Zhao et al., 2016a). Due to their 
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different role and functions, stakeholders could encounter different impediments leading to diverged 

perceptions on the prefabricated building technology. This leads to a challenge, namely making effective 

measurements to motivate all the stakeholders to adopt prefabricated building technology. As suggested by 

Zhang et al. (2013), a participatory system should be developed to facilitate the communication among the 

related stakeholders, so that a shared vision and understanding of prefabricated building technology could 

be formed. 

 A large number of ordinary factors was found in the six stakeholder-grouped FCMs as well as the 

collective FCM shown in Table 4. This suggests that these barriers interact with each other, which reaffirmed 

the necessity of exploring the interactions among barriers. The visualization of the collective FCM yields a 

detailed picture of how these barriers interact. It is interesting to note that the barriers in the technological 

aspect are mainly affected by the organizational barriers, which were influenced by environmental barriers. 

And the environmental barriers were largely affected by barriers in the technological aspect. This indicates 

that the interactions among these ordinary factors present a vicious cycle. For instance, barriers in the 

technological aspect, e.g., high cost and low quality, were perceived to be affected by organizational barriers 

such as low manufacturing capability, which was affected by environmental barriers e.g. low market demand, 

which in turn was influenced by the high cost and low quality. Thus, the interactions amongst barriers lead 

to a vicious cycle inhibiting the diffusion of prefabricated building technology. 

As suggested by Christen et al. (2015), the anchoring points to weakening the vicious cycles should be 

the factors that are not part of the cycle, namely the transmitter. Only one transmitter was found in the 

collective FCM: policies and regulations. This highlights the leading role of the government in promoting 

the adoption of prefabricated building technologies. In other industries, the clients may take the leading role 

in innovation, as the competitive market drives enterprises to find new solutions to remain competitive 

(Winch, 1998). For instance, it is the clients that take the leading role in the markets of motor cars, electrical 

goods, etc., where if the enterprises do not innovate, they would fail or be taken over by others who innovate 

(Courtney, 2009). The unique features of buildings, such as the localization of its market create lock-in 

mechanisms favoring the traditional approach of construction (Courtney, 2009; Reichstein et al., 2005; Xue 

et al., 2017). As a result, the adoption of prefabricated building technologies might be considered of adding 

risks to the well-established practice. Therefore, the promotion of prefabricated building technologies solely 

based on market-driven mechanisms might be limited. Indeed, as Mao et al. (2015) argued, the few related 
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policies and schemes proposed for prefabricated buildings issued in China have mostly failed in their 

execution due to the voluntary nature of the schemes. Therefore, it is suggested that mandatory regulations 

and policies could be studied and issued by the government. 

Six important factors that play a central role in the collective FCM were identified based on their 

centrality indices as shown in Table 5. By conducting the “what-if” scenario simulations of these six central 

factors, the effects of these interventions were shown in Table 6. Two most critical factors were identified 

by the simulations, namely policies and regulations, as well as knowledge and expertise. Even though 

improving knowledge and expertise generates a weaker cumulative effect than enhancing the market demand, 

it shows a more holistic effect on more barriers to prefabricated building technologies. For instance, the 

“what-if” scenario of simulating knowledge and expertise reveals that improving knowledge and expertise 

can significantly improve the logistic and aesthetic performance of prefabricated buildings. By improving 

policies and the knowledge base, the barriers in all the three dimensions, namely technology, organization 

and social environment, can be alleviated to some degree. For instance, by improving knowledge and 

expertise in the industry, the barriers of F2, F3, F4, F5, F7, F11, F12 can all be mitigated. 

Therefore, measures should be undertaken to study and issue effective policies, as well as enhance the 

knowledge base and expertise for prefabricated building technologies. It is recommended that the 

government should allocate monetary and human resources to investigate the current status of prefabricated 

building development in China and formulate specific policies to facilitate industry development. For 

instance, the demonstration projects of prefabricated buildings could be developed, which could become a 

platform for information exchange and learning for prefabricated buildings and attract a broader scope of 

public and enterprises to get interested in prefabricated building technologies. Research and development 

funding could be provided to relevant academic institutions and enterprises to jointly conduct academic 

research on prefabricated building technologies, as well as to explore the way to commercialize these 

technologies in the market. 

However, strengthening the policies and knowledge base is not enough for promoting prefabricated 

buildings, as this study reveals that some barriers cannot be adequately addressed by these measures, such 

as the barriers relevant to F1 (cost) and F10 (market demand), as shown in Table 6. The simulations identify 

that enhancing market demand is more effective than policies and regulations to reduce the cost of 

prefabricated building technologies and improving the quality of prefabricated buildings, which could, in 
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turn, increase the market demand. Therefore, the vicious cycle could be turned into a virtuous circle if 

strategies could be developed to either enhance the market demand or improve the quality and reduce the 

cost of prefabrication, as they are mutually reinforced. It could be studied whether incentives and subsidies 

can be given to developers to use prefabrication technologies, or the clients and customers who purchase 

these projects, so that the market demand for prefabrication technologies can be stimulated. As market 

demand and cost/quality are mutually reinforced, once the market demand is increased, it is expected that 

the cost could be reduced, and quality could be improved due to the market competition mechanisms. 

To summarize, this study provides the following practical suggestions to promote prefabricated building 

technologies.

 Establish an information exchange platform for prefabrication to enable the communications between

different stakeholders. This study reveals stakeholders tend to concern more about the inhibitors

impeding their own activities with less attention to other factors. An information exchange platform

could help to eliminate information asymmetry and facilitate the formation of a shared vision for

prefabrication. Such a platform could also facilitate the dissemination of cutting-edge knowledge on

prefabrication, such as integrating building information modeling into prefabrication (Lu et al., 2017).

 Mandatory policies and regulations on prefabrication could be studied and issued by the government.

This study reveals the factor of policies and regulations is the only transmitter in the collective FCM,

impacting the vicious cycle formed by other factors. Previous studies such as Mao et al. (2015) have

indicated the deficiency of the voluntary government schemes for prefabrication in China. Therefore,

mandatory schemes for prefabrication should be now considered. China has successfully used different

kinds of mandatory schemes to significantly promote the renewable energy industry (Zhao & Chang,

2013; Zhao et al., 2016b). Relevant lessons could be drawn on to promote prefabrication.

 Knowledge and expertise on prefabrication need to be strengthened through various means. This study

reveals improving knowledge and expertise generates a holistic effect on various barriers to

prefabrication. As the knowledge of prefabricated building technologies currently has not been given

priority by the Chinese higher education institutions, it is imperative to develop new subjects and update

the academic curricula to include prefabrication knowledge in civil engineering and architecture

programs. Professional training programs should also be made available for practitioners.

 Stimulate market demand is the key to reduce production cost and improve the quality of prefabrication.
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Through FCM simulations, this study reveals enhancing market demand is critical to reducing the cost 

and improving the quality of prefabricated building technologies. The government could consider 

providing financial supports or economic incentives such as low-interest loans and tax reduction for 

developers and customers to offset the additional cost incurred by the development or purchase of 

prefabricated buildings. This could stimulate market demand, which leads to increasing competition 

among the companies. Driven by market competition and economies of scale, companies will then 

improve the quality and reduce the production cost of prefabrication. 

Conclusions 

This study explored the interactions of factors impeding the adoption of prefabricated building 

technologies by taking China as an example. The perceptions on prefabricated building technologies from 

six critical stakeholders, namely the government, developers, designers, contractors, manufacturers and 

researchers, are investigated in this study using FCMs, which produce six stakeholder-grouped FCMs and 

the collective FCM.  

Firstly, 13 factors impeding the diffusion of prefabrication were identified using in-depth interviews with 

39 participants from six critical stakeholders. Then, by aggregating the weights of the relationships among 

these factors, six stakeholder-grouped FCMs, as well as the collective FCM, were generated. The density 

index, complexity index, and centrality index of FCMs were examined. Finally, by conducting the “what-if” 

scenario simulations of six critical factors, this study simulated the effectiveness of different intervention 

strategies on alleviating barriers to prefabrication. The research results imply that it is necessary to 

understand all relevant stakeholders’ perceptions. Three factors including market demand, cost and policies 

and regulations have been mentioned by all stakeholder groups in this study. However, these factors were 

ranked differently by stakeholder groups, implying that they perceive the barriers to prefabricated building 

technologies differently. The collective FCM shows the complex relationships among these barriers, and 

therefore without conducting simulations, it is difficult to evaluate tackling which barrier could generate the 

strongest promotion effect on prefabricated buildings. The simulation results show that improving policies 

and regulations could generate the strongest cumulative effect on alleviating other barriers, followed by 

strengthening market demand and knowledge and expertise. It is suggested that the leading role should be 
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played by the government through effective policies and regulations, while other measures addressing factors 

such as knowledge and expertise are also necessary. 

Theoretically, this study explored the complexity involved in the diffusion of prefabricated building 

technologies. This study complements previous studies solely identifying and ranking the factors impeding 

prefabrication, by analyzing the interactions among these factors through FCM simulations, which has not 

been employed in previous studies on prefabrication. Practically, this study provided four policy 

recommendations based on rigorous FCM simulations, namely establishing an information exchange 

platform, considering mandatory policies and regulations, strengthening knowledge and expertise through 

various means, and stimulating market demand to reduce cost and improve quality of prefabrication. 

This study provides an in-depth understanding of the interactions among barriers to the diffusion of 

prefabricated building technologies by using FCM approach. One limitation is that the data of this study is 

from China where prefabricated buildings are in the initial development stage and thus may face stronger 

barriers compared to the countries where prefabricated building technologies have become more accepted. 

Future studies could be conducted to investigate regions in other countries so that international comparisons 

for promoting prefabricated building technologies could be explored. 
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Table 5. The centrality indices for the collective FCM 

No Dimensions Condensed Factors In-degree 

centrality 

Out-degree 

centrality 

Centrality Character 

F1 Technology Cost 0.667 0.167 0.833 R 

F2 Logistics 0.333 0.083 0.417 R 

F3 Quality 0.500 0.167 0.667 R 

F4 Aesthetic performance 0.333 0.167 0.500 R 

F5 Manufacturing capability 0.250 0.250 0.500 T=R 

F6 Organization Project process 0.250 0.417 0.667 T 

F7 Project management  0.167 0.333 0.500 T 

F8 Knowledge and expertise 0.250 0.667 0.917 T 

F9 Business model 0.167 0.250 0.417 T 

F10 Environment Market demand  0.417 0.333 0.750 R 

F11 Social climate  0.333 0.083 0.417 R 

F12 Codes and standards  0.167 0.167 0.333 T=R 

F13 Policies and regulations  0.000 0.833 0.833 T 

Notes: T refers to the factors have more of a transmitter character (out-degree＞in-degree), R refers to the 

factors have more of a receiver character (out-degree < in-degree).  
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