Exploring the Limits of GPGPU Scheduling In Control Flow
Bound Applications

ROMAN MALITS, Technion-IIT

EVGENY BOLOTIN, Intel Corporation

AVINOAM KOLODNY, Technion-IIT

AVI MENDELSON, Microsoft R&D Israel and Technion TCE Center

GPGPUs are optimized for graphics, for that reason the hardware is optimized for massively data parallel ap-
plications characterized by predictable memory access patterns and little control flow. For such applications’
e.g., matrix multiplication, GPGPU based system can achieve very high performance. However, many gen-
eral purpose data parallel applications are characterized as having intensive control flow and unpredictable
memory access patterns.

Optimizing the code in such problems for current hardware is often ineffective and even impractical since
it exhibits low hardware utilization leading to relatively low performance.

This work tracks the root causes of execution inefficacies when running control flow intensive CUDA
applications on NVIDIA GPGPU hardware.

We show both analytically and by simulations of various benchmarks that local thread scheduling has
inherent limitations when dealing with applications that have high rate of branch divergence. To overcome
those limitations we propose to use hierarchical warp scheduling and global warps reconstruction. We imple-
ment an ideal hierarchical warp scheduling mechanism we term ODGS (Oracle Dynamic Global Scheduling)
designed to maximize machine utilization via global warp reconstruction. We show that in control flow bound
applications that make no use of shared memory (1) there is still a substantial potential for performance
improvement (2) we demonstrate, based on various synthetic and real benchmarks the feasible performance
improvement.

For example, MUM and BF'S are parallel graph algorithms suffering from significant branch divergence.
We show that in those algorithms it’s possible to achieve performance gain of up to x4.4 and x2.6 relative to
previously applied scheduling methods.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors); C.4 [|: Performaance of Systems

General Terms: Design, Algorithms, Performance
Additional Key Words and Phrases: GPGPU, parallel machines, scheduling algorithm

ACM Reference Format:

Malits, R., Bolotin, E., Kolodny, A., and Mendelson, A. 2012. Exploring the limits of GPGPU scheduling in
control flow bound applications. ACM Trans. Architec. Code Optim. 8, 4, Article 29 (January 2012), 22 pages.
DOI = 10.1145/2086696.2086708 http:/doi.acm.org/10.1145/2086696.2086708

This project and the research leading to these results have received funding from the European Community’s
Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 248647.

Authors’ addresses: R. Malits and A. Kolodny, EE Department, Technion-IIT, Israel; email: romanma@
tx.technion.ac.il; kolodny@ee.technion.ac.il; E. Bolotin, Intel Corporation, Haifa, Israel; email: evgeny.
bolotin@intel.com; A. Mendelson, Microsoft R&D Israel and Technion TCE Center, email: avim@microsoft.
com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 1544-3566/2012/01- ART29 $10.00

DOI 10.1145/2086696.2086708 http://doi.acm.org/10.1145/2086696.2086708

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:2 R. Malits et al.

1. INTRODUCTION

GPGPU calls to extend the use of GPUs for general purpose applications. Accordingly,
the graphics hardware was extended and new programming models such as CUDA
[NVIDIA 2009] and OpenCL [Munshi 2008] were introduced and enabled the use of
GPUs for wide verity of applications [Che et al. 2009].

Current GPGPU programming languages, such as CUDA, expose GPU micro-
architectural internals. This allows programmers to perform fine grained code level
optimizations by explicitly specifying and hand-tuning available application thread
level parallelism to the specific hardware.

Such optimizations allows to achieve high performance in a class of applications
that can be expressed as massive parallel with very simple control structure and
dependencies between the threads, since such applications naturally fit the current
GPGPU design philosophy. However, for many other applications; e.g., those that have
intensive control flow and unpredictable memory access patterns, optimizing the code
for current GPGPU hardware is often impractical resulting in severe drop in the system
utilization and lowered performance [Fung et al. 2007; Bakhoda et al. 2009; Che et al.
2008; Dehne and Yogaratnam 2010; Meng et al. 2010].

In this paper we explore the limitations and the root causes of execution inefficacies
in several classes of CUDA applications. The current GPGPU architectures assume
that the software is highly parallel and can take advantage of two levels of parallelism;
(1) TLP (task level parallelism), that assume that each phase of the execution can
be divided into independent parallel parts and (2) inner thread parallelism that take
advantage of the data parallelism within each task. While the TLP is mainly used
to mitigate stalls caused by long latencies, usually related to memory access time,
the inner thread parallelism is supported via the warp scheduling and SIMD-like
hardware. In order to achieve best performance, one should carefully balance these
two levels of parallelism. This task can be quite challenging in particular when threads
within the task use complex control flow as in Harish and Narayanan [2007], Schatz
et al. [2007], Billconan and Kavinguy [2008], Maxime [2010], and Michalakes and
Vachharajani [2003]. As indicated in Fung et al. [2007], Bakhoda et al. [2009], and
Meng et al. [2010], the scheduling mechanisms in GPU hardware such as NVIDIA
G200 or even in Fermi incurs several inefficiencies associated with branch divergence
and scheduling in the resolution of blocks.

Current NVIDIA’s hardware is built out of several streaming multiprocessors (SMs)
and employs scheduling optimizations local to each SM. This approach is effective when
control flow is simple but, as we will show later on, when dealing with applications
that have high rate of branch divergence the use of local optimizations have inherent
limitations.

In this work we analyze those scheduling related bottlenecks analytically and
through simulations by using a modified version of the GPGPU-SIM [Bakhoda et al.
2009] cycle accurate simulator. To optimize the performance of control flow bound ap-
plications we propose a novel approach based on hierarchical warp scheduling and
global warp reconstruction. We extend the GPGPU-SIM simulation and implement
an ideal hierarchical scheduling mechanism we termed ODGS (Oracle Dynamic Global
Scheduling). This scheduler is designed to maximize the amount of effective parallelism
in the system through the use of global warp reconstruction.

We use ODGS to study the potential for performance improvement if global warp
reconstruction is used. We show by simulations of synthetic and real benchmarks
that there is still a substantial potential for performance improvement via a more so-
phisticated global scheduling approaches especially when targeting control flow bound
applications that make no use of shared memory.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:3

For example, MUM and BF'S are parallel graph algorithms suffering from significant
branch divergence. We show that in those algorithms it’s possible to achieve perfor-
mance gain of up to x4.4 and x2.6 relative to previously applied scheduling methods in
ideal conditions.

We perform a sensitivity analysis and indicate that implementing such a hierarchical
global warp scheduling in future hardware is feasible, though the detailed implemen-
tation of such hardware is beyond the scope of this paper and is left for future work.
Our findings indicate that future graphic processor that is built to allow global warps
reconstruction and thread migration between SMs can ease the optimization problem
and allow to improve the performance of applications that otherwise would not be able
to efficiently run in GPGPU environment, or at least will require spending long time
at the software optimization phase. Those findings manifest for the need for future
research in the field of global thread scheduling and migration in GPGPU hardware.

The rest of the paper is organized as follows: Section 2 presents an analytical study
on the various phenomena that hamper performance of control flow intensive appli-
cation programs running on GPGPU. Section 3 presents experimental study involving
different scheduling methods and CUDA benchmarks. Section 4 discusses previous
work and Section 5 presents conclusions and future work.

2. CONTROL FLOW INFLUENCE ON PERFORMANCE

Applications with abundant control flow exhibit some special bad behaviors which
result in lowered utilization of the GPGPU hardware. This section presents a detailed
study of those phenomena which hamper the application performance.

2.1. Baseline Compute Model

CUDA extends C programming language by allowing the programmer to define kernels
(also called shader programs). In the CUDA programming model the GPGPU is treated
as a co-processor to the CPU. CUDA program execution is started on the CPU (host).
At some point a data parallel portion of the application is sent for execution to the
GPGPU (device) as multi-threaded kernel. This can happen multiple times until the
program completes.

The design goal of modern GPU architectures such as NVIDIA G200 and Fermi is to
achieve high performance in massively data parallel applications while using relatively
inexpensive, in term of complexity and power, hardware. To achieve this goal, GPGPUs
use multiple streaming multiprocessors (SMs) for parallel execution with each SM
being responsible for a portion of the work. SMs use SIMD instruction scheduling
which allows efficiently handling applications with extensive data level parallelism by
amortizing data-independent control hardware across multiple scalar pipelines.

The kernel is comprised of a large group of threads called grid, with each thread
having unique ID. When launching the kernel, the grid is divided by the programmer
into equally shaped thread groups called blocks. The system can assume that threads
belonging to different blocks are always independent of each other. Threads that belong
to the same block can synchronize their execution and collaborate through fast shared
memory.

Current hardware schedules work to SMs at the granularity of blocks. If resources
permit, multiple blocks can be assigned to a single SM, thus sharing a common pipeline
for their execution. Per-block resources are not freed until all the threads within the
block have completed execution.

Threads within a block are scheduled to the pipeline in a fixed group of 32 threads
called warp. All threads in a given warp are processed in “lock-step” in parallel with
a single instruction on different data values. Fine-grained multithreading is used to
mask stalls of warps waiting on long-latency events. When a thread is blocked by a

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:4 R. Malits et al.

Common/ 1111

—» c c
Threads | —p» 8 < A 8 <
inWarp | » |ES ER
-+ |38 8 8
>
cycles
(a) (b)

Fig. 1. (a) branch divergence (b) utilization loss caused by warp serialization upon conditional branch.

memory request, the corresponding warp is removed from the pool of “ready” warps
allowing active warps to proceed.

In this work we use GPGPU-SIM v2.1.1b with the same GPGPU configuration used
in Bakhoda et al. [2009].

2.2. Branch Divergence

Branch divergence occurs when threads inside a warp scheduled to the SIMD pipeline
take different paths due to conditional branch. Due to SIMD restrictions only one path
of the branch can be executed at a time per decoder, for that reason branch divergence
creates a control flow hazard.

To deal with this situation the hardware serializes the execution of warps with
diverged threads. Serialization is implemented by means of predication to mask off
threads taking the branch in the alternate direction. This approach allows to support
branch divergence on SIMD hardware at the cost of lowered utilization. In Fermi, each
SM has two decoders which allow to improve performance on the expense of a severe
increase in SM hardware complexity, cost and needed power.

In this work we show that local SM scheduling optimizations have inherent limi-
tations which prevent them to fully recover the performance loss caused by branch
divergence.

Figure 1 presents a simple branch divergence example: warp diverges with half of
the threads taking path A and the others follow path B.

It is easy to see that during the execution of parts A and B of the code, utilization
is only 50%. When execution path is long enough, warp may have multiple divergence
points and so the execution time may be exponential with the number of diverged
branches.

2.3. Execution Path Variance

Branch divergence might cause significant execution path variance between warps.
Some warps might have short execution path and others very long. Such an imbalance
can be another source for major inefficiencies and significant under-utilization of the
pipeline even if the number of warps that have branched to long execution paths is low.
This situation is illustrated in Figure 2.

In this example, a single block is scheduled to the SM. In this block one warp has
long execution path B and all the remaining warps have short execution path A. If
warp with path B is still running while all the warps with short path A have finished,
warp executing path B will remain the only warp running in the SM which incurs a
major utilization penalty.

2.4. Ability to Hide Memory Access Latency

GPGPUs are an example of a many-core design that adopted the use of fine-grained
multi-threading to better tolerate memory and pipeline latencies.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:5

O PathA
-p W PathB Empty Pipeline Stages
Warps U T [
in SM Pipeline with [l
» A
6 Execution L L
- I HH
Execution Path ‘ >
Xecution Fai é n cycle
(a) (b)

Fig. 2. (a) Execution path length variance caused by branch divergence (b) Impact on the runtime pipeline
utilization.

Each SM has a pool of warps. During the kernel execution many different warps
can co-exist in the pipeline of each SM at the same time. When threads within a warp
issue a memory request, this warp is stalled inside the memory unit, meanwhile others
warps are allowed to continue their execution, keeping the pipeline utilized. When
threads inside the memory unit obtain their data, they write it to the register file and
resume execution in the pipeline.

This organization allows more efficient use of the pipeline since long memory latency
can be hidden, given enough “live” warps are available inside the SM.

NVIDIA made an important linkage between the internal structure of the appli-
cation and the internal structure of the graphics hardware. The application threads
are divided into blocks and the system can assume that threads belonging to different
blocks do not share state and so can run independently of each other on different SMs,
which are also independent of each other.

During the runtime, multiple blocks can be scheduled to the same SM, this number
depends on the resources needed for each block and resources available to the SMs.
After block is scheduled, its resources are freed only when all the threads within the
block have finished. This limitation, coupled with execution path variance can severely
undermine the SM ability to hide long memory accesses. If a significant number of
warps in the SM has finished and few warps with long execution paths continue to
run and prevent resources reuse, the SM will have no way to hide long memory access
latency.

2.5. Choosing Optimal Block Size

In current architecture, threads in a grid are segmented and scheduled to SM’s in the
resolution of blocks. Only when all the threads within the block have finished, resources
assigned to this block can be reused and another block can be scheduled to the SM.
This type of scheduling is not optimal for a number of reasons.

CUDA programming model allows the programmer to optimize kernel execution
by choosing a handful number of parameters such as the size of the block. Choosing
optimal parameter can be quite challenging since in many cases the programmer need
to take into consideration many conflicting factors. When choosing the block size we
would like to increase the number of blocks assigned to a SM in order to increase the
parallelism within the SM, but on the other hand, all resources belonging to the SM
are shared among the different blocks so that increasing the number of blocks per SM
reduces the amount of resources each block can get.

For optimal performance the choice must take into consideration factors such as the
number of registers needed for each thread, thread execution path length, number of
control points, number of blocks that can be scheduled to SM simultaneously, number
of blocks relative to SM’s number, available shared memory, synchronization and other
technical features of the hardware.

Obviously, choosing the right block size is crucial for good performance.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:6 R. Malits et al.

Table I. Benchmarks Used in the Study

Benchmark | Grid Size | Block Size | Blocks/SM | Total Threads | Branches Number | Barriers
BFS (128,1,1) (512,1,1) 2 65536 4 No
MUM (782,1,1) (64,1,1) 3 50000 15 No
RAY (16,32,1) (16,8,1) 3 65536 20 Yes
NN (6,28,1) (13,13,1) 5 28392 4 No
WP 9,8,1) (8,8,1) 3 4608 61 No

Experiments showed that even for relatively simple programs that can be developed
in a few hours, the optimization process might take weeks. As GPGPU evolves, choosing
the optimal block size is becoming increasingly complex, each generation of hardware
introduces changes and optimizations made for one generation of GPU may not fit to
the new one.

As mentioned before, when branching is involved various length execution paths
might occur. Resources of threads that finish early could theoretically be used however
they are locked since the block hasn’t finished yet. This in turn reduces the ability to
hide long memory accesses since less ready warps are available in the SM.

For most applications, even if the initial load assignment of thread groups to SM
was perfectly done at the allocation time, at final execution stages of the grid, some
SMs stay inactive and underutilized. In different situations such as when using small
grids this can lead to significant performance loss. Although this issue can be partially
addressed in Fermi by executing multiple kernels in parallel, not every application can
actually use it.

3. EVALUATION AND DISCUSSION

Here we present simulation results showing the ability of various scheduling methods
to mitigate the performance loss caused by branch divergence.

The study was performed using our modified version of the GPGPU-SIM [Bakhoda
et al. 2009], a publicly available open source cycle-accurate performance simulator of
an NVIDIA GPU.

First we describe the CUDA benchmarks we used in this study and lay out the
various scheduling methods we checked. As a baseline, we perform a very detailed
runtime analysis of MUM benchmark and discuss the limitations of local scheduling
methods when dealing with control flow bound applications.

Then we discuss possible ways to mitigate performance loss caused by branch di-
vergence by using our new proposed global hierarchical warp scheduling mechanism
termed ODGS (Oracle Dynamic Global Scheduling). First we check the performance
improvement potential by using ODGS on synthetic benchmark and then compare
ODGS to other scheduling mechanisms in order to estimate the potential performance
benefits of such scheduling approach.

3.1. Common CUDA Benchmarks

This section uses benchmarks listed in Table I. Those benchmarks are a subset of the
benchmarks used in Bakhoda et al. [2009]. We selected those programs from the suit
that have abundant control-flow, in addition none of the benchmarks are using shared
memory.

BFS. [Harish and Narayanan 2007] performs breadth-first search on a graph. Each
node in the graph is mapped to a different thread. We perform breadth-first search on
a random graph with 65,536 nodes and an average of 6 edges per node.

MUMmerGPU. [Schatz et al. 2007] uses a suffix tree to efficiently find alignments of
short DNA sequences against a reference genome. The tree is traversed from the root

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:7

in a data dependent manner, with each edge holding a variable number of base pairs
which must all match for the traversal to proceed to the next node. Computation is
parallelized by mapping each input string to a thread.

Ray Tracing (RAY). [Maxime 2010] is using up to 5 levels of reflections and shadows,
each pixel rendered corresponds to a scalar thread with each thread behavior depending
on what object the ray hits. We simulate rendering of a 256x256 image.

NN. [Billconan and Kavinguy 2008] uses a convolution neural network to recognize
handwritten digits. Pre-determined neuron weights are loaded into global memory
along with the input digits. We simulate recognition of 28 digits from the Modified
National Institute of Standards Technology database of handwritten digits. We used
the updated version of this benchmark described in Che et al. [2008].

Weather Prediction (WP). [Michalakes and Vachharajani 2003] uses the GPGPU to
accelerate a portion of the Weather Research and Forecast model (WRF), which can
model and predict condensation, fallout of various precipitation and related thermo-
dynamic effects of latent heat release. We simulate the kernel using the default test
sample for 10 time steps.

3.2. Compared Scheduling Methods

GPGPU-SIM includes an implementation of three different local scheduling methods.
Those methods represent various levels of optimization with respect to their ability to
deal with branch divergence: basic (POD), sophisticated (DWF) and optimal (MIMD).

Immediate Post Dominator (POD). When threads diverge, there is usually some point
in the future where their execution path is the same again. Immediate post dominator
is the first PC of that path. POD is a mechanism for managing branch divergence within
a warp. This mechanism supports branch divergence by masking off threads within a
warp that take alternative direction and serializing the warp execution. Immediate post
dominator is used as the re-convergence point. This mechanism is closely resembling
the way divergence is handled by G200 hardware. The method is modeled in GPGPU-
SIM using a stack based mechanism described in Fung et al. [2007].

MIMD (Multiple Instruction Multiple Data). In the context of this work, MIMD refers
to architecture similar to our baseline SIMD configuration, except that the scalar
pipelines are allowed to execute different instructions at the same time. This simulates
a situation where every scalar pipeline has its own decoder. Under the perfect memory
model this scheduling algorithm achieves the best possible performance with regard to
the possible local scheduler optimizations.

Dynamic Warp Formation (DWF). This scheduling algorithm is presented in Fung
et al. [2007]. The algorithm proposes to minimize the performance loss caused by
branch divergence by creating a pool of diverged threads within the SM. The local
thread scheduler will then try to form new warps from the local pool of threads and
send them for execution. We used the non lane-aware version of the algorithm with the
majority scheduling policy for the warp selection.

3.3. Detailed Analysis of MUM Benchmark

We take the MUM benchmark as an example for control flow bound application and
present a deep analysis of its runtime behavior. Being a parallel graph algorithm,
this benchmark represents a worst case scenario type of application for the GPGPU
exhibiting both high rate of branch divergence and highly irregular memory access
pattern. In this work we use GPGPU-SIM with the same GPGPU configuration used
in Bakhoda et al. [2009]. Table II summarizes the basic GPGPU parameters.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:8 R. Malits et al.

Table Il. GPGPU-SIM Parameters used in

the Study

Number of shader cores 28
Warp size 32
SIMD pipeline width 8
Max Number of threads/core 1024
Max Number of blocks/core 8
Number of registers/core 16384
Perfect Memory Model Yes

IPC - MUM using POD Scheduling Perfect Memory

BOG
)
v]
=
Y o f"
g [\
‘B]
T 0 '|
2
= \
E 200 \ |

| ol |y
AV et Mo, ;
S Enikernl
0 200000 AD0O00 HO00DD 200000
globalCycle
IPC - MUM using POD Scheduling Normal Memory

800

700
=
5 00
£ %00
@
£ a0
a
8 00 |
= 200

\
100 mﬂ_r,w_k-.ﬂm,—wmww-\.m—d. ﬁ«wwwwmm.m).,m, P} Ju,m P i e SV
Py 200000 200000 600000 800000
giobalCycle

Fig. 3. Comparison of IPC/SM for MUM benchmark using POD scheduling for normal and perfect memory
models.

Figure 3 compares the IPC (instruction/cycle) using POD scheduling with perfect
memory (all requests are cache hit) and normal memory.

The application runtime increases ~x2.25 when using normal memory compared
to perfect memory. This result indicate that improving scheduling efficiency have the
potential to significantly improve performance.

Figure 4 shows the memory utilization per DRAM channel while using POD schedul-
ing method.

Both parts of the figure represent the same information in different ways. The upper
part plots the DRAM utilization of each channel on the same axes while the lower part
shows utilization of each channel separately in different rows. It’s easy to see that the
utilization is 30—60% most of the time and varies across different DRAM channels. This
proves that in this application there is still a significant memory bandwidth available
to be used by various scheduling optimizations.

Figures 3 and 4 show that both scheduling and memory model have significant effect
on the performance of MUM. Since the focus of this work is to explore the ability of
various scheduling methods to improve the performance of GPGPU when dealing with
control flow bound applications, we decided to isolate the effect of the memory model
and run all further simulations using perfect memory mode (all requests are cache
hits) since this allows to see more clearly the various scheduling related phenomena
that hamper the performance of such applications.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:9

DRAM Utilization - MUM Benchmark using POD scheduling

dramUtil/Cycle
& 2

R S EndKernl

.~
] 200000 400000 00000 B00000
globalCycle

90
o
5 s
g 705
: ao§
E
a S0
£ £
w05
304
[
o o =3 E-3 E=1 o o 2 = [~} a2 o o 20‘“
§ § 8 &8 & § & g 8 £ &8 2 8 § 8 & [ho
5 g8 T B 8 B @ § s & &8 £ B & % gz 3 s

= b
globalCycle

Fig. 4. Memory utilization per DRAM channel in MUM benchmark using POD scheduling.

Figure 5 compares the IPC/SM during the execution of the MUM benchmark for
POD, DWF and MIMD scheduling methods. Each row in the figure corresponds to IPC
of one of the 28 SMs during the MUM benchmark execution.

When using POD, DWF and MIMD scheduling algorithms it’s easy to see the gradual
loss of utilization from the moment a block is scheduled to the SM until its execution is
finished and a new block is being scheduled. We can see that even MIMD which is the
best possible scheduler under the perfect memory model is showing lower utilization
since many threads in each block finish their execution early and the TLP offered by
the amount of the remaining threads is not enough to fully utilize the SM.

Figure 6 shows the distribution of blocks during the execution of MUM benchmark
for POD, DWF and MIMD benchmarks. As discussed in Section 2, in the last stages of
the simulation, various SMs are underutilized because there are no more new blocks
that are available to be scheduled to SM.

Figure 7 shows warp occupancy distribution during the execution of MUM bench-
mark for POD scheduling algorithm.

Each column in Figure 7 is a histogram showing the warp size distribution over a
period of last 1000 cycles. It’s easy to see branch divergence is causing severe under-
utilization of the pipeline with POD scheduling method.

The results presented in this section show that local schedulers have inherent lim-
itations, especially when dealing with programs with abundant control flow such as
MUM.

In MUM branch divergence causes severe execution path variance which in turn
lowers the number of warps available to scheduling in the SMs during the blocks
execution.

Even MIMD scheduler which is the optimal scheduler under the perfect memory
model suffers from this phenomenon and is unable to keep the SMs fully utilized.
Another reason for severe performance loss is scheduling the work to SMs in the
resolution of blocks. This causes underutilization of the SMs in the last stages of the
application runtime which is something local schedulers are unable to prevent.

The next section is exploring various ways to mitigate the effect of those phenomena.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:10 R. Malits et al.

3z

it 1R u SHee p—
> 1 =
:E 1 o - HM|] ¥
e ||
gu 14 LTl g
(a) B . “ﬂl‘ ll] £
i= & L - 2
g Em} 1 o 12;%;
1 ol '! ls i
g
' “H‘W‘ Emwn .

: i B B I

235500
3200

EEww v nw =

[

(b)

shaderinsn/Cycle
B

&G E

Scale: shaderinsn/Cycle

5

HENEEEREES
]

E
X .4
globalCycle (DWF)

Budwoweunea

(c)

shaderinsn/Cycle

BEERGED
H
Scale: shaderinsn/Cycle

§ & 8
8 & %

g
5 o

globalCycia (MIMD)

Fig. 5. (a) IPC/SM for MUM benchmark under the POD scheduler (b) IPC/SM under the DWF scheduler.
(c) IPC/SM under the MIMD scheduler.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications

(@)

2
=
1%}
=3
E
5
a,
2
2
I
5
&

i i

5 g
glabalCycle

(b)

shdretacount/Cycle

g g g 2 g
E &8 B E 3
glosalCycle

(©)

shdrctacountiCycie

Pt

aiobalCycle

2B

18

Scale: shdrctacount/Cycle

29:11

Scale; shdrctacountiCycle

Scale: shdretacountiCycle

Fig. 6. Distribution of blocks under the following scheduling methods: (a) POD (b) DWF (¢) MIMD.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:12 R. Malits et al.

WarpDivergenceBreakdown vs globalCycle PostDominator Scheduler MUM

I Fetch Stalled
- WO
W14

WarpDivergenceBreakdown

Wa:12

w1316

W17:20
. w2124
w2528
. W29:32

g & £ & 2
OB 2 R R

globalCycle

Fig. 7. Warp occupancy distribution for MUM benchmark under the POD scheduler.

3.4. How to Improve the Hardware Utilization?

In order to improve the performance of control flow bound applications in GPGPU we
must lower the impact of branch divergence and improve the load balancing among
different SMs. DWF [Fung et al. 2007] and TBC (Thread Block Compaction) [Fung and
Aamodt 2011] scheduling methods address branch divergence by creating new warps
out of diverged warps inside the SM. This allows to mitigate some of the performance
loss caused by branch divergence; however the ability to perform local reconstruction
heavily depends on the spatial distribution of branch targets in the grid.

The use of shared memory is known to be one of the most important optimizations
needed for achieving high performance on GPGPU. A closer look at the behavior of con-
trol flow bounded applications shows that many of them are not using shared memory.
For example, let’s look at BFS benchmark. Here, shared memory is not beneficial as
the data required by each vertex can be presented anywhere in the global edge array.
As a consequence, finding the locality of data to be collectively read into the shared
memory is as hard as the BF'S problem itself.

In general, algorithms with high rate of branch divergence often have random mem-
ory access patterns preventing an efficient use of shared memory, caches and memory
access coalescing. The inability to use shared memory is a major source for inefficiency
in such applications.

In current GPGPU design, the system assumes no direct data races between threads
belonging to different blocks. However, when threads are not using shared memory
there is usually no need for sync either. In that case it’s possible to extend the assump-
tion and consider no direct data races between threads at all. In practice, this allows to
migrate threads between different SMs during the execution of the kernel and opens
new directions for new and much more sophisticated optimizations for control flow
abundant applications. For example, it’s possible to implement an algorithm similar to
work stealing [Blumofe et al. 2009] in order to improve load balancing. In addition, it’s
possible to perform warps reconstruction both locally inside SMs and globally in order
to improve the handling of varying execution path length and ease the dependence on
branch targets distribution in the grid.

In this work we show the potential benefits of using thread migration and global warp
reconstruction. For that purpose we implemented a global hierarchical warp scheduling

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:13

Current Architecture Architecture With Dynamic Global Scheduler

Pool Warps
Pool

Blocks Issue

Global Warp
Scheduler

Warps
Pool yes
Blocks

Local Warp
Scheduler

Scheduler
RRNAN

sM | ... sm K

(a) (b)

Fig. 8. The architectural differences between: (a) current architecture and (b) dynamic global scheduler.

mechanism we termed ODGS (Oracle Dynamic Global Scheduler). This algorithm is
described in the next section.

3.5. ODGS - Oracle Dynamic Global Scheduler

In order to study the potential benefits of global warp reconstruction, we de-
signed ODGS algorithm to achieve the best possible SMs utilization using global
reconstruction.

Figure 8(a) depicts the way scheduling works in current hardware; the program is
divided into independent blocks, the system builds warps from threads belonging to
the same block and puts them in the SM’s warp pool, the local scheduler in each SM
decides the order in which the warps are executed.

ODGS is depicted at Figure 8(b). Here, warps belonging to the same block can be
assigned to different SMs by a global scheduler. For that reason ODGS needs the ability
to migrate threads between SMs. In kernels where thread migration is impossible (use
of local shared memory) or having a negative effect, global restructuring can be simply
turned off.

Upon divergence, the diverged warp is moved from the SM to the global pool. The
global scheduler will then try to create new full warps by using threads from the
diverged warp and from other threads in the global pool having the same instruction
pointer (PC).

As soon as a warp in SM finishes its execution or moved to global pool, it is replaced
by another warp from the global scheduler. First to be scheduled to SMs are full
reconstructed warps, then new warps. If there are no more full warps to schedule,
incomplete warps with the lowest PC are scheduled to allow later branches to be
processed by the global scheduler.

This re-construction and scheduling policy allows better load balancing and utiliza-
tion of the GPU hardware.

Under the new scheduling mechanism, block size mainly serves as a logical en-
tity that reflects the problem structure and determine the barrier synchronization
boundaries.

If a warp reaches a barrier it is recalled from the SM and replaced by a ready warp.
When all the warps from the block have reached the barrier, those warps are scheduled
to the SM’s.

In the next section we evaluate ODGS performance by using simple synthetic CUDA
benchmark.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:14 R. Malits et al.

- o 4+ o ®

(2) (b) (©) (d) (e)

Fig. 9. Synthetic benchmark example: (a) conditional kernel code with four possible execution paths
(b) execution path as a function of color code (¢) grid input (d) comparison of IPC for POD and ODGS
scheduling (e) comparison of diverging warps number at branches A and B for POD and ODGS scheduling.

Fig. 10. Diverging threads for input picture number 1.

3.6. Comparing ODGS to POD on Synthetic CUDA Benchmark

Figure 9 describes a simple synthetic benchmark that represents the building blocks
of any application control flow, namely if-else constructs.

In this example the code contains two branches: A and B that form four possible
execution paths.

We present a unique technique to analyze the characteristics of ODGS and POD
scheduling methods. We propose that input for this benchmark will be generated by
consuming a 256x256 grey scale bitmap image with four possible colors, as shown
in Figure 9(c). Each thread will operate on a pixel and the value of the “color” will
determine the outcome of the branches as shown in Figure 9(b).

ODGS uses threads with identical PCs to reconstruct warps. This mechanism in-
creases the correlation between threads within the warps and consequently lowers
the overall number of warps that diverge at later stages of the kernel execution. This
phenomenon is clearly shown when using picture 1 as input. Here, there are only two
colors and so threads can have only two possible execution paths.

Figure 10 shows the threads that diverged during the benchmark execution for input
picture 1 with white pixels representing the diverged threads.

As shown in Figure 10, warps that contain threads of different colors will diverge
at A both in POD and ODGS. However, when reaching branch B no warps diverge in
ODGS scheduling. This situation is illustrated in Figure 10(c) and Figure 10(d). The
reason for that is that there is a perfect correlation between the threads that behave
identically at branch A and later at branch B. Figure 10(b) shows the IPC achieved

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:15

IPC (maximum = 224) x10° tatal number of times warp dvergance occured
250 T T T T 3 T T T
] ; i [[0 :] I FoD
[oo ;] I oW |
[o 260-B-teoeemeee oo [DGS | oo deomeome oo oo —

150_......,5 —

(a) (b)

Fig. 11. (a) IPC comparison for various scheduling methods (b) total number of times warp divergence
happened in each benchmark.

Table Ill. Normalized IPC for Different Scheduling
Methods Relative to POD

Benchmark MIMD | POD | DWF | ODGS
MUM 2.71 1 1.95 4.4
BFS 1.92 1 1.64 2.6
RAY 1.05 1 0.76 1.10
NN 1.52 1 0.98 10.6
WP 1.02 1 0.24 0.4

with POD and ODGS. Results indicate a 30% performance advantage ODGS has over
POD despite the fact that only relatively few warps actually diverge.

The rest of the pictures use all 4 possible colors, with each picture having increased
spatial divergence between the colors, effectively increasing the number of diverged
warps in each simulation. Obviously the number of warps diverging at A is the same
with POD and ODGS. However, the reconstruction done by ODGS clearly succeeds to
lower the number of diverging warps in branch B due to the correlation effect.

3.7. Comparing ODGS to POD, DWF and MIMD on Real CUDA Benchmark

Figure 11 compares the performance for MIMD, POD, DWF and ODGS scheduling al-
gorithms running benchmarks described in Section 3.1. Figure 11(a) shows the average
IPC for each of the benchmarks and Figure 11(b) shows the total number of times warp
divergence happened in each benchmark.

Simulation results indicate that for most benchmarks ODGS outperforms other
scheduling algorithms since ODGS is capable to load balance the workload and re-
duce the number of diverged warps more than other algorithms. Table III shows IPC
in each benchmark relative to POD.

Both MUM and BFS are parallel graph algorithms suffering from significant
branch divergence. In those algorithms ODGS achieves much higher utilization by
re-constructing the diverged warps and hence the performance gain of x4.4 and x2.6
relative to POD.

As shown in Figure 5(c) and 6(c), in the last stages of MUM benchmark, various
SM’s are underutilized because there are no more new blocks that are available to be
scheduled. This can explain why ODGS outperforms MIMD which achieves the best
possible performance with regard to the possible local scheduler optimizations under
the perfect memory model. The performance of MIMD may even become worse when

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:16 R. Malits et al.

(a) (d)

Fig. 12. (a) output of RAY tracing benchmark (b) execution path length (c¢) threads divergence number
distribution for DWF benchmark (d) threads divergence number distribution for POD benchmark (e) threads
divergence number distribution for ODGS benchmark.

the application has a high rate of branch divergence since many threads in each block
finish their execution earlier and the TLP offered by the remaining threads is not
enough to fully utilize the SM.

In RAY benchmark the gain relative to POD is only 10%, however compared to DWF
the performance gain is almost 46%. Figure 12 shows unique insight into the dynamic
behavior of various scheduling methods for the RAY benchmark. The output of the RAY
benchmark is presented in Figure 12(a). Each pixel in the final picture is calculated by
different thread.

Figure 12(b) shows the distribution of the runtime path length for each thread and
Figure 12(c)—(d) represents the number of times each thread diverged with brighter
color representing higher values. As expected, the Figure 12 shows visually that there
is a correlation between the final geometric shapes, the threads that worked the most
and the threads that diverged the most. It’s easy to see that the picture of the threads
divergence distribution for ODGS method resembles the picture of execution path
distribution much more than those of other methods. This indicates that ODGS have
better ability to group working threads together and keep in the system only those
threads that actually perform useful work.

For NN the performance gain for ODGS is very high, almost x10.6 despite the
fact that this benchmark doesn’t show significant branch divergence as shown by
Figure 11(b).

NN is an example of an application where the size of the blocks was chosen to be
convenient for the programmer to better reflect the structure of the problem rather
than to optimize for the particular hardware. In this benchmark a neural network
consisting of 4 layers is used to recognize digits. The last 2 layers of this network
consist of a group of neurons each connected to all the neurons of the previous layer.
Each layer is computed by a different kernel where the last 2 kernel are running with
distinct block for each neuron, each containing a single thread. Local schedulers are
incapable of recovering the performance loss associated with such a choice, ODGS on
the other hand can optimize much better in such situations.

WP is an example of an application where using ODGS in its current form was
very inefficient despite the fact that it performs better than DWF (it’s possible that
DWF could perform better here by using the PC scheduling heuristic). WP benchmark
contains a relatively small number of threads with long kernel and very high number
of short branches (see Table I).

For that reason, in the last stage of grid computation there is a high number of
incomplete warps remaining to be scheduled to the SMs. This leads to significant
performance loss because the amount of cycles needed to compute this remaining part
is very significant relative to the overall runtime. We discuss ways for improving ODGS
performance in such circumstances in the next section.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:17

ODGS - impact of diverged warps handling latency cn IPC
250
T T T T

I O0GS - zero latancy
I OGS - 32 cycles
I ODGS - 64 cycles
I ©DGS - 128 cycles
__| I ODGS - 256 cycles
[O0GS - 512 cycles
[—]
[Jroo
Clowr

200 -

IPC (inst / cycle)
§
|

=
3
I

MUM BFS RAY] WP

Fig. 13. Impact of diverged warps handling latency on ODGS performance.

3.8. Sensitivity Study and Discussion of ODGS Implementation in Hardware

Previous chapters have shown the relatively high performance of ODGS in most bench-
marks in comparison with other methods under a perfect memory model and zero
latency overhead for thread migration and reconstruction. In this section we extend
the discussion and study ODGS performance using more realistic conditions (memory
delays, time to reconstruct and re-schedule threads, etc.).

The main issue we are facing is that on one hand, the use of fine-grained multi-
threading allows GPGPU to better tolerate memory and pipeline latencies but on the
other hand, implementing ODGS scheduling and handling diverged warps involves
increasing the latency overhead because of regrouping and copying threads context.
In order to evaluate the impact of such diverged warp handling latency on ODGS
performance we perform simulations for different handling latency values.

We model diverged warp handling latency in the following way: once a warp diverges,
it is moved to the global scheduler and its “slot” in the SM is freed. No other warp can
be rescheduled into this free slot until the handling latency expires. In addition, during
this period threads belonging to the diverged warp cannot be used to form new warps
or be rescheduled to SMs.

Figure 13 compares MIMD, POD and DWF performance to ODGS with different
diverged warps handling latencies.

Figure 14 shows warp context size, average warp divergence rate per SM and the
additional average memory bandwidth needed (per SM) for moving the diverged warps
to the global scheduler when using ODGS (assuming zero handling latency overhead).

Figure 14(b) shows once again that MUM and BFS suffer from significant branch
divergence rate. Figure 13 shows that in those benchmarks handling latency above 128-
256 cycles per warp leads to significant performance drop. Figure 15 allows to analyze
the effect of increasing latency on performance. The figure compares the IPC/SM during
the execution of the MUM benchmark for diverged warps handling latencies of 64, 256
and 512 cycles. Each row in the figure corresponds to IPC of one of the 28 SMs during
the MUM benchmark execution.

Figure 15 shows that for MUM benchmark, when diverged warps handling la-
tency is lower than 256 cycles, SMs have enough ready warps for full utilization and

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:18 R. Malits et al.

warp context size QDGS - average warp divergence rate / SM QDGS - memary bandwidth overhead / SM
T T T T 0.08 T T T T T 150

=
=

walp context slze (kbyte)
diverged warps / cycle
)
£

w
=

Bandwidth (oytes / eycle / SM)

MUIM RFS RAY NN WP 0 MM AFS RAY NN WP MUM RFS RAY NN WP

Fig. 14. (a) Warp context size in each benchmark (b) Average warp divergence rate per SM when using
ODGS (¢) Memory bandwidth overhead per SM for moving diverged warps to global scheduler.

performance is lost mainly in the last stages of the kernel execution when the global
scheduler has no more new warps to schedule. Above the 256 cycles latency threshold,
high latency leads to a state where the TLP available inside the SMs is insufficient
to keep the pipelines fully utilized and hence the significant performance drop, as
illustrated by Figure 15(c).

In benchmarks such as RAY and NN divergence rate is very low. In those benchmarks
handling latency has a relatively insignificant effect, mainly in the last stages of the
kernel execution. In the WP benchmark, handling latency also influences mainly the
last stages of the kernel execution, however the effect of latency is more significant
here due to the high number of rare branches and their impact on ODGS as discussed
in the previous section.

Figure 14(c) shows the additional average memory bandwidth needed per SM to
move diverged warps context to the global scheduler. In MUM the required bandwidth
to move all diverged warps is relatively high: ~150 bytes/cycle due to the high diver-
gence rate and 2-kbyte context size for each warp. In other benchmarks the required
bandwidth is much lower due to the lower divergence rate.

Results indicate that ODGS performance stays high as long as the divergence rate
and handling latency are low enough to keep SMs fully utilized. The exact latency that
can be tolerated depends on the size of the register file, the supported and required
memory bandwidth and the divergence rate.

It’s important to note that ODGS improves performance even if only part of the
diverged warps is regrouped. In real implementation, ODGS will need a dynamic
scheduling policy that keeps the number of warps returned to the global scheduler
under the threshold that allows better performance. For example, if divergence rate and
the pressure on the memory system is high, ODGS can decide that some branch points
are more important to deal with than others. This decision can be based on statistics
gathered during the kernel runtime or even according to ranking performed during
compilation based on the compiler evaluation of the various execution path lengths.
For example if the branch length is below a certain threshold ODGS can decide that it
will be resolved by using predication and serialization similarly to current hardware.
Such approach would allow to achieve high performance in benchmarks such as WP
where the policy of trying to regroup warps after each divergence fails to achieve good
performance.

ODGS fits naturally into a hierarchical scheduling model where local scheduling
optimizations such as DWF or TBC [Fung and Aamodt 2011] are employed. Combining

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:19

H
i3]
H

(c)

Fig. 15. IPC/SM for MUM benchmark under the ODGS scheduler. (a) Warp handling latency is 64 cycles;
(b) warp handling latency is 256 cycles; (c) warp handling latency is 512 cycles.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:20 R. Malits et al.

ODGS with such optimizations has the potential to significantly lower the number of
threads ODGS needs to move to the global scheduler for reconstruction. In particular,
such combination will allow a more efficient use of L1 caches and lower the pressure
on the memory system.

For global reconstruction to work well, ODGS needs the ability to migrate threads
between SMs. For that reason it’s primarily designed to improve the performance of
programs with high divergence rate that make no use of local shared memory. In
programs that use shared memory ODGS can be used to handle divergence points that
lie after the last shared memory access. It’s important to note that global restructuring
can be simply turned off in kernels where such optimizations are having a negative
effect.

4. RELATED WORK

Several prior works addressed GPGPU scheduling inefficiencies. Meng et al. [2010]
propose dynamic warp subdivision (DWS) which allows a single warp to occupy more
than one slot in the scheduler without requiring extra register file space. Independent
scheduling entities allow divergent branch paths to interleave their execution, and
allow threads that hit to run ahead.

Fung and Aamodt [2011] proposed thread block compaction (TBC), which uses a
block-wide re-convergence stack shared by all threads in a thread block to exploit their
control flow locality. Warps run freely until they encounter a divergent branch, where
the warps synchronize, and their threads are compacted into new warps. At the re-
convergence point the compacted warps synchronize again to resume in their original
arrangements before the divergence.

Those algorithms perform optimizations which are local to each SM, for that reason
their ability to improve performance depends heavily on the distribution of branch tar-
gets in the grid. In contrast, ODGS performance depends only on the global availability
of threads branching to the same PC, allowing better performance in problems with
abundant control flow such as parallel graph algorithms.

Kapasi et al. [2000] introduce conditional streams, a code transformation that cre-
ates multiple kernels from a single kernel with conditional code and connects these
kernels via inter-kernel communication to increase the utilization of a SIMD pipeline.
While being more efficient than predication, it may only be practical to implement on
architectures with a software managed on-chip memory designed for inter-kernel com-
munication. ODGS differs from conditional streams in that it is a hardware mechanism
exploiting the dynamic conditional behavior of each scalar thread in the grid.

5. SUMMARY

We start this work by analyzing scheduling inefficiencies present in NVIDIA GPGPU
architecture. We show that SM local scheduling methods have inherent limitations
when dealing with control flow bound applications. To deal with those limitations we
propose a new approach based on hierarchical scheduling and global warp reconstruc-
tion that allows to optimize the execution of such applications.

Our findings indicate that if future GPGPU architectures will allow global warps
reconstruction and thread migration among SMs, it may ease the optimization problem
and allow to improve the performance of applications that otherwise would not be able
to efficiently run in GPGPU environment, or at least will require spending long time
at the software optimization phase.

We implemented and evaluated an ideal global warp scheduling algorithm (ODGS)
designed to maximize the amount of effective parallelism in the system through the
use of global warp reconstruction. We showed by simulations of synthetic and real

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

Exploring the Limits of GPGPU Scheduling In Control Flow Bound Applications 29:21

benchmarks that there is a significant potential for substantial performance improve-
ment in control flow bound applications that make no use of local shared memory.

We showed by simulations that compared to POD immediate post dominator schedul-
ing method, ODGS achieves almost x10.6 performance boost in a neural network appli-
cation. MUMmerGPU and BFS are parallel graph algorithms suffering from significant
branch divergence. In those algorithms ODGS achieves performance gain of up to x4.4
and x2.6 relative to other scheduling methods.

The sensitivity analysis we provided at the end of Section 3, indicates that imple-
menting such a hierarchical global warp scheduling is feasible, though implementation
details of the needed specific hardware support are beyond the scope of this paper. Fur-
ther research on new memory models, tuning of the proposed algorithm and other
extensions may lead to better understanding of the right balance between hardware
complexity, power and performance benefits of using the new proposed technique.

ACKNOWLEDGMENTS

The authors would like to thank the development team of GPGPU-SIM for their help in the Google Groups
GPGPU-SIM forum.

REFERENCES

AarTaB M. 2008. OpenCL, parallel computing on GPU and CPU. In Proceedings of SigGraph.

Ann, J. H. 2007. Memory and control organizations of stream processors. Thesis, Stanford University.

ARIEL, A., Fung, W. W. L., TURNER, A., AND AamoDT, T. M. Visualizing complex dynamics in many-core accel-
erator architectures. In Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 164-174.

Bagnoba, A, Yuan, G. L., Fung, W. W. L., Wong, H., anp Aamopt, T. M. 2009. Analyzing CUDA workloads
using a detailed GPU simulator. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 163-174.

Brumorg, R. D. AND LE1sersoN, C. E. 1999. Scheduling multithreaded computations by work stealing. /. ACM.
46, 5.

CHE, S., BoYER, M., MENG, J., TARJAN, D., SHEAFER, J. W., AND SKADRON, K. 2008. A performance study of general
purpose applications on graphics processors using CUDA. J. Parall. Distrib. Comput. 68, 10.

CHE, S., BoYER, M., MENG, dJ., TARJAN, D., SHEAFER, J., LEE, S.-H., AND SKADRON, K. 2009. Rodinia: A benchmark
suite for heterogeneous computing. In Proceedings of the IEEE International Symposium on Workload
Characterization. 44-54.

Conan, B. anp Guy, K. 2008. A neural network on GPU. http://www.codeproject.com/KB/graphics/GPUNN.
aspx.

DEenNE, F. AND YocaraTNaM, K. 2010. Exploring the limits of GPU’s with parallel graph algorithms. Computer
Science Department, Carleton University, Ottawa, Canada.

Fung, W. W. L., Snawm, 1., Yuan, G., anp Aamopt, T. M. 2007. Dynamic warp formation and scheduling for
efficient gpu control flow. In Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture.

Fung, W. W. L. anp Aamopnt, T. M. Thread block compaction for efficient SIMT control flow. In Proceedings
of the 17th IEEE International Symposium on High-Performance Computer Architecture (HPCA-17).
25-36.

HarisH, P. AND Naravanan, P. J. 2007. Accelerating large graph algorithms on the GPU using CUDA. In
Proceedings of HiPC. 197-208.

Horn, R., Houston, M., AND HaNRAHAN, P. 2005. ClawHMMER: A streaming HMMer-search implementation.
In Proceedings of the ACM /IEEE Supercomputing Conference.

Hong, S., Kim, S. K., OcunTEBI, T., AND OLUKOTUN, K. 2011. Accelerating CUDA graph algorithms at maximum
warp. In Proceedings of PPoPP.

Hong, S., OcuntEBl, T., AND OLUukOTUN, K. 2011. Efficient parallel graph exploration for multi-core CPU and
GPU. In Proceedings of PACT.

Karast, U. J., DaLry, J., RIXNER, W. S., MATTSON, P. R., OWENS, J. D., AND KHAILANY, B. 2000. Efficient conditional
operations for data-parallel architectures. In Proceedings of MICRO.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

29:22 R. Malits et al.

Karimvr Nem, K., Dickson, G., anp Hamzg, F. 2010. A performance comparison of CUDA and OpenCL. British
Columbia Canada.

KERR, A., Diamos, G., AND YALAMANCHILI, S. 2009. A characterization and analysis of PTX kernels. In Proceed-
ings of the IEEE International Symposium on Workload Characterization (IISWC).

Lam, M. 1988. Software pipelining: An effective scheduling technique for VLIW machines. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation.

MaxmvEe, B. 2010. Ray tracing in CUDA. http://ercbench.ece.wisc.edu/index.php?option=com_content&view=
article&id=59:ray-tracing&catid=18:gpgpu&Itemid=20.

MENG, J., TarJaN, D., aND SkaproN, K. 2010. Dynamic warp subdivision for integrated branch and memory
divergence tolerance. Tech. rep. CS-2010-5, University of Virgina.

MicHALAKES, J. AND VAcHHARAJANI, M. GPU acceleration of numerical weather prediction. IEEE International
Symposium on Parallel and Distributed Processing. 1-7.

NVIDIA. 2009. CUDA C programming best practices guide. CUDA Toolkit 2.3.
NVIDIA CORPORATION. 2009. NVIDIA’s next generation CUDA compute architecture.

RxnER, S., Darry, W. J., Karasi, U. J., MaTTsoN, P., aND OwENs, J. D. 2000. Memory access scheduling. In
Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA00).

ScHATZ, M., TRAPNELL, C., DELCHER, A., AND VARSHNEY, A. 2007. High-throughput sequence alignment using
graphics processing units. BMC Bioinformatics 8, 1, 474.

Wong, H., ParanorouLou, M., SApooGHI-ALVANDI, M., AND MosHovos, A. 2010 . Demystifying GPU microarchi-
tecture through microbenchmarking. Department of Electrical and Computer Engineering, University
of Toronto.

Received July 2011; revised October 2011 and November 2011; accepted December 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 29, Publication date: January 2012.

