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Objective: Curcumin is a plant polyphenol extracted from the Chinese herb
turmeric. It was found that curcumin has good anti-cancer properties in a
variety of cancers, but the exact mechanism is not clear. Based on the network
pharmacology and molecular docking to deeply investigate the molecular
mechanism of curcumin for the treatment of colon cancer, it provides a new
research direction for the treatment of colon cancer.

Methods: Curcumin-related targets were collected using PharmMapper,
SwissTargetPrediction, Targetnet and SuperPred. Colon cancer related targets
were obtained using OMIM, DisGeNET, GeneCards and GEO databases. Drug-
disease intersection targets were obtained via Venny 2.1.0. GO and KEGG
enrichment analysis of drug-disease common targets were performed using
DAVID. Construct PPI network graphs of intersecting targets using STRING
database as well as Cytoscape 3.9.0 and filter core targets. Molecular docking
via AutoDockTools 1.5.7. The core targets were further analyzed by GEPIA, HPA,
cBioPortal and TIMER databases.

Results: A total of 73 potential targets of curcumin for the treatment of colon
cancer were obtained. GO function enrichment analysis yielded 256 entries,
including BP(Biological Progress):166, CC(celluar component):36 and
MF(Molecular Function):54. The KEGG pathway enrichment analysis yielded
34 signaling pathways, mainly involved in Metabolic pathways, Nucleotide
metabolism, Nitrogen metabolism, Drug metabolism - other enzymes,
Pathways in cancer,PI3K-Akt signaling pathway, etc. CDK2, HSP90AA1, AURKB,
CCNA2, TYMS, CHEK1, AURKA, DNMT1, TOP2A, and TK1 were identified as core
targets by Cytoscape 3.9.0. Molecular docking results showed that the binding
energies of curcumin to the core targets were all less than 0 kJ-mol-1, suggesting
that curcumin binds spontaneously to the core targets. These results were further
validated in terms of mRNA expression levels, protein expression levels and
immune infiltration.
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Conclusion: Based on network pharmacology and molecular docking initially
revealed that curcumin exerts its therapeutic effects on colon cancer with
multi-target, multi-pathway. Curcumin may exert anticancer effects by binding
to core targets. Curcumin may interfere with colon cancer cell proliferation and
apoptosis by regulating signal transduction pathways such as PI3K-Akt signaling
pathway,IL-17 signaling pathway, Cell cycle. This will deepen and enrich our
understanding of the potential mechanism of curcumin against colon cancer
and provide a theoretical basis for subsequent studies.

KEYWORDS

molecular docking, network pharmacology, curcumin, colon cancer, immune infiltration,
molecular mechanism

1 Introduction

Colon cancer (CC) has the third highest incidence of all tumors
worldwide and is a common cause of oncologic death (Bray et al.,
2018). Meanwhile, the incidence and morbidity and mortality of CC
are increasing rapidly. The development of CC is a long-term
complex process, and although the diagnosis and treatment
measures of CC have made great progress in recent years, the 5-
year survival rate of CC is still less than 40%, and most CC patients
develop tumor recurrence, metastasis and drug resistance
(Riihimäki et al., 2016). With the development of herbal
medicine in recent years, the monomeric active ingredients
extracted from Chinese herbs have become a hot spot for global
research. The Chinese medicinal ingredient curcumin is a
biologically active substance extracted from the rhizome of
turmeric, which belongs to acidic polyphenolic compounds (Zang
et al., 2014). A large number of studies have shown that curcumin
has good clinical application value as it inhibits tumor cell activity,
reduces migration invasion ability, induces autophagy and promotes
apoptosis (Doello et al., 2018; Shakeri et al., 2019). In recent years,
the potential anticancer properties of curcumin have attracted more
attention. However, the anti-cancer mechanism of curcumin is not
fully understood.

Chinese medicine has multi-target and multi-pathway
mechanisms of action for treating diseases. Therefore, it is
necessary to use big data to mine all existing targets and
pathways related to curcumin and CC. Network pharmacology is
a method that integrates bioinformatics and pharmacology.
Through data integration and computational analysis, it can
systematically clarify the relationship between drugs and diseases
and explore the mechanism of drug action (Boezio et al., 2017). In
this study, we screened and predicted the potential targets and
signaling pathways of curcumin for the treatment of CC by means of
network pharmacology and molecular docking techniques, and
provided scientific basis for later drug development and clinical
application.

2 Materials and methods

2.1 Database and research process

The databases involved in this study (Table 1) and the research
process outline (Figure 1).

2.2 Access to potential targets of curcumin

Details of curcumin are available in PubChem (https://
pubchem.ncbi.nlm.nih.gov/) (Kim et al., 2021) using CAS: 458-
37-7 as the search term. Obtain the targets of curcumin using
curcumin’s SDF file or curcumin’s Canonical SMILES in
PharmMapper (http://lilab-ecust.cn/pharmmapper/),
SwissTargetPrediction (http://www.swisstargetprediction.ch/),
Targetnet (http://targetnet.scbdd.com/) and SuperPred (https://

TABLE 1 Basic information of the database used for the screening of curcumin
in the treatment of colon cancer.

Name URL

PubChem https://pubchem.ncbi.nlm.nih.gov/

PharmMapper http://lilab-ecust.cn/pharmmapper/

SuperPred https://prediction.charite.de/

Targetnet http://targetnet.scbdd.com/

SwissTargetPrediction http://www.swisstargetprediction.ch/

GEO https://www.ncbi.nlm.nih.gov/geo/

OMIM https://www.omim.org/

GeneCards https://www.genecards.org/

DisGeNET https://www.disgenet.org/

GEPIA http://gepia.cancer-pku.cn/

HPA https://www.proteinatlas.org/

CBioPortal https://www.cbioportal.org/

TIMER https://cistrome.shinyapps.io/timer/

Uniprot https://www.uniprot.org/

STRING https://cn.string-db.org/

RCSB PDB https://www.rcsb.org/

Bioinformatics http://www.bioinformatics.com.cn/

DAVID https://david.ncifcrf.gov/

Venny 2.1.0 https://bioinfogp.cnb.csic.es/tools/venny/index.html

KEGG Mapper https://www.kegg.jp/kegg/mapper/

Chemsrc https://www.chemsrc.com/
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prediction.charite.de/) (Nickel et al., 2014; Yao et al., 2016; Wang
et al., 2017; Daina et al., 2019). The obtained targets were translated
into gene names through the UniProt database (https://www.
uniprot.org/) (UniProt Consortium, 2018). Finally, the obtained
target genes were combined and de-duplicated. The results were the
potential targets of curcumin.

2.3 CC-related target collection

GSE74602 was selected from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) as the study subject (Clough and Barrett, 2016).
Differentially expressed genes were screened using GEO2R with adj.P.
Val < 0.05, |logFC|>1 as screening criteria. The obtained differentially
expressed genes were presented in volcano plots by TBtools (Chen et al.,
2020). Some CC-related targets were obtained by searching the OMIM
(https://www.omim.org/), DisGeNET (https://www.disgenet.org/), and

GeneCards databases (https://www.genecards.org/) (Amberger et al.,
2015; Stelzer et al., 2016; Piñero et al., 2020) using the search term
“colon cancer”. The differentially expressed genes obtained from the
GEO database were intersected with the CC-related targets obtained
from these three databases to obtain CC disease-related targets.

2.4 Drug-disease common target screening
and PPI network construction

The intersection of curcumin targets and CC targets was performed
using Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/index.
html), and the intersecting genes represented the potential targets of
curcumin for CC treatment. The protein-protein interaction network of
common targets was constructed using STRING database (https://cn.
string-db.org/), and the tsv file was downloaded and imported into
Cytoscape 3.9.0 software for visualization.

FIGURE 1
This study is a detailed flow chart of a network-based pharmacology study.
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2.5 GO and KEGG enrichment analysis

The GO and KEGG enrichment analysis of potential targets of
curcumin for CC treatment was performed by “Functional
Annotation” in the DAVID website (https://david.ncifcrf.gov/)
(Sherman et al., 2022). The obtained data were organized and
visualized by Bioinformatics (http://www.bioinformatics.com.cn/).

2.6 Drug-target-pathway network
construction

The drug-target-pathway network was constructed by
introducing curcumin, potential targets of curcumin for CC
treatment and KEGG pathway into Cytoscape. The nodes
represent curcumin, genes or pathways, and the connecting lines
represent the relationship of biomolecules.

2.7 Core targets screening

In “cytohubba” of Cytoscape 3.9.0. Degree, Maximum
Neighborhood Component (MNC), Maximal Clique Centrality
(MCC) and Closeness were used to filter the top 15 targets
respectively. The intersection of the targets obtained by these
four calculation methods is the core targets.

2.8 Molecular docking

We used the original ligand of the target protein as a positive
control for subsequent molecular docking. We downloaded the SDF
format file of curcumin from PubChem and the SDF format file of
the original ligand from the PDB database (https://www.rcsb.org/).
We convert the SDF format to mol2 format via OpenBabel-3.1.1.
We import the mol2 format of the ligand into AutoDockTools 1.5.

TABLE 2 Details of the protein targets in the PDB database.

Targets PDB ID Method Resolution (Å) R-Value free R-Value work R-Value observed

CDK2 6Q4G X-RAY DIFFRACTION 0.98 0.211 0.19 0.191

HSP90AA1 5J2X X-RAY DIFFRACTION 1.22 0.206 0.199 0.199

AURKB 4AF3 X-RAY DIFFRACTION 2.75 0.264 0.205 0.208

CCNA2 6ATH X-RAY DIFFRACTION 1.82 0.187 0.171 0.172

TYMS 3ED7 X-RAY DIFFRACTION 1.56 0.233 0.209 0.21

CHEK1 3PA3 X-RAY DIFFRACTION 1.40 0.213 0.193 —

AURKA 5DT0 X-RAY DIFFRACTION 2.15 0.225 0.21 0.211

DNMT1 5WVO X-RAY DIFFRACTION 2.00 0.239 0.196 0.198

TOP2A 6ZY5 ELECTRON MICROSCOPY 3.60 — — —

TK1 2ORV X-RAY DIFFRACTION 2.30 0.249 0.197 0.202

TABLE 3 Grid docking parameters in molecular docking.

Target name PDB ID Spacing (angstrom) Center grid box

X center Y Center Z center

CDK2 6Q4G 0.547 1.857 −4.716 −14.407

DNMT1 5WVO 0.514 −12.638 −24.181 −2.143

TK1 2ORV 0.542 42.315 13.409 47.968

AURKB 4AF3 0.492 16.434 −17.71 −1.316

TYMS 3ED7 0.475 47.532 −8.991 38.219

CCNA2 6ATH 0.481 31.9 −6.634 45.838

CHEK1 3PA3 0.714 14.898 2.071 23.362

HSP90AA1 5J2X 0.397 1.4 14.792 29.787

AURKA 5DT0 0.536 −17.022 −32.344 7.974

TOP2A 6ZY5 1.000 162.757 162.756 143.014
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7 to set the torsion and output it as a pdbqt format file. The PDB file
of the target protein is downloaded and the details of the protein are
collected in the PDB database (Table 2). Proteins were dehydrated
and de-liganded in PyMOL. Proteins were hydrogenated in
AutoDockTools 1.5.7 and output as a file in pdbqt format.
AutoDockTools 1.5.7 was restarted. The pdbqt files of the
receptor and ligand are imported into AutoDockTools 1.5.7.
When the docking box is constructed, the receptor protein is

centered, the docking box completely covers the receptor protein
and the ligand is located outside the docking box. The parameters of
the docking box are collected (Table 3). Molecular docking is
performed in AutoDockTools 1.5.7, and the magnitude of the
binding energy reflects the possibility of binding between the
receptor and ligand. The lower the binding energy, the higher the
affinity between the receptor and the ligand. The lower the binding
energy, the more stable the conformation of the receptor and the

FIGURE 2
Targets relevant to the treatment of colon cancer. ((A). Volcano plot of DEGs associated with colon cancer. (B). Venn diagram showing the common
part of curcumin and colon cancer).

FIGURE 3
PPI network diagram ((A). PPI network of potential targets for curcumin therapy of colon cancer. (B). Drug-target-pathway network diagram. The
blue circles represent targets, the orange diamonds are pathways, and the green triangles are curcumin).

Frontiers in Pharmacology frontiersin.org05

He et al. 10.3389/fphar.2023.1102581

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1102581


ligand. The binding energy of molecular docking is collected in
AutoDockTools 1.5.7. The results of molecular docking are
visualized in PyMOL.

2.9 External validation of core targets

2.9.1 Gene expression levels of core targets
In the “Expression DIY” of GEPIA (http://gepia.cancer-pku.cn/),

the mRNA expression levels and pathological stages of the core targets
were verified (Tang et al., 2017). |log2FC|Cutoff:1, p-value Cutoff:0.01.

2.9.2 Protein expression levels of core targets
To investigate the expression of core targets in CC tissues, we

analyzed the core targets in the Human Protein Atlas database
(https://www.proteinatlas.org/) (Uhlén et al., 2015). The protein
expression levels of the core targets in CC tissues and normal colon
tissues were compared.

2.9.3 Genetic alterations in core targets
The colon Cancer (CPTAC-2 Prospective, Cell 2019) dataset

containing 110 samples was selected for analysis in cBioPortal
(https://www.cbioportal.org/) (Cerami et al., 2012). Information
on the genetic alterations of the core targets was obtained.

2.9.4 Immune cell infiltration of core targets
To elucidate the potential mechanisms of the immune

microenvironment in CC, we entered the core targets into the
TIMER database (https://cistrome.shinyapps.io/timer/) (Li et al.,
2017) to explore the association between core targets and the
level of immune infiltration.

3 Results

3.1 Targets of curcumin and CC

A total of 448 curcumin action targets were obtained. A total of
1732 differentially expressed genes were screened from the
GSE74602 dataset (Figure 2A). A total of 5102 targets were
obtained by OMIM, DisGeNET and GeneCards.
1732 differentially expressed genes and 5102 targets were
intersected to finally obtain 704 CC related targets.

3.2 Common target acquisition and PPI
network construction

The results of Venn diagram showed that 73 common targets
were screened by matching 448 drug targets and 704 disease targets
(Figure 2B). These 73 common targets were potential targets for
curcumin in the treatment of CC. The 73 targets were imported into
the STRING database to obtain the PPI network. The PPI network
data were organized and visualized by Cytoscape 3.9.0, and 70 nodes
and 230 edges were found in the PPI network. When the nodes are
larger and darker, the degree of the node is larger (Figure 3A).

3.3 Results of GO and KEGG enrichment
analysis

73 potential targets of curcumin for CC treatment were
imported into DAVID for GO and KEGG enrichment analysis.
The GO enrichment analysis yielded 256 entries, including BP

FIGURE 4
Bubble plot of enrichment analysis ((A). GO functional enrichment analysis of curcumin in colon cancer. (B). KEGG pathway enrichment analysis of
curcumin in colon cancer).
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(Biological Progress): 166, CC(celluar component):36 and MF
(Molecular Function):54. The top 6 entries of each type of
analysis were selected for visualization in Bioinformatics
(Figure 4A). 73 targets were involved in biological processes
mainly one-carbon metabolic process,G2/M transition of mitotic
cell cycle, response to drug, response to xenobiotic stimulus,
inflammatory response, purine nucleotide biosynthetic process,
etc. It mainly functions in the extracellular exosome, cytosol,
secretory granule lumen, cell surface, membrane, ficolin-1-rich
granule lumen, etc. The main molecular functions involved are
protein homodimerization activity, carbonate dehydratase activity,
ATP binding, hydro-lyase activity, identical protein binding, zinc
ion binding, etc. KEGG pathway enrichment analysis screened
34 signaling pathways and visualized the top 20 pathways
(Figure 4B), which mainly involved Metabolic pathways,
Nucleotide metabolism, Nitrogen metabolism, Drug metabolism -
other enzymes, Pathways in cancer, PI3K-Akt signaling pathway,
etc. The PI3K-Akt signaling pathway is more important and this

FIGURE 5
PI3K-Akt signaling pathway (red marks represent potential targets for curcumin intervention).

TABLE 4 10 Hub genes identified using 4 different algorithms in the Cytohubba
plugin.

Rank Gene symbol Full name Score

1 CDK2 Cyclin-dependent kinase 2 141986

2 TOP2A DNA topoisomerase 2-alpha 141984

3 CCNA2 Cyclin-A2 141984

4 AURKA Aurora kinase A 141120

5 AURKB Aurora kinase B 136104

6 CHEK1 Serine/threonine-protein kinase Chk1 101668

7 TYMS Thymidylate synthase 86224

8 TK1 Thymidine kinase, cytosolic 40584

9 DNMT1 DNA (cytosine-5)-methyltransferase 1 15851

10 HSP90AA1 Heat shock protein HSP 90-alpha 15183
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pathway was selected for mapping (Figure 5). The red markers in the
figure represent potential targets for curcumin intervention.

3.4 Drug-target-pathway network
construction

The top 20 KEGG pathways were imported into Cytoscape to
construct a drug-target-pathway network (Figure 3B). The blue circles
are targets, the orange diamonds are pathways, and the green triangles
are curcumin. The results showed that curcumin exerts its effects in
treating CC through multiple targets and multiple signaling pathways.

3.5 Molecular docking validation of
curcumin and core targets

The PPI network diagram of potential targets (Figure 3A) was
analyzed by CytoHubba, and 10 core targets were selected (Table 4).
The molecular docking results showed that the binding energies
between curcumin and the target proteins were all less than 0.
Curcumin is tightly linked to amino acid residues through hydrogen
bonds. The binding energy, amino acid residues and hydrogen

bonds are collected (Table 5). The binding energies of curcumin
to CDK2, DNMT1 and TK1 were all smaller than those of the
positive control, suggesting that curcumin has a stronger binding
capacity to these target proteins than the positive control. The
binding energies of curcumin with CCNA2, TYMS, TOP2A,
HSP90AA1, AURKB, CHEK1, and AURKA were all close to
those of the positive control, which indicates that the binding
ability between curcumin and these target proteins was close to
that of the positive control. In summary, we can know that the
results of molecular docking are plausible and true, that curcumin
binds strongly to core target proteins, and that curcumin may exert
anticancer effects by binding to core target proteins. The results of
molecular docking are visualized (Figures 6, 7).

3.6 External validation of core targets

3.6.1 The mRNA expression levels of core targets
The expression of the core targets was different in CC tissues

and normal tissues. The mRNA levels of CDK2, HSP90AA1,
AURKB, CCNA2, TYMS, CHEK1, AURKA, TOP2A, and
TK1 were significantly higher in CC than in normal tissues
(p <0.01) (Figure 8A). In addition, we analyzed the

TABLE 5 Basic information on the molecular docking of curcumin and target proteins.

Molecular name Targets PDB
ID

Residue involved in H bonding H-bond length (Å) Binding energy
(kcal/Mol)

Curcumin CDK2 6Q4G THR-165; LYS-129; LEU-83 2.8; 1.8; 2.2,2.0 −6.63

Curcumin DNMT1 5WVO ASN-392; HIS-405 2.1,1.9; 2.7 −6.62

Curcumin TK1 2ORV PHE-128; ASP-58; GLY-31 2.3; 3.3; 2.5 −6.18

Curcumin AURKB 4AF3 HIS-250; ARG-248; GLU-125; ILE-197 2.8,1.9; 2.2; 3.1; 2.1 −5.78

Curcumin TYMS 3ED7 GLY-300; TYR-301; ARG-78; ILE-298; GLN-297; TRP-81 2.6,2.1; 2.1; 2.3; 1.7; 2.1; 2.6 −5.56

Curcumin CCNA2 6ATH GLU-428; ASN-425 2.1,2.2; 2.2,2.0 −5.32

Curcumin CHEK1 3PA3 ARG-182; LEU-171 2.1; 2.8 −4.79

Curcumin HSP90AA1 5J2X LEU-220; ILE-214 2.0; 1.9 −4.58

Curcumin AURKA 5DT0 ALA-213; ARG-220 2.0,2.6; 2.1 −4.51

Curcumin TOP2A 6ZY5 LYS-622; ASN-894 2.2; 2.4 −3.07

HJK CDK2 6Q4G GLU-12; LEU-83; GLU-81 2.2; 2.0; 2.0 −6.46

ZN DNMT1 5WVO — — −1.00

4 TA TK1 2ORV LYS-170; GLY-167; GLN-129; ARG-130; PHE-128; TYR-
189; PHE-190

1.8; 2.0; 3.0; 2.6; 2.4; 3.5;
2.5; 2.3

−4.82

VX6 AURKB 4AF3 — — −8.12

SO4 TYMS 3ED7 THR-306 3.2 −5.76

SO4 CCNA2 6ATH ARG-293 2.0 −5.89

C70 CHEK1 3PA3 MET-167; ASN-165 2.0; 1.9 −7.01

6DL HSP90AA1 5J2X ASP-93; GLY-97; LYS-58; ASN-51 2.0; 2.1; 2.2; 2.4 −7.62

SKE AURKA 5DT0 GLU-239; ASN-192; THR-238; LEU-378 3.5,2.6; 2.0; 2.0; 2.0 −6.16

EVP TOP2A 6ZY5 SER-621 2.8 −3.32
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relationship between the mRNA levels of core targets and the
pathological stage of CC. The results showed that the mRNA
levels of CCNA2 and TYMS significantly changed with
pathological stage (p <0.01) (Figure 8B).

3.6.2 Protein expression levels of core targets
Immunohistochemical staining images in the HPA database

were analyzed to observe the expression levels of core target
proteins in CC. We found elevated expression levels of CDK2,
HSP90AA1, AURKB, CCNA2, TYMS, AURKA, DNMT1,
TOP2A, and TK1 in CC tissues compared with normal colon
tissues (Figure 9). No immunohistochemical data for
CHEK1 were found in the HPA database.

3.6.3 Genetic alterations in core targets
We found that 57 of 110 CC patients (52%) had genetic

mutations in these targets (Figure 10A). We found a positive
correlation between protein expression and mRNA levels of the

core targets (Figure 10B), and no correlation data were found for
CCNA2 and CHEK1.

3.6.4 Immune cell infiltration of core targets
The relationship between core targets and immune cell infiltration

was analyzed. The results showed that the expression ofHSP90AA1was
positively correlated with the infiltration of B cells, CD8+ T cells, CD4+

T cells, macrophages, neutrophils and dendritic cells. The expression of
HSP90AA1 was negatively correlated with purity. The expression of
AURKB and TK1 were positively correlated with infiltration of purity,
B cells, neutrophils and dendritic cells. The expression of AURKB and
TK1 were negatively correlated with infiltration of CD8+ T cells, CD4+

T cells and macrophages. The expression of CCNA2 was positively
correlated with infiltration of purity, B cells, CD8+ T cells, macrophages,
neutrophils, and dendritic cells. The expression of CCNA2 was
negatively correlated with infiltration of CD4+ T cells. The
expression of TYMS was positively correlated with infiltration of
B cells, CD8+ T cells, macrophages, neutrophils and dendritic cells.

FIGURE 6
Molecular docking pattern of curcumin and core target protein. ((A). Curcumin-CDK2, (B). Curcumin-HSP90AA1, (C). Curcumin-AURKB, (D).
Curcumin-CCNA2, (E). Curcumin-TYMS, (F). Curcumin-CHEK1, (G). Curcumin-AURKA, (H). Curcumin-DNMT1, (I). Curcumin-TOP2A, (J).
Curcumin-TK1).
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The expression of TYMS was negatively correlated with infiltration of
purity and CD4+ T cells. The expression of AURKA was positively
correlated with infiltration of purity, B cells, CD8+ T cells, CD4+ T cells,
macrophages and neutrophils. The expression of AURKA was
negatively correlated with infiltration of dendritic cells. The
expression of DNMT1 was positively correlated with infiltration of
purity, B cells, CD4+ T cells, macrophages, neutrophils and dendritic
cells. The expression of DNMT1 was negatively correlated with
infiltration of CD8+ T cells. The expression of CDK2, CHEK1 and
TOP2A were positively correlated with the infiltration of purity, B cells,
CD8+ T cells, CD4+ T cells,macrophages, neutrophils and dendritic cells
(Figure 11). We analyzed the clinical significance of core targets and
immune cell infiltration inCCusing aCox proportional riskmodel. The
results showed that age, CD8+ T cells, CDK2 and CCNA2 were
significantly associated with clinical outcomes in patients with CC
(Table 6).

4 Discussion

CC is a common malignant tumor of the gastrointestinal
tract, and most patients have already metastasized at the time of
diagnosis (Liu et al., 2019; Taieb and Gallois, 2020), and it is easy

to recur even through surgical treatment. Although
chemotherapeutic drugs have obvious anti-tumor effects, they
can also cause serious adverse effects while killing tumor cells.
Curcumin, the active ingredient of turmeric, has been shown to
have strong antitumor effects in clinical trials against cancers
such as liver, colon, and breast cancers (Lee et al., 2009).
However, the mechanism of action of traditional Chinese
medicine for disease treatment is multiple targets and multiple
pathways, so we need to apply big data to explore the targets and
pathways of curcumin and CC. The aim of this study was to
explore the potential molecular mechanism of the inhibitory
effect of curcumin on CC using network pharmacology
combined with bioinformatics, and to provide some
theoretical basis for the clinical application of curcumin and
the study of CC.

According to the GO enrichment results, curcumin mainly acts
in the extracellular exosome, cytosol, secretory granule lumen, cell
surface, membrane,ficolin-1-rich granule lumen and other sites. The
molecular functions involved are protein homodimerization
activity, carbonate dehydratase activity, ATP binding,hydro-lyase
activity, identical protein binding, zinc ion binding, etc. In addition,
we found that curcumin exerts its effect on the treatment of CC by
affecting biological processes such as one-carbon metabolic

FIGURE 7
Molecular docking pattern of original ligand and core target protein. ((A). HJK-CDK2, (B). 6DL-HSP90AA1, (C). VX6-AURKB, (D). SO4-CCNA2, (E).
SO4-TYMS, (F). C70-CHEK1, (G). SKE-AURKA, (H). ZN-DNMT1, (I). EVP-TOP2A, (J). 4TA-TK1).
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process,G2/M transition of mitotic cell cycle, response to drug,
response to xenobiotic stimulus, inflammatory response, purine
nucleotide biosynthetic process, etc.

The KEGG enrichment results showed that many disease
pathways that were not relevant to this study were enriched,
probably because the same molecular targets exist in the
development of different diseases. So we selected signaling
pathways that are closely related to CC for analysis. We found
that the therapeutic effect of curcumin on CC may be produced by
regulating PI3K-Akt signaling pathway, IL-17 signaling pathway
and Cell cycle. PI3K-Akt signaling pathway is closely related to the
progression of many cancers. During tumor progression, the PI3K-
Akt signaling pathway can be activated by multiple types of cellular
stimulation or toxic injury, regulating essential cellular functions
such as transcription, translation, proliferation, growth and survival.
Binding of growth factors to their receptor tyrosine kinase (RTK)
stimulates the class la Pl3K subtype, and binding of chemokines,

hormones and neurotransmitters to G protein-coupled receptors
(GPCR) stimulates the class lb Pl3K subtype. PI3K catalyzes the
production of phosphatidylinositol-3,4,5-trisphosphate (PIP3) in
cell membranes. PIP3 acts as a second messenger and helps to
activate Akt. Akt can regulate a number of key cellular processes by
phosphorylating substrates for apoptosis, protein synthesis,
metabolism and the cell cycle, promoting cancer cell growth and
survival (Chang et al., 2003; Lee et al., 2008).

The interleukin 17 (IL-17) family is a subgroup of cytokines
consisting of IL-17A-F that plays a key role in both acute and
chronic inflammatory responses. Studies have shown that when IL-
17 signaling pathway expression is inhibited, the number of
colorectal tumors is reduced and cancer cells have a reduced
ability to proliferate (Pan et al., 2022). Cell cycle regulation is
inextricably linked to apoptosis. Cell cycle arrest can occur when
the cell cycle is depleted or when DNA damage is severe. When cell
cycle arrest is irreversible, cells initiate the apoptotic program and

FIGURE 8
Hub gene expression in the GEPIA database. ((A). Box plot of hub gene mRNA expression levels in the GEPIA database. Red represents tumor tissues
and gray represents normal tissues. (B). Stage diagram of hub gene mRNA expression levels and pathological stages in the GEPIA database).
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apoptosis occurs. Studies have shown that cell cycle arrest can be
induced in human CC cells by elevating the expression of cell cycle
inhibitory proteins and decreasing the expression of cell cycle
progressive proteins, producing an anti-cancer effect (Choi et al.,
2019).

The targets of curcumin and CC were taken to intersect and
73 potential targets of curcumin for the treatment of CC were
obtained. The top 10 core targets (CDK2, HSP90AA1, AURKB,
CCNA2, TYMS, CHEK1, AURKA, DNMT1, TOP2A, and TK1)
were further screened. CDK2 is a central factor in the oncogenic
signaling pathway and has an important role in the tumor process.
When CDK2 is inhibited, cancer cells undergo apoptosis and growth
arrest (Barrière et al., 2007). HSP90AA1 is a molecular chaperone
that promotes the maturation, structural maintenance and proper
regulation of specific target proteins involved in cell cycle control
and signal transduction. In colorectal cancer, there is a positive
correlation between high expression of HSP90AA1 and poorer

prognosis of patients (Zhang et al., 2019). Studies have shown
that HSP90AA1 enhances the proliferation and invasion of
tumor cells, further worsening the disease, and that
HSP90AA1 may be a potential target for the treatment of cancer
(Wu et al., 2017; Tian et al., 2019).

AURKB is involved in the bipolar attachment of spindle
microtubules to kinetochores and is a key regulator of cytokinesis
onset during mitosis. Histone H3 on serine 10 and serine 28 can be
phosphorylated by AURKB, which is associated with chromosome
number stability and chromatin condensation during mitosis
(Goldenson and Crispino, 2015). AURKB is highly expressed in
tumors, and AURKB overexpression is associated with poor
prognosis (Tanaka et al., 2008; Hegyi et al., 2012). CCNA2 is a
cell cycle protein that controls the cell cycle by forming specific
protein kinase complexes with protein kinases. Overexpression of
CCNA2 is associated with poorer OS and DFS in pancreatic ductal
adenocarcinoma, and CCNA2 overexpression is associated with

FIGURE 9
Immunohistochemical images of hub gene protein expression levels in the HPA database.
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disease progression in pancreatic ductal adenocarcinoma (Dong
et al., 2019).

TYMS is highly expressed in patients with colorectal cancer and
non-small cell lung cancer, and patients with lower TYMSmRNA levels
have higher survival rates than those with higher expression (Sun et al.,
2015; Jiang et al., 2019). CHEK1 has some anti-apoptotic ability, and a
positive correlation between CHEK1 overexpression and tumor
malignancy and poorer prognosis has been noted in colorectal
cancer (Gali-Muhtasib et al., 2008). AURKA, an oncogene, is highly
expressed in cancer patients (Umene et al., 2013; Kivinummi et al.,
2017). AURKA exerts its cancer-inducing effects through the Wnt and
MAPK signaling pathways (Jacobsen et al., 2018). During DNA
replication, DNMT1 is a DNA methyltransferase responsible for

maintaining the methylation state of DNA. DNMT1 is highly
expressed in cancer (Hino et al., 2009; Wu et al., 2011), and
inhibition of DNMT1 slows the progression of cancer (Sun et al.,
2017; Wang and Li, 2017; Han et al., 2018).

TOP2A is a key enzyme that alters the topology of DNA by
binding to double-stranded DNA molecules. The proliferation and
invasion of CC cells can be inhibited and apoptosis can be induced
by down-regulating the expression of TOP2A (Zhang et al., 2018).
TK1 is a cell cycle regulatory enzyme that plays an important role in
nucleotide metabolism. It has been found that TK1 expression is
high in cancer patients and high serum TK1 levels are usually
associated with cancer stage and increased tumor size (Wu et al.,
2013). Serum TK1 expression has been used as a prognostic tool to
monitor response to chemotherapy or surgery (Zhang et al., 2006).

The molecular docking results showed that curcumin
spontaneously bound to core target proteins. It suggested that

FIGURE 10
Genetic information of hub targets. ((A). Data showed that 57 of
110 patients (52%) had genetic mutations in these targets. (B). The
diagram shows the correlation between the mRNA and protein levels
of (a) CDK2, (b) HSP90AA1, (c) AURKB, (d) TYMS, (e) AURKA, (f)
TK1, (g) DNMT1, (h) TOP2A).

FIGURE 11
Relationship between differentially expressed core targets and
immune cell infiltration. ((A). CDK2, (B). HSP90AA1, (C). AURKB, (D).
CCNA2, (E). TYMS, (F). CHEK1, (G). AURKA, (H). DNMT1, (I). TOP2A,
(J). TK1).
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curcumin could regulate the biological activity of CC-related targets.
The reliability of the core targets of curcumin for CC treatment
screened by network pharmacology was verified.

5 Conclusion

In summary, this study systematically illustrated the potential
mechanism of curcumin for the treatment of CC through
network pharmacology and molecular docking. Curcumin
plays an important role in the treatment of CC through
multiple targets and pathways after entering the body. The
results showed that curcumin could exert anti-cancer effects
by binding to CDK2, HSP90AA1, AURKB, CCNA2, TYMS,
CHEK1, AURKA, DNMT1, TOP2A, and TK1. Curcumin
interferes with tumor cell proliferation and apoptosis by
regulating PI3K-Akt signaling pathway,IL-17 signaling
pathway, Cell cycle and other signal transduction pathways.

These reflect the anti-CC mechanism of curcumin. Due to the
poor accuracy and completeness of the database during the
network pharmacology study, biological experiments and
extensive evidence-based medical validation are still needed at
a later stage to ensure the reliability of the study results. Our
study provides a new basis for further exploration of the role of
curcumin in the treatment of CC and subsequent experimental
validation.
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TABLE 6 Cox proportional hazard model for hub genes and tumor-infiltrating
immune cells.

Coef HR 95%
CI_l

95%CI_u p.Value Sig

Age 0.022 1.022 1.000 1.044 0.048 *

gendermale 0.433 1.542 0.904 2.630 0.112

raceBlack −0.321 0.725 0.087 6.035 0.766

raceWhite −0.251 0.778 0.098 6.178 0.813

Purity 0.158 1.172 0.263 5.214 0.835

B_cell 2.553 12.841 0.017 9610.271 0.450

CD8_Tcell −5.940 0.003 0.000 0.630 0.034 *

CD4_Tcell −2.035 0.131 0.000 68.843 0.525

Macrophage 4.588 98.334 0.317 30493.335 0.117

Neutrophil 0.868 2.381 0.000 117815.288 0.875

Dendritic 0.099 1.104 0.015 79.585 0.964

CDK2 1.086 2.963 1.183 7.421 0.020 *

HSP90AA1 −0.020 0.980 0.565 1.698 0.942

AURKB 0.204 1.227 0.682 2.207 0.496

CCNA2 −0.705 0.494 0.253 0.964 0.039 *

TYMS −0.246 0.782 0.486 1.257 0.310

CHEK1 −0.113 0.893 0.426 1.875 0.765

AURKA −0.173 0.841 0.479 1.478 0.548

DNMT1 −0.246 0.782 0.409 1.496 0.458

TOP2A −0.034 0.966 0.544 1.716 0.907

TK1 0.497 1.644 0.924 2.926 0.091

Notes: *p < 0.05.
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