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ABSTRACT

Aims. The aim of this paper is to explore and map the age and abundance structure of the stars in the nearby Galactic disk.
Methods. We have conducted a high-resolution spectroscopic study of 714 F and G dwarf and subgiant stars in the Solar neigh-
bourhood. The star sample has been kinematically selected to trace the Galactic thin and thick disks to their extremes, the metal-rich
stellar halo, sub-structures in velocity space such as the Hercules stream and the Arcturus moving group, as well as stars that can-
not (kinematically) be associated with either the thin disk or the thick disk. The determination of stellar parameters and elemental
abundances is based on a standard analysis using equivalent widths and one-dimensional, plane-parallel model atmospheres calcu-
lated under the assumption of local thermodynamical equilibrium (LTE). The spectra have high resolution (R = 40 000−110 000)
and high signal-to-noise (S/N = 150−300) and were obtained with the FEROS spectrograph on the ESO 1.5 m and 2.2 m telescopes,
the SOFIN and FIES spectrographs on the Nordic Optical Telescope, the UVES spectrograph on the ESO Very Large Telescope, the
HARPS spectrograph on the ESO 3.6 m telescope, and the MIKE spectrograph on the Magellan Clay telescope. The abundances from
individual Fe  lines were were corrected for non-LTE effects in every step of the analysis.
Results. We present stellar parameters, stellar ages, kinematical parameters, orbital parameters, and detailed elemental abundances
for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba for 714 nearby F and G dwarf stars. Our data show that there is an old
and α-enhanced disk population, and a younger and less α-enhanced disk population. While they overlap greatly in metallicity be-
tween −0.7 < [Fe/H] � +0.1, they show a bimodal distribution in [α/Fe]. This bimodality becomes even clearer if stars where stellar
parameters and abundances show larger uncertainties (Teff � 5400 K) are discarded, showing that it is important to constrain the data
set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find
that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars
mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic
thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of
them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from
ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a
standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe  and Fe  lines produces a flat lower main sequence. As
the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be
unaffected.

Key words. Galaxy: disk – Galaxy: formation – Galaxy: evolution – stars: abundances – stars: fundamental parameters –
stars: kinematics and dynamics

1. Introduction

How galaxies form and evolve is a vast subject that has in the last
decades rapidly developed into one of the most exciting areas in

⋆ This paper includes data gathered with the 6.5 m Magellan
Telescopes located at the Las Campanas Observatory, Chile; the Nordic
Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope
(VLT) at the European Southern Observatory (ESO) on Paranal, Chile
(ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m,
and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019,
67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal
Observatory Project (ESO DDT Program ID 266.D-5655).
⋆⋆ Full Tables C.1–C.3 are only available at the CDS via anonymous
ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71
⋆⋆⋆ Appendices are available in electronic form at
http://www.aanda.org

contemporary astrophysics. The goal has been to unveil the mys-
teries of the formation, assembly, and chemical history of galax-
ies, and our own galaxy, the Milky Way, in particular. As the
Milky Way currently is the only galaxy whose stellar populations
can be studied in great detail with high-resolution spectrographs,
and may serve as a “benchmark galaxy” for extra-galactic stud-
ies, it is essential to establish the properties of the different Milky
Way stellar populations.

Major pieces to the puzzle of galaxy formation are held by
the atmospheres of stars which may remain intact over time
and act as time capsules showing the mixture of chemical ele-
ments that were present in the gas cloud out of which the stars
formed billions of years ago (e.g. Lambert 1989; Freeman &
Bland-Hawthorn 2002). F and G dwarf stars are especially re-
liable tracers as their expected lifetimes on the main sequence,
burning hydrogen to helium in their centres, are similar to, or
possibly even longer than, the current age of the Galaxy. For
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instance, a solar-type star will spend around 10 Gyr on the main
sequence (e.g. Sackmann et al. 1993). During this time its at-
mosphere is untouched by internal nuclear processes. By ob-
taining high-resolution spectra of these stars it is possible to
determine their detailed chemical compositions and ages, which
allow us to trace the histories of different stellar populations. In
the last 20 years, several studies have aimed at characterising
the Galactic stellar disk using nearby F and G dwarf stars (e.g.
Edvardsson et al. 1993; Feltzing & Gustafsson 1998; Fuhrmann
1998, 2000, 2004, 2008, 2011; Prochaska et al. 2000; Gratton
et al. 2000; Chen et al. 2000; Mashonkina & Gehren 2001;
Tautvaišienė et al. 2001; Trevisan et al. 2011; Bensby et al. 2003,
2004b, 2005, 2007b; Bensby & Feltzing 2006; Feltzing et al.
2007; Soubiran et al. 2003; Reddy et al. 2003, 2006). The ev-
idence from these high-resolution spectroscopic studies has so
far shown that the Milky Way appears to contain two disk pop-
ulations, with different chemical and age properties, indicating
different origins and different chemical histories.

After more than two decades of observational efforts, we
are still lacking much information about the complex abundance
structure of the Galactic stellar disk. For instance, the Geneva-
Copenhagen Survey (hereafter GCS) by Nordström et al. (2004)
contains approximately 14 000 dwarf stars in the Solar neigh-
bourhood, all of which have full three-dimensional kinematic
information available, as well as ages and metallicities estimated
from Strömgren photometry. It is evident from the GCS data
that there are substantial kinematical sub-structures present in
the Solar neighbourhood that can be associated with various
stellar streams and moving groups (e.g. Nordström et al. 2004;
Navarro et al. 2004; Famaey et al. 2005; Soubiran & Girard
2005; Arifyanto & Fuchs 2006; Helmi et al. 2006). It has re-
cently been confirmed that these kinematical substructures, seen
in the immediate Solar neighbourhood, persist to distances of at
least 1 kpc from the Sun, although with slightly shifted veloc-
ity components (Antoja et al. 2012). It is unclear whether such
structures are of Galactic or extragalactic origin. The GCS also
contains many stars with typical thick-disk kinematics, and with
very high metallicities, well above solar (see Figs. 1 and 3). The
question is whether these stars are true thick disk stars. It is also
unclear what the lowest metallicities are in the thin disk, and
whether the thin and thick disks show distinct abundance trends.

In addition, recent studies of the SDSS Segue G and K dwarf
stellar sample by Abazajian et al. (2009); Yanny et al. (2009)
of more than 5000 stars at larger distances add a new dimen-
sion to this discussion. From this data (but treated in different
ways) Bovy et al. (2012) finds that there is no distinct thick disk,
whilst Lee et al. (2011) and Liu & van de Ven (2012) find two or
perhaps even three components in the stellar disk. Furthermore,
other recent studies actually show that many, if not all, edge-on
spiral galaxies appear to host dual disk systems (e.g. Yoachim &
Dalcanton 2006; Comerón et al. 2011).

Distinct and different multiple stellar disks are an important
component in galaxy formation models, and the signature of a
unique thick disk in these models depends on the formation sce-
nario. For example, if radial migration is the responsible mech-
anism, then it is a continuous process and the result could very
well be that the thick and thin disks form a smooth transition.
On the other hand, if the formation of the thick disk is fast, for
example through kinematical heating of an old disk due to an
ancient merger event, it is more likely that the two disks are dis-
tinct components in chemistry and phase-space (Minchev et al.
2012). It is therefore especially important that the dichotomy of
the Milky Way stellar disk is well-understood, helping us to bet-
ter understand galaxy formation in general.

Fig. 1. Kinematical thick disk-to-thin disk probability ratio (TD/D) ver-
sus metallicity for the ∼14 000 stars in the GCS. Stars with TD/D > 2
are, to a first approximation, classified as potential thick disk stars, and
stars with TD/D < 0.5 are, to a first approximation, classified as poten-
tial thin disk stars. Stars with probability ratios between these two limits
are here classified as “in-between stars”. The metallicities, [M/H], are
from the Strömgren calibration by Casagrande et al. (2011).

On larger scales, there are several ongoing and upcoming
large spectroscopic surveys that will probe the abundance struc-
ture of the Milky Way and its stellar populations on much
larger scales. Examples are the SDSS Segue (Yanny et al. 2009),
APOGEE (Allende Prieto et al. 2008), the Gaia-ESO Survey
(Gilmore et al. 2012), and the GALAH survey (e.g. Zucker et al.
2012) which together will gather spectra and determine stel-
lar parameters and chemical abundances for several hundreds
of thousands of dwarf and red giant stars in the Galactic thin
disk, thick disk, stellar halo, and bulge. However, these surveys
are based on low- or medium-resolution spectra that often have
very limited wavelength coverages and sometimes lower signal-
to-noise ratios. And so they will need to anchor their results
to studies that present detailed elemental abundances that have
been homogeneously determined from high-resolution and high
signal-to-noise spectra.

The stellar sample presented in this study aims at mapping
and exploring the age and abundance structure of the Milky
Way stellar disk in a consistent and homogeneous way based
on high-resolution and high signal-to-noise spectra of nearby F
and G dwarf stars. In this paper we describe the star sample and
the elemental abundance analysis, and we present the observed
properties of the Galactic disk. In particular, the extent and varia-
tion of elemental abundances and stellar ages with galactocentric
radius is explored.

First results based on the current sample have been published
in Bensby et al. (2007a,b); Feltzing & Bensby (2008); Bensby &
Feltzing (2010), and the sample has also been part of the recal-
ibration of the Geneva-Copenhagen Survey (Casagrande et al.
2010), characterisation of planet signatures in solar-type stars
(Ramírez et al. 2010), and most recently in the chemical tagging
experiment by Mitschang et al. (2013). Further investigations
into the dichotomy of the Galactic stellar disk are conducted in
a parallel paper (Feltzing et al., in prep.), while work on odd
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Fig. 2. a) TD/D distribution of our sample of 714 stars. The solid
vertical lines mark the TD/D = 0.5 and TD/D = 2 ratios.
Panels b)–d): metallicity distributions of 239 potential thick disk stars
with TD/D > 2, out of which 36 stars have TD/H < 1, i.e. most likely
halo stars; 88 stars with kinematics “in between”; and the 387 poten-
tial thin disk stars with TD/D < 0.5. In a) and b) the likely halo stars
(TD/H < 1) are marked by solid black histograms. The metallicities are
from our spectroscopic analysis.

iron peak elements will be presented in Battastini & Bensby
(in prep.), and results for a wider range of r− and s−process
elements in Battistini et al. (in prep.).

2. Sample selection

The star sample presented here results from the joint effort of
several observing campaigns with different aims. In particular,
we wanted to trace the metal-poor limit of the thin disk, the
metal-rich limit of the thick disk, the metal-poor limit of the
thick disk, the metal-rich limit of the stellar halo, structures in
velocity space such as the Hercules stream and the Arcturus
moving group, and stars that have kinematical properties plac-
ing them in between those of the thin and thick disks. Hence,
our selection function is very complex and the sample should not
be used to determine the distributions of their properties such as
velocity, age, and metallicity.

For the selections of candidate members of the different
stellar populations, we used the kinematical criteria defined in
Bensby et al. (2003), i.e. assuming that they have Gaussian
velocity distributions, different rotation velocities around the
Galactic centre, and occupy certain fractions of the stellar con-
tent of the Solar neighbourhood. A shortcoming of this kine-
matical approach is the assumption that the distributions follow

Fig. 3. 690 out of 714 stars in our sample are also present in the
GCS. The figure shows ULSR, VLSR, WLSR velocities versus [M/H] for
the ∼14 000 stars in the GCS (grey dots), and open circles show our
stars (those with [M/H] > −2). Note that all metallicities, [M/H], are
from the Strömgren calibration by Casagrande et al. (2011).

normal distributions. As noted in Ruchti et al. (2010) these are
first order approximations and the real functions may be more
complex, which can also be seen in the GCS (Nordström et al.
2004), where the velocity distributions are clearly not Gaussian.
A better understanding of the distribution functions may lead to
a better decomposition of the stellar disk into sub-components
(Binney 2010). However, for our purposes, these kinematical cri-
teria are, together with the metallicities [M/H] from the GCS, a
sufficient starting point to probe the thin and thick disks to their
extremes.

Figure 1 shows the thick-to-thin disk probability ratios1

(TD/D) versus the photometric metallicity, [M/H], from
Casagrande et al. (2011) for the ∼14 000 stars in the GCS. For
a star to be a candidate thick disk star, we require it to have
a probability at least two times that of being a thin disk star

1 The method to calculate the probability ratios, for example how
much more likely it is that a given star is a thick disk star than a thin
disk star, is outlined in Appendix A.

A71, page 3 of 28

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322631&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322631&pdf_id=3


A&A 562, A71 (2014)

Fig. 4. Toomre diagram of our program stars. a) shows the full range of velocities while b) zooms in on the region where a majority of the sample
is located. Dotted lines show constant values of the total space velocity, vtot = (U2

LSR + V2
LSR + W2

LSR)1/2, in steps of 100 km s−1 and 50 km s−1,
respectively, in the two plots.

(TD/D > 2), and vice versa for a candidate thin disk star
TD/D < 0.5. These probability ratios are marked by the two hor-
izontal lines in Fig. 1. This plot is typical for how the candidate
thin and thick disk stellar samples were selected. The TD/D dis-
tribution of our sample of 714 stars is shown in Fig. 2a, and ac-
cording to these kinematical criteria we have 387 stars with thin
disk kinematics (TD/D < 0.5), 203 stars with thick disk kine-
matics (TD/D > 2), 36 stars with halo kinematics (TD/H < 1),
and 89 stars with kinematics in between those of the two disks.
Note that the probability ratios presented here are based on the
thin and thick disk normalisations and velocity dispersions given
in Table A.1. As these numbers change, the TD/D probability ra-
tios will also change. For instance, the recent models by Binney
(2012) show that the thick disk might be kinematically hotter
vertically than radially, which is opposite to expectation from
the numbers given in Table A.1. The numbers given here merely
reflect the way our sample was selected. The metallicity distribu-
tions of the three TD/D samples are shown in Fig. 2b–d. There
is a large overlap in metallicity between them. The full sam-
ple of 714 stars is also shown in Fig. 3 where the ULSR, VLSR,
and WLSR velocities are plotted versus metallicity, with all the
GCS stars as grey dots in the background. From these plots it
is evident that our sample probes the whole GCS, and that we
sample the extreme kinematics/metallicities; the sample contains
many stars with hot kinematics at high metallicities and many
stars with cold kinematics at low metallicities. Please note that
the very highest metallicities in the plots in Fig. 3 in fact may
not correspond to high iron abundance but may result from a
limitation of photometric metallicity calibrations.

Another way of displaying the sample is by a Toomre dia-
gram, which is a representation of the combined vertical and ra-
dial kinetic energies versus the rotational energy. This is shown
for the 714 stars in Fig. 4. Low-velocity stars, within a total ve-
locity vtot ≡ (U2

LSR + V2
LSR + W2

LSR)1/2 of 50 km s−1 are, to a
first approximation, mainly thin disk stars, and stars with 70 �
vtot � 180 km s−1 are likely to be thick disk stars (e.g. Nissen
2004). Stars with vtot > 200 km s−1 are likely halo stars. The
slight excess of stars in Fig. 4 with VLSR ≈ −50 km s−1 and

(U2 + W2)1/2 ≈ 50−70 km s−1 is present because we have de-
liberately targeted stars that can be associated with the Hercules
stream (e.g. Famaey et al. 2005; Bensby et al. 2007a).

Please note that first results based on the current sample
of 714 stars were published in Bensby et al. (2007a) about the
Hercules stream (60 stars) and in Bensby et al. (2007b) about the
metal-rich limit of the thick disk (169 stars). The 102 stars from
Bensby et al. (2003, 2005) are also present in the current sample.
No tables or results for individual stars have been published in
the two letters in 2007, that only referred to the upcoming full
publication (which is this paper). Hence we consider the data for
all stars (except the 102 stars from Bensby et al. 2003, 2005, but
those have been re-analysed here) as new.

3. Space velocities and galactic orbits

Space velocities, ULSR, VLSR, and WLSR
2, were calculated using

positions from the H catalogue (ESA 1997), parallaxes
from the new reduction of the H data by van Leeuwen
(2007), proper motions from the Tycho-2 catalogue (Høg et al.
2000), and radial velocities from Nordström et al. (2004) and, if
not available in the GCS, from Barbier-Brossat et al. (1994) or
Barbier-Brossat & Figon (2000). To relate the space velocities to
the local standard of rest (LSR), the Sun’s velocity components
relative to the LSR (U⊙, V⊙, W⊙) = (11.10, 12.24, 7.25) km s−1

from Schönrich et al. (2010) were added.
Galactic orbits were then calculated with the  in-

tegrator (Carraro et al. 2002; Bedin et al. 2006) which uses the
Milky Way potential model by Allen & Santillan (1991). The
model is time-independent, axisymmetric, fully analytic, and
consists of a spherical central bulge, a disk, a massive spheri-
cal halo, and has a total mass of 9 × 1011 solar masses. When
calculating X, Y, and Z for the stars, 8.5 kpc was adopted as the
Sun’s distance to the Galactic centre, and 20 pc for the Sun’s

2 ULSR is directed radially inwards towards the Galactic centre, VLSR

along the direction of Galactic rotation, and WLSR vertically upwards
towards the Galactic North pole.
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Table 1. Observing runs†.

Telescope Instrument R Obs. mode Date # of stars Sun
ESO 1.5 m FEROS 48 000 visitor 2000 Sep 31 –

" " 48 000 visitor 2001 Aug. 31 Sky

ESO 2.2 m FEROS 48 000 service 2005/2006 29 –

ESO 3.6 m HARPS 120 000 visitor 2009 March 5

VLT UVES 110 000 visitor 2002 Jul 4 –
" " 110 000 service 2003/2004 23 –
" " 80 000 archive UVES POP 31 Sky‡

NOT SOFIN 80 000 visitor 2002 Aug 11 –
" " 80 000 visitor 2002 Nov. 16 Moon
" " 80 000 service 2003 June 9 –
" " 80 000 service 2004 Feb. 5 –
" " 80 000 service 2006 March 11 –

NOT FIES 67 000 visitor 2008 July, Nov. 6

Magellan MIKE 65 000 visitor 2005 Aug. 61 –
" " 65 000 visitor 2006 Jan. 74 Vesta
" " 65 000 visitor 2006 April 81 Ganymede
" " 65 000 visitor 2006 Aug. 158 Ceres
" " 42 000 visitor 2007 April 49 Ganymede
" " 55 000 visitor 2007 May 6 –
" " 55 000 visitor 2007 July 13 –
" " 55 000 visitor 2007 Nov. 60 –

Notes. (†) The columns indicate the telescope and instrument with which the spectra were obtained; the spectral resolution (R); observing mode;
date the observations were carried out; the number of stars observed; and the sources for the solar reference spectra that were obtained. (‡) The
UVES solar spectrum we use is the one publicly available on ESO’s web pages at http://www.eso.org/observing/dfo/quality/UVES/
pipeline/solar_spectrum.html.

Fig. 5. Energy versus angular momentum LZ. The energy has been nor-
malised to the local standard of rest (LSR), which is marked by the
white circle and the dotted lines.

distance above the Galactic plane (Humphreys & Larsen 1995;
Joshi 2007). Output parameters from  are: the min-
imum and maximum distances from the Galactic centre Rmin
and Rmax (i.e. the peri- and apocentric values); the maximum
distance from the Galactic plane Zmax; the eccentricity, e =
(Rmax − Rmin)/(Rmax + Rmin); the total energy Etot; and the angu-
lar momentum Lz. Figure 5 shows the total energy - angular mo-
mentum plot (also commonly referred to as a Lindblad plot) for
the sample. As the value of Etot is dependent on how the Galactic
potential is normalised, and may be difficult to compare between
studies, we chose to normalise Etot to the LSR, giving E/ELSR.
The parameters are listed for all stars in Table C.3.

4. Observations

High-resolution and high signal-to-noise spectra of 875 nearby F
and G dwarf and subgiant stars in the Solar neighbourhood
were obtained during several observing runs between 2000
and 2009. A significant number (161) of the stars turned out
to be spectroscopic binaries and/or had too wide spectral lines

due to too high projected rotational velocities (v sin i), making
them unsuitable for detailed elemental abundance analysis based
on equivalent width measurements. The final stellar sample we
analyse, and for which stellar parameters, elemental abundances
and stellar ages were determined, consists of 714 F and G dwarf
stars. Table C.1 lists the rejected stars and the reasons for which
they were rejected.

For the first observing runs, between 2000 and 2002 with
FEROS and SOFIN, the stars were selected from the cata-
logue by Feltzing et al. (2001). Those 102 stars were pub-
lished in Bensby et al. (2003, 2005). The stars from observing
runs in 2003 and onwards were selected from the GCS. Except
for 16 stars (from the first FEROS and SOFIN runs), all stars in
the current sample of 714 stars are present in the GCS.

Table 1 lists the different observing runs and additional de-
tails regarding the spectrographs and data reductions are given
below:

FEROS: The Fibre-fed Extended Range Optical Spectrograph
(FEROS, Kaufer et al. 1999) was used in visitor mode during
two nights in 2000 and 2001 on the ESO 1.5 m telescope on
La Silla, and in service mode 2005–2006 when the spectrograph
had been moved to the ESO 2.2 m telescope, also on La Silla.
The data were reduced with the FEROS pipeline available at the
time (based on MIDAS3 routines). For a detailed description of
the data reduction procedure we direct the reader to the FEROS-
DRS manual4 and for a short outline to Bensby et al. (2003).
The final products are complete optical spectra (3800–9200 Å)

3 ESO-MIDAS is the acronym for the European Southern Observatory
Munich Image Data Analysis System, which is developed and main-
tained by the European Southern Observatory.
4 Available at http://www.eso.org/sci/facilities/lasilla/
instruments/feros/tools/DRS.html
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with a resolving power of R ≈ 48 000. The signal-to-noise ra-
tios vary from about 150 in the 2000/2001 data to about 250 in
the 2005/2006 data.

SOFIN: Several observing runs were carried out with the
SOviet-FINnish (SOFIN) spectrograph (Ilyin 2000) on the
Nordic Optical Telescope (NOT) on La Palma from 2002
to 2006. The same two settings were used for all these runs, giv-
ing high-resolution spectra with a resolving power of R ≈ 80 000
and a spectral coverage of the region between 4500–8800 Å,
with small gaps between orders (see Table 2 in Bensby et al.
2005 for exact wavelength coverage). Signal-to-noise ratios are
generally around 250. Full details regarding data reductions can
be found in Ilyin (2000) and a brief outline in Bensby et al.
(2005).

FIES: The Fiber feed Échelle Spectrograph (FIES) spectro-
graph on the NOT telescope on La Palma has a fixed wave-
length coverage between 365.0 and 730.0 nm. The resolution
of FIES is R = 67 000. FIES is structurally isolated from the
telescope dome and thermally isolated from the outside world.
This means that the instrument is extremely stable which al-
lows for precise and non-complicated measurements. On each
night, calibration frames were taken before and after the obser-
vations. These calibrations consist of bias and flat-field images
and Thorium-Argon (ThAr) spectra. We also observed a number
of fast rotating B-stars during each night. These spectra were
used to identify telluric lines in the spectra. The spectra were
reduced using FIEStool5 which is built on top of existing tasks
from the echelle package in IRAF6 and provides a simple GUI to
organise the data. Signal-to-noise ratios are around S/N ≈ 400.

HARPS: The HARPS (High Accuracy Radial velocity Planet
Searcher) spectrograph (Mayor et al. 2003) on the ESO 3.6 m
telescope on La Silla has a fixed wavelength coverage be-
tween 378.0 and 691.0 nm. It has two CCDs and there is there-
fore a gap between 530.4 and 534.3 nm. The resolution is R ≈
120 000. As for FIES, the HARPS spectrograph is structurally
isolated from the telescope dome and thermally isolated from the
outside world. A number of fast rotating B-stars was observed
each night.

The HARPS data were reduced using the dedicated pipeline
at the telescope during the observations. These reductions should
be good enough for data-analysis, however, we found a persis-
tent, semi-regular pattern in the extracted spectra. On first in-
spection it was thought that the pattern might be very regular,
but attempts to remove it using fast Fourier transforms (FFT;
by cutting out high frequency features and transfer the spectrum
back to the wavelength) did not work even when higher order
features were removed. The division with a B-star spectrum, that
was obtained each night, did remove these features completely.
Signal-to-noise ratios are S/N ≈ 300−400.

MIKE: Observations were carried out with the Magellan
Inamori Kyocera Echelle (MIKE) spectrograph (Bernstein
et al. 2003) during eight observing runs in 2005–2007. A

5 Information on FIEStool can be found at www.not.iac.es/
instruments/fies/fiestool/FIEStool.html where a download-
able version is available.
6 IRAF is distributed by the National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research in
Astronomy (AURA) under cooperative agreement with the National
Science Foundation.

complete optical spectrum is captured on two CCD:s (Blue
CCD 3600–4800 Å and red CCD 4500–9300 Å). Different slit
widths of 0.35′′, 0.5′′, and 0.7′′ were used during the different
runs, giving resolving powers of R = 65 000, 55 000, and 42 000
on the red CCD, and R = 80 000, 70 000, and 53 000 on the blue
CCD, respectively. All data were reduced with the MIKE IDL
pipeline7 by Burles, Prochaska, and Bernstein. During each ob-
serving night with MIKE, we always obtained spectra of rapidly
rotating B stars. These were used in the last stages of the data re-
duction to divide out telluric lines and residuals from the fringing
pattern in the near infrared parts of the spectrum. Signal-to-noise
ratios are around or above 250.

UVES: Two observing runs were carried out with the
Ultraviolet-Visual Echelle Spectrograph (UVES, Dekker et al.
2000) on the ESO Very Large Telescope (VLT) UT2 at the
Paranal observatory.

First, four stars were observed as back-up targets dur-
ing an observing run in 2002. Using image slicer #3, and a
rather red setting we got a resolution of R ≈ 110 000, and
a wavelength coverage between 5500−7500 Å with a 100 Å
gap around 6000 Å. These data were reduced with the UVES
pipeline available at the time (based on MIDAS routines).
Second, 23 stars were observed in service mode in 2003/2004,
using the same setup as for the 2002 run. These data were re-
duced with the  package (Piskunov & Valenti 2002).

Finally we obtained reduced spectra for 31 stars from the
UVES Paranal Observatory Project8, Bagnulo et al. 2003 (UVES
POP). The UVES POP stars were observed with two instrument
modes in order to cover almost completely the wavelength in-
terval from 300 to 1000 nm. The spectral resolution is about
R ≈ 80 000, and for most of the spectra, the typical S/N is 300
to 500 in the V band.

5. Abundance analysis

5.1. Methodology

The methodology to determine stellar parameters and elemen-
tal abundances is essentially the same as in Bensby et al. (2003,
2005). Briefly, it is based on equivalent width measurements and
one-dimensional, plane-parallel, local thermodynamical equi-
librium (LTE) model stellar atmospheres calculated with the
Uppsala MARCS code (Gustafsson et al. 1975; Edvardsson
et al. 1993; Asplund et al. 1997). For F and G dwarf stars,
these models are satisfactory, and show little deviation from
other models such as those calculated with the ATLAS code by
R. Kurucz and collaborators or the new version of the MARCS
code (Gustafsson et al. 2008). A common way to determine
stellar parameters is by requiring excitation balance of abun-
dances from Fe  lines to get the effective temperature (Teff),
and by requiring that abundances from Fe  lines are indepen-
dent of reduced line strength to get the microturbulence param-
eter (ξt). The surface gravity (log g) can be determined from
ionisation balance between abundances from Fe  and Fe  lines,
in which case the analysis is strictly spectroscopic, or, if the stars
have accurate distances, through the formula that relates effec-
tive temperature and bolometric flux. As the stars in the sample
have parallaxes from the H satellite (as determined by

7 Available at http://web.mit.edu/~burles/www/MIKE/
8 Raw data as well as reduced data can be downloaded from the UVES
ESO archive using program ID 266.D-5655(A), or from http://www.
sc.eso.org/santiago/uvespop/
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van Leeuwen 2007), we will in this paper investigate both meth-
ods to determine log g, and in Sect. 5.3 we show that the two
ways both have their strengths and weaknesses.

In total, for the sample of 714 stars, more than 300 000 equiv-
alent widths were measured by (the first author’s right) hand
using the IRAF task SPLOT by fitting Gaussian profiles to the
observed line profiles. For some elements that often have quite
strong lines (e.g. Mg, Ca, Na, and Ba), and if a Gaussian pro-
file did not satisfactorily match the observed line profile, a Voigt
profile was fitted to ensure that the wide wings and narrower
cores of those lines were properly accounted for. The contin-
uum was set locally for each line. To avoid saturation effects and
non-linearities, only Fe  and Fe  lines with measured equiva-
lent widths less than 90 mÅ were used in the determination of
the stellar parameters. The same effects mentioned can of course
also affect other abundances. But since the absolute Fe abun-
dances were used in the determination of stellar parameters it is
extra important not to include too strong Fe lines. For other el-
ements, such as for example Mg and Ba that often have strong
lines, we have no other option than to use the few available lines,
and they often happen to be quite strong. The effects might not
be so severe in the end for these elements as the final abundances
are normalised to the Sun, on a line-by-line basis.

Compared to our analysis in Bensby et al. (2003, 2005)
the current analysis contains the following changes and
improvements:

– The chemical compositions of the model atmospheres used
in Bensby et al. (2003, 2005) were scaled with metallicity
relative to the standard solar abundances as given in Asplund
et al. (2005). To better reflect the actual compositions of the
stars, the models are now enhanced in the α-elements (e.g. O,
Mg, Si, Ca, Ti) at sub-solar metallicities: [α/Fe] = +0.4 dex
for [Fe/H] ≤ −1.0; [α/Fe] linearly decreasing from+0.4 to 0
in the interval −1.0 < [Fe/H] < 0.0.

– Corrections for non-LTE effects for the Fe  lines, based on
the calculations by Lind et al. (2012), are included on a line-
by-line basis in each iterative step of the analysis. The effects
on the stellar parameters is investigated in Sect. 5.2.

– The atomic line list used in Bensby et al. (2003, 2005) has
been expanded with another ∼50 Fe  lines from Nave et al.
(1994). These lines were selected on the basis that the de-
rived abundances for the Sun should agree within 0.05 dex
of the average abundance from the ∼150 original Fe  lines.
The atomic data for the additional lines were sourced from
the VALD database (Piskunov et al. 1995; Ryabchikova et al.
1999; Kupka et al. 1999).

– We use several solar spectra, obtained from different observ-
ing runs and different spectral resolutions (see Table 1). This
led us to revise some of the astrophysical log g f values given
in Bensby et al. (2003) so that the abundance from each line
matches the solar abundances given by Asplund et al. (2009).
Exceptions are Fe , Fe , Ti , Ti , and O , for which lab-
oratory log g f values are used. (More details regarding the
choice of log g f values can be found in Bensby et al. 2003.)
The full line list totalling 496 lines for 13 elements with up-
dated atomic data is given in Table C.2, together with the
measured solar equivalent widths.

– The atomic collisional broadening constants by Barklem
& O’Mara (2001); Barklem & Aspelund-Johansson (2005)
have been included in the analysis.

Furthermore, the analysis is strictly differential relative to the
Sun. For this we used solar spectra that were obtained, reduced,
and analysed using exactly the same instruments and methods

as were used for the stars in the sample. The spectra were ob-
tained through observations of scattered solar light from the af-
ternoon sky, the Moon, Jupiter’s moon Ganymede, and the aster-
oids Vesta and Ceres (see Table 1).

The equivalent widths measured in these different solar
spectra agree well, with differences below 1–2%. Using the
equivalent widths from each of the different solar spectra, the
atmospheric parameters for the Sun were determined and we
find very good agreement. Teff varies between 5750 K to 5798 K,
log g between 4.42 and 4.45, and the Fe abundance between 7.56
and 7.59. As the different solar spectra have been obtained dur-
ing a period of six years, during which they also were measured,
this indicates that the way we have measured the equivalent
widths has been consistent throughout the years.

Given the good agreement of the measured equivalent widths
and of the stellar parameters from the different solar spectra,
we find it unnecessary to use different solar spectra to nor-
malise the different sets of observations. Instead we will use
the average values of the measured equivalent widths from all
seven solar spectra. Stellar parameters for the Sun based on the
average equivalent widths are: Teff = 5773 K, log g = 4.42,
ξt = 0.88 km s−1, and log ǫ(Fe) = 7.58.

The final abundances are normalised relative to our solar val-
ues on a line-by-line basis. In Bensby et al. (2003, 2005) we used
the mean abundance from all spectral lines to represent the abun-
dance for a given element. Now we have chosen to use the me-
dian instead. The median is less sensitive to outliers, and espe-
cially for elements for which only a few lines were measured, the
influence of one erroneously measured (or blended) line will be
smaller. For Ti and Cr, abundances from both neutral and ionised
lines were used in the calculation of the median value.

The final abundance ratios are given in Table C.3 which also
gives the standard deviation from the median value (line-to-line
scatter) and the number of lines used when computing the me-
dian value. To avoid systematic errors due to the updates and
changes listed above, the 102 stars in Bensby et al. (2003, 2005)
have been re-analysed.

5.2. NLTE corrections

Fe I: abundances based on Fe  lines are sensitive to departures
from the assumption of LTE, while abundances from Fe  lines
generally are not (e.g. Thévenin & Idiart 1999; Meléndez &
Barbuy 2009; Lind et al. 2012). As Fe  lines play a key role
in our analysis and the determination of stellar parameters, it
is important to investigate this and if possible, to make correc-
tions accounting for the effects. We have done that by using the
NLTE calculations for Fe  lines by Lind et al. (2012). Using
an IDL script kindly provided by K. Lind, the corrections were
applied in real-time on a line-by-line basis in the process of de-
termining the stellar parameters.

Stellar parameters were also determined without applying
the Fe  NLTE corrections and Fig. 6 shows how the stellar pa-
rameters change. The differences are usually very small, but we
do see a larger scatter in Teff, log g, and Fe abundance for stars
with effective temperatures above approximately 6100 K. There
might also be slight systematic trends with surface gravity, how-
ever, too small to be statistically significant.

The average effects on the stellar parameters are (NLTE val-
ues minus LTE values, and excluding stars with Teff > 6100 K
in parentheses): ∆Teff = −12 (−14) ± 28 (12) K, ∆ log g =
+0.012 (+0.002)±0.059 (0.035),∆ log (Fe) = −0.013 (−0.013)±
0.016 (0.008), and ∆ξt = +0.019 (+0.020) ± 0.006 (0.006). For
the Sun, the effect on the Fe abundance when applying the
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Fig. 6. Effects on the stellar parameters when including Fe  NLTE corrections from Lind et al. (2012) in the analysis. The differences are given as
NLTE values minus LTE values.

Fig. 7. Effects of the O and Na NLTE corrections. The differences are given as NLTE values minus LTE values.

NLTE corrections is −0.01 dex. This means that for the whole
sample of 714 stars the average metallicity becomes −0.003 dex
lower after including the Fe  NLTE corrections in the analysis.
While this is a truly minuscule effect, the effects on temperatures
and surface gravities could have some impact on stellar ages, and
possibly also when determining abundances for elements like Li,
which is very temperature-sensitive. The stars for which we see
significant effects are those that are warmer than about 6100 K.

Oxygen and sodium: the oxygen abundances have been deter-
mined from the infrared triplet lines at 777 nm9. These lines
are known to be strongly affected by deviations from LTE (e.g.
Kiselman 1993; Asplund et al. 2009). To correct our oxygen
abundances for NLTE effects, we apply the empirical formula
from Bensby et al. (2004b), who analysed the forbidden oxygen
line at 630 nm, which is a very robust indicator of the oxygen
abundance, unaffected by departures from LTE (e.g. Kiselman
1993; Asplund et al. 2009).

For sodium we applied the NLTE corrections from Lind et al.
(2011), using an IDL script that was kindly provided by Karin
Lind.

How the NLTE corrections affect the [O/Fe] and
[Na/Fe] abundance ratios is shown in Fig. 7.

9 The forbidden oxygen line at 630 nm line was not analysed here since
the analysis in this paper is purely based on equivalent width mea-
surements. Furthermore, the spectral range of the UVES 2002/2004
as well as the FIES and HARPS spectra (in total 38 stars) does not
cover the 777 nm triplet lines and hence the number of stars with oxy-
gen abundances is lower than 714.

5.3. Surface gravity

Two widely used methods to determine the surface gravity are
derived from ionisation balance between Fe  and Fe , and from
basic principles through the relationship between bolometric
flux, temperature, and gravity (see e.g. Eq. (4) in Bensby et al.
2003). The latter requires that the distance to the star is known,
and in our case all stars have distances based on H par-
allaxes from the new reduction by van Leeuwen (2007).

There are some indications that by using parallaxes to de-
termine log g from basic principles, one introduces an external
source of uncertainty, independent of the spectra. For instance,
studies of solar analogs have shown that a purely spectroscopic
approach (i.e. Teff from excitation balance of abundances from
Fe  lines and log g from ionisation balance of abundances from
Fe  and Fe  lines) has better precision than when using log g
based on parallaxes (e.g. Ramírez et al. 2009). Another advan-
tage of using a purely spectroscopic approach in our case is that
the uncertainties will be essentially distance-independent. This
is so because the sample contains relatively bright stars (V < 9),
and as a majority have been observed with large, 6–8 m class
telescopes, the exposure times are short and the spectra have
high signal-to-noise independent of the magnitude (or distance)
of the star. If the parallax method is used, the uncertainties in-
crease with distance, as is seen in Fig. 8, which shows the frac-
tional parallax errors versus the parallaxes for our stars: there
is a clear increase in the parallax error with distance. The sam-
ple contains 329 stars that have fractional errors in the parallax
larger than 5% and 89 stars larger the 10%. Furthermore, for
stars with large parallax uncertainties the Lutz-Kelker bias can
be severe and is impossible to correct for on an individual basis.
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Fig. 8. Fractional uncertainty in parallax versus the parallax from
van Leeuwen (2007) for the 714 stars in the sample. 339 stars have
errors higher than 5% and 95 stars have errors higher than 10%.

Therefore, we start by analysing our sample using ionisa-
tion balance to get the surface gravity. Figure 9a shows the re-
sulting HR diagram, and at a first glance, it appears peculiar
in the sense that the lower main sequence is horizontal rather
than declining. As there are many stars that fall in regions un-
occupied by isochrones, and as the whole appearance is some-
what “uncomfortable”, we redetermine the stellar parameters,
but this time using the H parallaxes to get the sur-
face gravity. The resulting HR diagram, in Fig. 9b, having grav-
ities based on H parallaxes, shows a declining main
sequence (as expected). It should be noted that the inclusion of
the Fe  NLTE corrections are far too small to have an effect on
the gravities of the magnitude to produce the flat lower main
sequence.

5.4. Investigating the flat lower main sequence

To further investigate the difference in the two methods for de-
termining the surface gravity, the stars in Fig. 9b have been en-
coded in red if the resulting Fe  abundances are lower than the
Fe  abundances, and blue if the opposite is true. The sizes of the
circles are scaled with the magnitude of the difference between
Fe  and Fe  abundances. What we see is that on the lower main
sequence essentially all stars appear to be red, i.e. the Fe  abun-
dances are lower than the Fe  abundances. In other parts of the
HR diagram, there is a mixture of red and blue circles. This is
also illustrated in Fig. 10, where we plot the difference between
Fe  and Fe  abundances versus Teff and log g for all stars that
have relative parallax uncertainties less than 5%. The stars above
the turn-off (log g < 4.2) show perfectly flat trends with both Teff
and log g, while many stars below the turn-offwith Teff � 5600 K
show large discrepancies between Fe  and Fe . There is also a
declining trend in Fe –Fe  with log g that also increases in dis-
persion with log g. In summary, it appears that essentially all
stars with log g > 4.2 and Teff < 5650 do not show ionisation
equilibrium between Fe  and Fe  when determining the surface
gravity from H parallaxes.

Table 2. Corrections to be applied to the parameters from ionisation
balance.

Teff Interval log g interval kT mT kG mG

4600−7000 3.0−4.2 0.00 −7 0.00 –0.03
4600−5300 4.2−4.8 0.39 −1984 4.3 × 10−4 −2.4
5300−6000 4.2−4.8 −0.11 590 1.5 × 10−4 −0.91
6000−7000 4.2−4.8 0.025 −70 1.5 × 10−4 −0.91

Notes. Teff(corr) = Teff − ∆T and log g(corr) = log g − ∆G where
∆T = kT ∗ Teff +mT and ∆G = kG ∗ Teff +mG with the parameters given
in the table below. Relationships are illustrated in Figs. 11c–f.

The question is now which method to use to get a consistent
analysis. As a significant fraction of the stars in the sample have
parallax uncertainties higher than 5% (see Fig. 8), the best way
would be to use ionisation balance. Ionisation balance also has
a large advantage over the parallax method as it is based on the
stellar spectrum only, and can be utilised even when the distance
to the star is not known to high precision, such as in the case of
microlensed dwarf stars in the Galactic bulge. On the other hand,
from the analysis of nearby stars with very good H par-
allaxes, it is evident that ionisation balance has its limitations,
and mainly on the lower main sequence for stars with log g � 4.2
and Teff � 5600 K. Figures 11a and b shows the differences be-
tween the effective temperatures and surface gravities that the
two methods generate as a function of the surface gravity. For
log g � 4.2 there appears to be a slight constant offset, while for
higher log g there might be a rising trend, although it is difficult
to say as the dispersion also increases. The differences as a func-
tion of effective temperature shown in Figs. 11c–f have a clearer
appearance. The sample is split at log g = 4.2, which is roughly
in the turn-off region. For stars above the turn-off (log g � 4.2)
there appears to be a constant small offset in both Teff and log g;
−7 K and −0.03 dex, respectively. Below the turn-off the situa-
tion appears more complicated and we make linear regressions
to the regions defined in Figs. 11d and f. The corrections ∆T and
∆G to be applied (subtracted) to the ionisation balance parame-
ters are given in Table 2.

The HR diagram based on the corrected ionisation balance
parameters is shown in Fig. 9c. The gap that can be seen at
log g ≈ 4.2 is an artefact due to that the corrections are different
for stars below and above the turn-off.

After having identified these ionisation balance issues on
the lower main sequence for our sample, it is interesting to see
whether flat main sequences are present in other similar high-
resolution spectroscopic studies of the Galactic disk. For that,
we choose three studies: first, the sample of 355 dwarf stars from
Reddy et al. (2003, 2006) where stellar parameters are deter-
mined from the infrared IRFM flux method and H par-
allaxes; second, the sample of 1040 dwarf stars from Valenti &
Fischer (2005) where stellar parameters are determined through
χ2-minimisation between observed spectrum and synthesised
spectrum in selected wavelength bands using the SME software;
and third, the sample of 1111 dwarf stars from Adibekyan et al.
(2012) who, like us, use ionisation and excitation balance to de-
termine stellar parameters. The HR diagrams for these studies
are shown in Fig. 12. For the Reddy et al. (2003, 2006) and
Valenti & Fischer (2005) studies, which do not utilise ionisation
balance, the HR diagrams appear normal, with declining main
sequences. The HR diagram for the Adibekyan et al. (2012) sam-
ple, on the other hand, shows an extremely flat relation, where
log g is even slightly rising with decreasing temperature.
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Fig. 9. HR diagram for the sample when a) log g is based on Fe -Fe  ionisation equilibrium, and b) when log g is based on H parallaxes.
In b) the sizes of the circles are scaled with the difference between Fe  and Fe  abundances. Red circles mark those stars where the Fe  abundances
are lower than the Fe  abundances, and vice versa for the blue circles. The α-enhanced Yonsei-Yale (Y2) isochrones by Demarque et al. (2004)
have metallicities of [Fe/H] = −1 and +0.3 dex, respectively, and are shown from 1 to 15 Gyr in steps of 1 Gyr.

Fig. 10. Difference in abundances from Fe  and Fe  lines versus effec-
tive temperature a) and b), and versus surface gravity c). Only stars with
relative errors in their parallaxes lower than 5% are included, and the
parameters are the ones when log g is determined from the H
parallax.

What the causes are for the flat main sequence is not all clear.
It is possible that they arise due to limitations of the models that
cannot properly handle excitation balance and/or ionisation bal-
ance. Or it could be that NLTE effects and/or 3D effects play
roles, or a combination of all of these. It is beyond the scope
of the current paper to investigate this here, and we will limit
ourselves to the empirical corrections in Table 2. We will report
stellar parameters for all three varieties (ionisation balance, par-
allaxes, corrected ionisation balance), but elemental abundances
and stellar ages will only be reported for the corrected ionisation
balance values, which is also what will be used in the remainder
of the paper. All parameters are reported in Table C.3.

5.5. Systematic errors

As the analysis is strictly differential relative to the Sun, sys-
tematic errors should largely cancel out and the internal preci-
sion should be good. This is seen through the good agreement

Fig. 11. Difference in effective temperature (upper panels) and surface
gravity (lower panels) from the ionisation balance and H par-
allax methods for stars with a relative parallax uncertainty less than 5%.

between equivalent width measurements and stellar parame-
ters that we derive for the Sun based on the spectra from the
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Fig. 12. HR diagrams for the Reddy et al. (2003, 2006) sample, the Valenti & Fischer (2005) sample, and the Adibekyan et al. (2012) sample.
Overlapping stars from this study are marked by red solid circles. The α-enhanced Yonsei-Yale (Y2) isochrones by Demarque et al. (2004) have
metallicities of [Fe/H] = −1 and +0.3 dex, respectively, and are shown from 1 to 15 Gyr in steps of 1 Gyr.

different spectrographs and observing runs. Systematic shifts rel-
ative to other studies are more difficult, as methods, model atmo-
spheres, atomic data, and methods for normalisation to the Sun,
might differ. To check and compare our results we have made
a detailed comparison of our stellar parameters and elemental
abundances to three recent and large studies of the Galactic
stellar disk. First we have chosen the studies by Reddy et al.
(2003, 2006), consisting of stars observed from the Northern
hemisphere at the MacDonald Observatory. In total this sam-
ple consists of 355 kinematically selected F and G dwarf stars
that nicely would complement our sample, which mainly has
been observed from the Southern hemisphere. With Reddy et al.
(2003, 2006) we have 64 stars in common. Next, we have cho-
sen the study by Adibekyan et al. (2012) who have done a
detailed abundance analysis of 1111 stars observed with the
HARPS spectrograph on the ESO 3.6 m telescope on La Silla.
With Adibekyan et al. (2012) we have 168 stars in common.
And finally, we have chosen the Valenti & Fischer (2005) study
of 1040 F, G, and K dwarfs from the Keck, Lick, and AAT planet
search programs, with which we have 140 stars in common. The
stars in common with each of these studies are marked in red in
the HR diagrams in Fig. 12.

Figure 13 and Table 3 show the comparisons to the Reddy
et al. (2003, 2006), Adibekyan et al. (2012), and Valenti &
Fischer (2005) studies. The comparisons are very favourable and
we see that our results compare reasonably well. With a few ex-
ceptions, the median difference in the abundance ratios are well
below 0.1 dex. The main difference lies in the comparison of
the Na, Si, Ti, and Ni abundances from Valenti & Fischer (2005)
where the dispersion is much higher than in the comparisons
to Reddy et al. (2003, 2006) and Adibekyan et al. (2012). Note
that most stars in common with Adibekyan et al. (2012) are lo-
cated in the turn-off region and not on the lower main sequence
(see Fig. 12), so systematics due to the flat main sequence issue
should not be significant.

5.6. Random errors

An error analysis, as outlined in Epstein et al. (2010), has been
performed for all stars. The method accounts for abundance
spreads (line-to-line scatter) as well as how the abundances for
each element react to changes in the stellar parameters. The de-
tails of the method are given in Appendix B.

Fig. 13. Comparison of abundances ([X/H]) for stars in common be-
tween this study and those of Valenti & Fischer (2005), Reddy et al.
(2003, 2006), and Adibekyan et al. (2012). The elements (X) are in-
dicated on the abscissa. The two left-most boxes in each panel show
the Teff (denoted by T ) and log g (denoted by g) comparisons. Please
note that the scale on the ordinate for the temperature should be mul-
tiplied by a factor 100. The differences are given as our values minus
their values, and the differences are also listed in Table 3. In the boxplots
the central horizontal line represents the median value. The lower and
upper quartiles are represented by the outer edges of the boxes, i.e. the
box encloses 50% of the sample. The whiskers extend to the farthest
data point that lies within 1.5 times the inter-quartile distance. Those
stars that do not fall within the reach of the whiskers are regarded as
outliers and are marked by dots.

Figure 14 shows the uncertainties for the stellar parameters
and the abundance ratios as a function of temperature, gravity,
and metallicity. The uncertainties are reasonably small and it is
only for low effective temperatures (below about 5400 K), higher
gravities, and at the highest [Fe/H] where they start to become
substantial. Interestingly, contrary to the other α-elements, the
uncertainty in [Ti/Fe] stays low and flat for essentially all pa-
rameters. In the upcoming sections (from Sect. 6.3 and onwards)
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Table 3. Comparisons of stars in common with Reddy et al. (2003,
2006), Adibekyan et al. (2012), and Valenti & Fischer (2005).

R03/06 A12 VF05
# of stars 355 1111 1040
overlap 64 168 140
∆Teff +124 ± 57 −10 ± 42 −2 ± 67
∆ log g −0.05 ± 0.10 −0.06 ± 0.10 −0.07 ± 0.12
∆[Fe/H] +0.03 ± 0.05 −0.02 ± 0.04 −0.01 ± 0.03
∆[O/H] −0.09 ± 0.08
∆[Na/H] 0.00 ± 0.04 −0.05 ± 0.03 +0.05 ± 0.21
∆[Mg/H] +0.04 ± 0.04 +0.01 ± 0.03
∆[Al/H] +0.01 ± 0.05 −0.01 ± 0.04
∆[Si/H] +0.01 ± 0.03 −0.01 ± 0.04 +0.06 ± 0.18
∆[Ca/H] +0.07 ± 0.04 −0.02 ± 0.03
∆[Ti/H] +0.10 ± 0.06 −0.03 ± 0.04 +0.05 ± 0.20
∆[Cr/H] +0.05 ± 0.04 −0.02 ± 0.04
∆[Ni/H] +0.03 ± 0.04 −0.02 ± 0.04 +0.04 ± 0.20
∆[Zn/H] +0.06 ± 0.07
∆[Y/H] −0.02 ± 0.09
∆[Ba/H] +0.06 ± 0.07

Notes. The differences are given as values from this work minus
the other studies. The values given are the median value as well as
the 1σ dispersion around the median.

where we investigate different properties of the Galactic disk we
will therefore mainly utilise the Ti results.

Uncertainties in the stellar parameters and in the abundance
ratios ([X/Fe] and [X/Ti]) are given in Table C.3.

5.7. Age determination

Stellar ages were determined from a fine grid of α-enhanced
Yonsei-Yale (Y2) isochrones by Demarque et al. (2004), adopt-
ing [α/Fe] = 0 for [Fe/H] > 0, [α/Fe] = −0.3 × [Fe/H]
for −1 ≤ [Fe/H] ≤ 0, and [α/Fe] = +0.3 for [Fe/H] < −1.
Taking the errors in effective temperature, surface gravity, and
metallicity into account, an age probability distribution (APD)
was constructed for each star. The most likely age, as well as
lower and upper age estimates, was estimated from this APD as
described in Meléndez et al. (2012) and a short outline in Bensby
et al. (2011a). In a similar manner, stellar masses were deter-
mined as well. Ages, masses, and their associated uncertainties
are given in Table C.3.

6. Elemental abundance results

Studies of elemental abundances in nearby stars are important.
Gratton et al. (2000) showed that stars on cold disk orbits have
lower [α/Fe] than stars that move on halo and thick disk-like or-
bits. Fuhrmann (1998, 2000, 2004, 2008, 2011) showed that stars
very close to the Sun trace two distinct abundance trends. Several
recent studies have obtained elemental abundances for stars that
have typical thin and thick disk kinematics; these also show dis-
tinct trends (e.g. Bensby et al. 2003, 2005, 2007b; Reddy et al.
2003, 2006; Adibekyan et al. 2012). However, recently there has
been quite some debate about whether the Milky Way has a dis-
tinct thick disk or whether it forms a continuum with the thin
disk (see e.g. Bovy et al. 2012).

Figures 15 and 16 show the resulting abundance trends for
the full sample of 714 stars. In Sect. 5.6 we saw that the un-
certainties tend to increase for stars at lower temperatures and

higher surface gravities. By restricting the sample to those stars
with Teff > 5400 K many of the stars with high uncertain-
ties will be avoided. 604 of the 714 stars in the sample have
Teff > 5400 K. In the abundance plots in Figs. 15 and 16 we
have therefore marked the stars that have temperatures lower
than 5400 K by grey dots.

The abundance plots for oxygen, Mg, Si, Ca, and Ti show a
flat plateau in [X/Fe] for stars more metal-poor than [Fe/H] �
−0.5. At higher [Fe/H] there is a general downward trend. From
[Fe/H] ≈ −0.7 and upwards, there appears to be two abun-
dance trends. At super-solar metallicities [O/Fe], and possibly
also [Ca/Fe] and [Mg/Fe] show downward trends with [Fe/H],
while the [Si/Fe] and [Ti/Fe] trends are practically flat.

Na and Al are light odd-Z elements and we see that Al
behaves like an α-element, showing all the characteristics that
the genuine α-elements do, i.e. a flat plateau at lower [Fe/H]
that at higher [Fe/H] starts to decline toward solar values. The
[Na/Fe] trend shows less dispersion than [Al/Fe] and there is no
resemblance with Al or the α-elements. Instead [Na/Fe] is al-
most solar, with a slightly curved appearance, that rises at super-
solar [Fe/H].

Both [Ni/Fe] and [Cr/Fe] show internally extremely small
dispersions and vary essentially in lock-step with [Fe/H]. The
only discernible pattern is that the [Ni/Fe] ratio is slightly below
solar values at [Fe/H] < 0 and that it then shows a shallow in-
crease at [Fe/H] > 0. The latter feature turns out to be an impor-
tant feature when determining oxygen abundances from the for-
bidden [O] line at 6300 Å which is blended with Ni  lines (see
Bensby et al. 2004b). We note that the few stars in the [Cr/Fe]
plot that lie slightly above the very flat trend of the bulk of stars
are all stars that fall outside the selected temperature interval
(grey coloured).

Zn is the second even-Z element beyond the iron-peak and
albeit with a scatter, we find a somewhat declining [Zn/Fe] trend
with metallicity, from being slightly elevated at [Fe/H] � −0.5,
to being solar at [Fe/H] � 0. There is also a slight resem-
blance with the α-elements. At lower metallicities [Fe/H] < −1,
[Zn/Fe] is roughly constant at ≈0.1, meaning that Zn could serve
as a good proxy for Fe in metal-poor damped Lyman alpha sys-
tems as it can be observed in damped Lyman alpha systems with-
out being depleted by interstellar/galactic dust (e.g. Kobayashi
et al. 2006).

Both Y and Ba are s-process elements and we see that are
slightly under-abundant relative to Fe. We note that most of the
stars in the [Ba/Fe] plot that have high Ba abundances around so-
lar [Fe/H] disappear when discarding stars with Teff < 5400 tem-
perature range. The same is also true for [Y/Fe]. Furthermore, Ba
is known to suffer from NLTE effects at higher Teff (e.g. Korotin
et al. 2011) and stars in the [Ba/Fe] plot with Teff > 6100 K have
therefore been marked with red circles. We see that essentially
all stars with high [Ba/Fe] around solar metallicities also have
high temperatures.

6.1. The [α/Fe] distribution at intermediate [Fe/H]

The region where the potential gap, or bimodality, between the
thin and thick disk abundance trends is largest is for metallicities
in the interval −0.7 � [Fe/H] � −0.35. Owing to observational
uncertainties and the magnitude of the astrophysical signature,
this gap appears clear for some elements and less so for others.
From the abundance trend plots in Figs. 15 and 16, it is evident
that the scatter decrease and that the abundance trends become
more well-defined when only including stars with Teff > 5400 K.
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Fig. 14. Uncertainties in stellar parameters and abundance ratios as a function of Teff , log g, and [Fe/H].

To further highlight the effects, Fig. 17 shows the generalised
[X/Fe] histograms for O, Mg, Si, Ca, and Ti for stars in the metal-
licity range −0.7 < [Fe/H] < −0.35. The empty and shaded his-
tograms show the distributions when including or discarding the

stars with Teff < 5400 K, respectively. The red dash-dotted lines
show the fraction of the sample as a function of [X/Fe] that gets
rejected when selecting stars with Teff < 5400 K. Especially for
Si, and perhaps Mg and Ti, one sees that a higher fraction of
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Fig. 15. [X/Fe] versus [Fe/H] plots for the α-elements (O, Mg, Si, Ca and Ti) and the light element Al. The full sample of 714 stars is shown and
black dots show the 604 stars with Teff > 5400 K and grey dots the stars with Teff < 5400 K. A typical error bar is shown in each plot.
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Fig. 16. [X/Fe] versus [Fe/H] plots for the light element Na, the iron-peak elements Cr, Ni, and Zn, and the s-process elements Y and Ba. The full
sample of 714 stars is shown and black dots show the 604 stars with Teff > 5400 K and grey dots the stars with Teff < 5400 K. For Ba, stars with
Teff > 6100 K have been identified by red circles. A typical error bar is shown in each plot.
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Fig. 17. Generalised abundance ratio histograms for the O, Mg, Si, Ca,
and Ti for stars in the interval −0.7 < [Fe/H] < −0.35. Shaded his-
tograms show stars with Teff > 5400 K. The red dash-dotted lines show
the fraction of rejected stars when selecting stars with Teff < 5400 K.

the “bad” stars with Teff < 5400 K are located in the gap area
and that the potential bimodality becomes clearer when discard-
ing the stars that are more prone to uncertainties. For all abun-
dance trends there is a large fraction of “bad” stars at the lower
and upper limits of the abundance ratios, i.e. these stars increase
the dispersion in the plots. This demonstrates that uncertainties
potentially can wash out differences between stellar populations
(see also Lindegren & Feltzing 2013, for a quantitative analysis).

6.2. The abundance pattern of the Sun

Several studies give opposing results regarding the Sun’s abun-
dance pattern relative to what is seen for the Galactic disk (e.g.
Meléndez et al. 2009; Ramírez et al. 2010). In Fig. 18 we show
the abundance ratios for young disk stars in a narrow metallic-
ity range around that of the Sun (±0.05 dex) that have upper age
estimates below 7 Gyr, and discarding stars that are more suscep-
tible to uncertainties (i.e. only keeping stars with Teff > 5400 K,
see 5.6). For most of the abundance ratios the Sun appears to be
“normal”, i.e. the lines showing the median values in the box-
plots are close to zero. For the few abundance ratios where the
central 50% fall either above or below a value of zero, the me-
dian line is still within 0.05 dex of the Sun. Based on this, the
Sun appears not to be too different from the bulk of young disk
stars in the immediate Solar neighbourhood.

6.3. Statistical definitions of stellar populations based
on kinematics

Many recent studies of the stellar disk in the Milky Way have
aimed to characterise the elemental abundances for stars that are
thought to belong to the thick and thin disks. It thus became
important to select stars that likely belong, respectively, to the
two disks. An expedient way to do this is to use kinematical
criteria such as the one from Bensby et al. (2003, 2005), and
which is outlined in Appendix A.

Fig. 18. Boxplots showing the distribution of abundance ratios
for 16 stars with Teff > 5400 K and an upper age limit of 7 Gyr, in a
narrow metallicity range around that of the Sun (±0.03 dex). Because
of large NLTE effects for Ba at higher temperatures, the Ba box has
been restricted to stars with Teff < 6000 K as well. In the boxplots the
central horizontal line represents the median value. The lower and up-
per quartiles are represented by the outer edges of the boxes, i.e. the
box encloses 50% of the sample. The whiskers extend to the farthest
data point that lies within 1.5 times the inter-quartile distance. Those
stars that do not fall within the reach of the whiskers are regarded as
outliers and are marked by dots.

Fig. 19. [Ti/Fe] as a function of [Fe/H] selected on TD/D as indicated
in each panel for stars with Teff > 5400 K. To guide the eye, the red
lines outline the thick disk abundance plateau and the decrease in the
thin disk abundance ratio, respectively.

Figure 19 shows the [Ti/Fe] – [Fe/H] abundance trends for
five different cuts in the thick disk-to-thin disk probability ratios
(TD/D) that indicate how much more likely it is that a star be-
longs to the thick disk than the thin disk. The top panel shows
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Fig. 20. Left-hand side plots show the [Fe/Ti] versus [Ti/H] abundance trends when using the kinematical criteria as defined in Bensby et al.
(2003, 2005). Stars have been colour- and size-coded depending on their ages. Right-hand side plots shows the abundance trends when splitting
the sample according to their ages (as indicated). For all plots we have only included stars whose ages have been better determined than 4 Gyr
(difference between upper and lower age estimates).

the stars that are at least ten times more likely to be thick disk
stars, while the bottom panel shows stars that are at least ten
times more likely to be thin disk stars. The three panels in the
middle show probabilities in between, with the middle one con-
taining stars that cannot easily be classified as either thin disk
or thick disk. What we see is that even with these very extreme
definitions of the samples there is a significant overlap in the
sense that there are stars with either classification that fall on the
abundance trend normally associated with the other population
(see also e.g. Fuhrmann 1998; Bensby et al. 2003; Reddy et al.
2006). This is an obvious consequence of this kinematical classi-
fication, as stars from the low-velocity tail of the thick disk will
be classified as thin disk stars, while stars from the high-velocity
tail of the thin disk will be classified as thick disk stars (assuming
that there are two distinct trends for the elemental abundances).

To further investigate the mixing of populations when using
kinematical selection criteria we show in the upper panel on the
left-hand side of Fig. 20 the [Fe/Ti] – [Ti/H] abundance trends
for two kinematically selected samples: one where the probabil-
ities of being a thin disk star are at least twice that of being a
thin disk star (i.e. TD/D < 0.5); and one where the probabili-
ties of being a thick disk star are at least twice that of being a
thick disk star (i.e. TD/D > 2). This time we have coded the
sizes of the markers by the ages of the stars and include only
stars with good age estimates (∆Age < 4 Gyr). It is evident that
the “second”, weaker, abundance signature in each sample has
the same age structure as the main signature in the other sam-
ple. The Toomre diagrams for the two subsamples in the bottom
panel on the left-hand side of Fig. 20 shows that the two samples
are kinematically very different, with little overlap. Hence, it is
apparent that there are kinematically cold stars that are old and

α-enhanced, as well as kinematically hot stars that are young and
less α-enhanced.

What about stellar age? Could this be a better discriminator
between the thin and thick disks? The [Fe/Ti] – [Ti/H] abun-
dance trends for two samples, one old sample with stars that
have estimated ages greater than 9 Gyr, and one young sample
with stars that have estimated age less than 7 Gyr, are shown
in the upper part on the right-hand side of Fig. 20. Once again
we see two very different chemical signatures, similar to the
ones on the left-hand-side when the selection of the samples was
based on kinematics. However, the difference is now that the two
abundance trends are somewhat “cleaner”, with less “mirroring”
between them. Looking at the Toomre diagrams for these two
age-selected subsamples (bottom panel on the right-hand side of
Fig. 20), there is a large kinematical overlap, i.e. there are many
young stars with hot kinematics and many old stars with cold
kinematics.

In summary, we note that there appears to be no perfect way
of selecting thin and thick disk stars. While velocities and dis-
tances can be pinpointed to rather high accuracies there seem
to be a large kinematical overlap between the two populations.
Ages on the other hand appear to be better, but as good ages are
notoriously difficult to obtain, there is also a significant overlap
(due to the errors). However, it appears as if stellar ages might
be a somewhat better discriminator when selecting thin and thick
disk stars from nearby stellar samples. In kinematically selected
thin disk samples we are prone to be contaminated by the low-
velocity tail of the thick disk, and especially so at lower metal-
licities, and for kinematically selected thick disk samples we are
prone to be contaminated by the high-velocity tail of the thin
disk, and especially so at higher metallicities.
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Fig. 21. Age-metallicity relation for those stars that have an age differ-
ence between upper and lower estimate of less than 4 Gyr. The sizes of
the circles have been scaled with the ages of the stars. Stars with larger
age uncertainties are shown as small grey dots.

7. Discussions

7.1. Ages and metallicities

7.1.1. Old and metal-rich stars?

Recent high-resolution spectroscopic studies indicate that most
stars with thick disk kinematics are older than those with thin
disk kinematics (e.g. Gratton et al. 2000; Feltzing & Gonzalez
2001; Bensby et al. 2005). However, considerably larger sam-
ples available in photometric studies such as the GCS indicate
the existence of a significant number of stars with thin disk kine-
matics that have high ages (>10 Gyr). Figure 21a shows the age-
metallicity relation for our sample, and we also see that our sam-
ple possibly contains such old and metal-rich stars. However, the
stars that have ages greater than 10 Gyr and metallicities higher
than solar, all have large uncertainties (red small dots in Fig. 21).
Hence, the parameters for these stars are doubtful and cast doubt
on the existence of (very) old and metal-rich (super-solar) stars.

7.1.2. Age-metallicity relations?

In Bensby et al. (2004a) we investigated whether stars with kine-
matics typical for the thick disk showed any signs of an age-
metallicity relation. We found, in accordance with other stud-
ies (e.g. Haywood 2006; Schuster et al. 2006), that stars with
kinematics typical of the thick disk show an age-metallicity re-
lation such that more metal-rich stars on average are younger

than the less metal-poor stars in the sample. The stars older
than about 8 Gyr in Fig. 21a show a trend of declining metal-
licity with age, consistent with the age-metallicity relation seen
for thick disk stars in the studies mentioned above. Younger
stars do not show this behaviour. Instead there appears to be a
rather large scatter in age over the whole metallicity range (−0.8
to +0.4 dex), i.e. no apparent age-metallicity relation.

7.1.3. [α/Fe] as a proxy for age?

Recently, Navarro et al. (2011) have argued that it is better to
identify stars with different populations based on their elemental
abundances rather than other properties such as kinematics. That
a statistical selection based on kinematics causes overlaps be-
tween various abundance trends is evident from the nature of that
selection process (see Sect. 6.3), and casts doubt on the reality
of distinct trends for different stellar populations. This argument
was used for example by Bovy et al. (2012) when they investi-
gated the scale-height of mono-abundance populations (i.e. stars
that fall in a narrow range of elemental abundances, for example
[α/Fe] and [Fe/H]) in the SEGUE data set.

To better understand the formation and evolution of the
Milky Way, it is very desirable to have stellar ages as well as ele-
mental abundances. Given the overall structure of the elemental
abundance patterns and ages observed in the Milky Way (e.g.
Edvardsson et al. 1993), it has been suggested that the amount
of α-enhancement in a star can be used as a proxy for the age of
a star (Liu & van de Ven 2012; Haywood et al. 2013). Age is,
however, a very difficult property to derive for most stars (e.g.
Soderblom 2010). As our sample contains a fair portion of turn-
off and sub-giant stars we are in a position to investigate whether
old ages are a common feature for all stars with enhanced [α/Fe]
in the Solar neighbourhood. Figure 21b shows that this is indeed
the case for stars older than about 8 Gyr and thus that [Ti/Fe] can
be used as a proxy for age for stars, in the sense that young and
old stellar populations can be distinguished. Other studies are
also finding that various α-elements correlate with ages in this
sense. For example Ramírez et al. (2013), in their Fig. 17, show
the same results as our Fig. 21b, but for [O/Fe] as a function of
age.

However, this result is only valid for dwarf stars in the im-
mediate Solar neighbourhood. We do not know if the same is
true elsewhere in the Galaxy or indeed recoverable for other
stellar evolutionary stages. Bensby et al. (2013) provides data
for 58 microlensed dwarf and turn-off stars in the Galactic bulge.
These stars, tentatively, show the same trend as the stars in the
Solar neighbourhood, making it plausible that the connection be-
tween α-enhancement and age is a property shared by many stel-
lar populations in the Galaxy.

7.1.4. A lower metallicity limit for thin disk

Thin disk stars with metallicities below [Fe/H] < −0.7 are
apparently not found in spectroscopic studies in the literature
(see e.g. Fuhrmann 2004; Reddy et al. 2003; Soubiran & Girard
2005). One of the few studies that does claim to have thin disk
stars at lower metallicities, reaching [Fe/H] ≈ −1, is Mishenina
et al. (2004). It is clear, however, that those few stars have chem-
ical compositions similar to what is found in the thick disk, even
though the kinematic properties place them as thin disk stars.
Hence their thin disk status is ambiguous.

Out of the >14 000 stars in the GCS, there are 11 010 stars
that are potential thin disk stars according to their kinematics.
1378 of those stars have ages estimated to be older than 7 Gyr,
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Fig. 22. [Ti/Fe] versus [Fe/H] for stars that have low age uncertain-
ties (the differences between upper and lower age estimates are less
than 4 Gyr). The sizes of the circles are scaled with the ages of the stars
as indicated in the figure.

and 156 stars have [M/H] < −0.7. Our sample originally
contained 27 thin disk stars with metallicity estimates in the
GCS less than [Fe/H] < −0.7. However, nine of these stars
could not be analysed because they were binaries or rotated too
fast. Out of the remaining 18 stars, only one remained below
[Fe/H] < −0.7 after the spectroscopic analysis. Therefore, we
believe that [Fe/H] ≈ −0.7 could be interpreted as a lower metal-
licity limit for the Galactic thin disk.

7.2. Metal-rich and α-enhanced stars

In Fig. 22 we show the [Ti/Fe] abundances trends for all stars
in our sample where the upper and lower age estimates dif-
fer by at most 4 Gyr. We find a similar division of the stellar
sample as seen by Fuhrmann (1998, 2000, 2004, 2008, 2011),
but now in Ti. We see that the Ti-enhanced stars are the oldest
stars. However, a major difference is that we have deliberately
searched for metal-rich stars with hot kinematics. As a result,
we have stars that could be associated with the thick disk (high
[α/Fe] ratios and high ages) that are more metal-rich than can
be found in Fuhrmann’s sample (which is volume complete for
d < 25 pc and thus rarer types of stars may be missing). There
are not many of them, and most of them in our sample are found
outside the 25 pc sphere within which Fuhrmann’s stars are lo-
cated. Hence, our sample has the potential to trace the thick disk
to higher metallicities (Bensby et al. 2007b).

A different aspect of metal-rich and α-enhanced stars was
put forward by Adibekyan et al. (2011) who claimed a new
α-enhanced and metal-rich population (high-α and metal-rich
stars, hereafter HAMR stars), distinct from both the thin disk
and the thick disk. This HAMR population showed up as stars
with [Fe/H] around solar values that have α-enhancement greater
than what is seen for the bulk of the stars at [Fe/H] ≈ 0. These
stars were also separated from the thick disk by a “gap” in metal-
licity at [Fe/H] = −0.2 and α-enhancement at [α/Fe] = +0.17.
The kinematical properties resembled those of the thin disk pop-
ulation, i.e. circular orbits confined to the Galactic plane.

In our sample we have several stars around solar [Fe/H]
that have higher α-enhancements than the bulk of disk stars
at similar metallicities (see e.g. Figs. 15 and 22). In Fig. 23
we show the abundance trends for Ti with our HAMR stars
marked by larger solid black circles, [Ti/Fe]-enhanced stars at
lower [Fe/H] (typical thick disk stars) by open circles, and low-
[Ti/Fe] stars (typical thin disk stars) by magenta coloured dots.
The approximate separation in Fig. 23 has been done by eye.

Fig. 23. Solid black circles mark stars that are α-enhanced and metal-
rich (HAMR stars); the empty black circles mark stars that are α-
enhanced at lower [Fe/H] (a.k.a. potential thick disk); and the small blue
circles mark stars with low or moderate α-enhancement (a.k.a. potential
thin disk stars).

Figures 24a–c then show cumulative histograms of the age, ec-
centricity, and zmax distributions for these three different groups
of stars. First we see that the HAMR stars have an age distribu-
tion in between those of the two disks, and that there might be
“bumps” around 6–7 Gyr and 10–12 Gyr, which are the typical
ages for stars of the thin and thick disks. Looking at the eccen-
tricity and zmax distributions, it is clear that the HAMR stars are
very similar to the low-α stars associated with the thin disk.

So, what are these HAMR stars, where do they come from,
and should they be classified as a stellar population of their own?
And if so, is there a metallicity gap between the thick disk and
this newly found HAMR population? To further investigate this,
we will divide the sample into “mono-abundance” populations
according to the boxes in Fig. 23a. Figure 23b shows the sample
but with [Ti/H] as the reference element. In Figs. 25a–c we then
show how the median eccentricity, median zmax, and median age
varies with [Ti/Fe] for the stars in the boxes in Fig. 23a. The plots
also show the 1σ dispersions around the median. It is evident
that the eccentricity, zmax, and age for the HAMR stars (black
filled circles) follow smoothly upon the downward trend with
[Ti/Fe] set by the “thick disk” stars (open circles). We also see
that the “thin disk” stars (magenta coloured filled circles) more
or less follow upon the trend set by the thick disk and HAMR
stars regarding eccentricity and zmax. For the ages, there could be
a potential gap around 7–8 Gyr, indicating that the most metal-
rich, thick disk/HAMR stars are older than the most metal-poor,
thin disk stars.

In summary, we cannot claim that the HAMR stars form
unique population as claimed by Adibekyan et al. (2011). More
likely, it may just be the metal-rich extension of the thick disk.
This implies that the thick disk potentially reaches metallici-
ties as high as [Fe/H] ≈ +0.2, somewhat higher than what we
found in Bensby et al. (2007b). The disparate results between
our study and the Adibekyan et al. (2012) study could be due to
the complex selection functions that were used. Larger samples
with a controlled and well-defined selection function, such as for
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Fig. 24. Cumulative histograms for the eccentricity, zmax, and age dis-
tributions for the three different samples in Fig. 23a. HAMR stars are
marked by solid black lines, potential thick disk stars by dashed black
lines, and potential thin disk stars by dotted blue lines.

instance the sample from the Gaia-ESO survey (Gilmore et al.
2012), will reveal the existence or non-existence of a unique
HAMR stellar population.

7.3. Radial variation

The mean of the apo- and pericentric distances of the stellar
orbit, Rmean, can be used as a proxy for the galactocentric ra-
dius of the birth place for a star (e.g. Grenon 1987; Edvardsson
et al. 1993). However, with the recent advancement of the theory
of radial migration, rearranging the orbits of stars through pro-
cesses such as churning and blurring throughout the history of
the Galaxy (e.g. Sellwood & Binney 2002; Schönrich & Binney
2009a,b), the usage of Rmean as a proxy for the birthplace of a
star could be dubious. We will, however, start by using Rmean
as a first approximation. Figure 26 shows the [Fe/Ti] − [Ti/Fe]
trends for stars with different Rmean, with the sizes of the circles
scaled with the ages of the stars. We see that the sample with
Rmean < 7 kpc mainly contains old and α-enhanced stars with
a small fraction of younger and less α-enhanced stars. The op-
posite is true for the sample with Rmean > 9 kpc, which mainly
contains young and less α-enhanced stars and very few old and
α-enhanced stars. The sample with orbits that stay close to that
of the Sun (7 < Rmean < 9 kpc) contain stars that divide into two
trends, one with old and α-enhanced stars and one with young

Fig. 25. Median values of the eccentricity, zmax, and age for the stars in
the boxes in Fig. 23a. HAMR stars are marked by solid black circles,
potential thick disk stars by open black circles, and potential thin disk
stars by solid blue circles.

Fig. 26. [Ti/Fe] – [Fe/H] abundance trends for stars with different Rmean.
Only stars for which he difference between the upper and lower age
estimates is less than 4 Gyr are included. The sizes of the circles have
been scaled with the ages of the stars.

and less α-enhanced stars. The age distributions in Figs. 27 show
that the sample with Rmean < 7 kpc contains stars of all ages
with a slight over-representation of old stars; the sample of stars
with orbits close to the Sun contains mainly stars with ages less
than ∼8 Gyr and only a few older stars; while the sample with
Rmean > 9 kpc contains almost only younger stars. These findings
indicate that the old and α-enhanced stars mainly come from
small galactocentric radii while the young and less α-enhanced
stars mainly come from large galactocentric radii.
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Fig. 27. Sums of individual age probability distributions for stars with
different Rmean. All stars are included.

To address the question of whether Rmean is a valid proxy for
stellar birthplace, we see that the abundance trends for the differ-
ent Rmean bins in Figs. 26a–c are essentially identical to the ones
found by Bensby et al. (2010, 2011b), who studied 44 red giants
located in situ in the inner disk (R = 4 to 7 kpc) and 20 red gi-
ants located in situ in the outer disk (R = 9 to 12 kpc). Especially
the lack of younger stars with low [Ti/Fe] at [Fe/H] < −0.2 in
Fig. 26a, and the lack of older α-enhanced stars in Fig. 26c, agree
very well with the inner and outer disk in situ red giant samples
of Bensby et al. (2010, 2011b). These similarities could validate
the use of Rmean.

In Bensby et al. (2011b) the lack of α-enhanced stars in the
outer disk, even if they were located far (>1 kpc) from the plane,
was interpreted as the thick disk having a much shorter scale-
length than the thin disk. Shortly thereafter, Cheng et al. (2012)
used 5650 stars from the SEGUE survey and confirmed the short
scale-length of the thick disk. The local data presented here ap-
pears to confirm these conclusions.

7.4. Kinematics groups and star streams

7.4.1. Low-α halo

The abundance trend plots in Fig. 15 show a small number of
stars with [Fe/H] ≈ −1 that have lower [Ti/Fe] than the ma-
jority of the low metallicity stars in our sample. These stars are
of the same type stars as the inner halo stars found in Nissen &
Schuster (1997, 2010). The selection criteria applied to their halo
sample was that the stars should have VTOT > 180 km s−1, plus
a metallicity criterion (derived from uvby photometry). To their
surprise, they found that the halo stars clearly split into two abun-
dance trends, one with the high constant α-enhancement, and
one that shows a straight decline from [Fe/H] ≈ −1.6 to −0.8.
Although with some overlap, the low-α stars identified by Nissen
& Schuster (2010) generally had higher values on their total
space velocities than the high-α ones. An even better discrimina-
tor turned out to be the [Ni/Fe] – [Na/Fe] abundance space where
there was a very clear distinction, essentially without overlap,
between high- and low-α stars.

In Fig. 28a we show the [Ni/Fe] – [Na/Fe] abundance space
for our stars and the dividing line found Nissen & Schuster
(2010) is marked out. The stars that have VTOT > 180 km s−1

and that fall on either side of the dividing line is marked by solid
red and open blue circles, respectively. Figure 28b then shows
the [Ti/Fe] – [Fe/H] abundance plot with the potential high- and
low-α stars marked. It is clear that the abundance pattern ob-
served by Nissen & Schuster (2010) is also present in our sam-
ple, a low-α pattern and a high-α pattern the diverge with [Fe/H].
In Fig. 28c we then show the Toomre diagram with the high-
and low-α halo stars specially marked. Although they appeared
to show more different velocity distributions in the Nissen &
Schuster (2010) paper, it appears as if the low-α halo stars in
our sample on average have higher total space velocities. This
is also illustrated in Fig. 28d that shows the cumulative distri-
butions of the total space velocities for the two samples. As we
have quite a few high-α stars (blue circles) in the Toomre dia-
gram just outside the VTOT = 180 km s−1 line, we also show the
cumulative distributions when restricting to stars with velocities
greater than 200 km s−1.

Our results show that with our sample we can, at least tenta-
tively, confirm the Nissen & Schuster (2010) finding that in the
stellar halo, as sampled in the Solar neighbourhood, there exist
two different elemental abundance trends. The different abun-
dance trends are most likely indicative of differing origins for
these stars, and should be more extensively explored with larger
and complete samples, such as the sample from the Gaia-ESO
survey (Gilmore et al. 2012).

7.4.2. The Hercules stream

One structure of particular interest is the Hercules stream. As the
Hercules stream has a net velocity drift away from the Galactic
centre, it has been speculated that the Hercules stream stars have
a dynamical origin in the inner parts of the Galaxy where they
were kinematically heated by the central bar (e.g. Dehnen 2000;
Famaey et al. 2005). In Bensby et al. (2007a) we found that stars
that could kinematically be associated with the Hercules stream
did not have a distinct chemical signature but showed a mixture
of abundances and ages as seen in the thin and thick disks. As our
analysis has been updated since the 2007 paper (see Sect. 5), and
also since the comparison in Bensby et al. (2007a) was made to
the smaller thin and thick disk sample of 102 stars in Bensby
et al. (2005) we here reproduce the abundance plot compari-
son in Fig. 30a. Also, while we in Bensby et al. (2007a) chose
to include all stars with kinematical probabilities Herc/T D and
Herc/D to be greater than 1 (one), we have here required that
these probability ratios should be at least 2.

Our candidate Hercules stream stars are marked in Fig. 29a
by magenta circles, and also in the corresponding abundance
plot in Fig. 30a. We see that the abundance trend resembles very
much the trend we see for the inner disk stars in Fig. 26a, i.e.
there are α-enhanced and old stars, as well as younger and less
α-enhanced around solar [Fe/H]. There is also a lack of low-
α stars at lower [Fe/H], in the same way as for the inner disk
sample. Figure 30c shows a comparison between the age dis-
tributions of the candidate Hercules stream stars and the “inner
disk sample” that have Rmean < 7 kpc (dashed blue line) as well
as the stars in our sample that have 7 < Rmean < 9 kpc (dot-
ted black line). It is clear that the it does not fit either of them,
but lies somewhere in between. As the Hercules stream stars
have a net velocity component directed radially outwards from
the Galactic centre, the resemblance is consistent with origins at
slightly smaller Galactocentric radii.
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Fig. 28. a) [Ni/Fe] – [Na/Fe] for the sample where the solid line marks the approximate separation between the low-α and high-α halo populations
discovered by Nissen & Schuster (2010). Stars that have a total space velocity greater than VTOT > 180 km s−1 have been marked by open blue
circles if located on the upper-right side of the dividing line, and by solid red circles if located on the lower-left side. b) [Ti/Fe] – [Fe/H] for the
sample with the same coding as in a). c) Toomre diagram with the same coding as in a). The curved line marks VTOT = 180 km s−1. d) Cumulative
distributions of VTOT: dashed red line represents the red stars in a)–c), solid blue line the blue stars in a)–c), and dotted blue line the blue stars
in a)–c) but only including stars with VTOT > 200 km s−1.

Fig. 29. Stars that have kinematic probabilities of belonging to the
Hercules stream (Her/T D > 2 and Her/D > 2) are marked by larger
circles, and candidate Arcturus stream stars by larger squares. The sizes
of the markers have been scaled with the ages of the stars.

7.4.3. The Arcturus moving group

Gilmore et al. (2002), and later Wyse et al. (2006), identified
a group of stars lagging behind the LSR by ∼100 km s−1, that
they claim to be associated with a disrupted satellite that merged
with the Milky Way 10–12 Gyr ago. Navarro et al. (2004) sug-
gest that these stars are the same group of stars that Eggen (1971)

associated with the bright star Arcturus, whose Galactic orbital
velocity also lags behind the LSR by ∼100 km s−1.

Both Williams et al. (2009) and Ramya et al. (2012) observed
candidate members of the Arcturus moving group but could find
no clear chemical signature of those stars compared to the abun-
dance pattern seen in the Solar neighbourhood, and conclude
that it most probably owes its origin to dynamical perturbations
within the Galaxy.

The green squares in Fig. 29a with −115 < VLSR <
−85 km s−1 mark the stars in our sample that could be associated
with the Arcturus moving group. The corresponding abundance
plot is shown in Fig. 30b. We find that a majority of the stars are
α-enhanced and older than 10 Gyr, and a few have younger ages
and are less α-enhanced. The general appearance is very similar
to what wee see in the thick disk. The similarities to the thick
disk is also demonstrated in Fig. 30d that compares the age dis-
tribution of the candidate Arcturus group stars (solid green line)
with stars that are likely thick disk stars (TD/D > 10, dashed red
line). The two distributions almost identical. A two-sided KS -
test gives D = 0.09 and p = 0.91, showing that the hypothesis
that the two age distributions are the same cannot be rejected at
the 91% level.

The extended range in [Fe/H] and level of α-enhancement
in the candidate Arcturus group stars is very different to what
is seen in dwarf galaxies (Venn et al. 2004). Instead these prop-
erties, as well as stellar ages, are very similar to what is seen
in the thick disk. Hence, we conclude that there is no clear sig-
nature of an extra-galactic origin, nor disrupted cluster, for the
Arcturus group, confirming the conclusions by Williams et al.
(2009) and Ramya et al. (2012). The structure in velocity space
associated with the Arcturus group is more likely a dynamical
feature caused within the Milky Way. Actually, Gardner & Flynn
(2010), and more recently Monari et al. (2013), showed that the
Galactic long bar produces a kinematic feature in velocity space
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Fig. 30. a) and b) show the [Ti/Fe] – [Fe/H] abundance plots for the
candidate Hercules stream and Arcturus group stars, respectively. Same
markers as in Fig. 29. c) and d) show the cumulative age distributions
for the candidate Hercules and Arcturus stars, respectively (coloured
as in a) and b)). In c) the dotted black line represents stars with 7 <
Rmean < 9 kpc and the dashed blue line stars with Rmean < 7 kpc (com-
pare Fig. 26). In d) the dashed red line represents stars with TD/D > 10.

with the same parameters as those of the Arcturus moving group.
In contrast, the short bar is believed to be responsible for the
kinematic feature associated with the Hercules stream, assum-
ing that there are, in fact, two bars.

8. Summary

We have conducted a homogeneous detailed elemental abun-
dance study of 714 F and G dwarf stars in the Solar neigh-
bourhood. The stars in the sample were selected on the basis
of their kinematics and metallicities to trace the age and abun-
dance structures of the Galactic thin and thick disks, the stellar
halo, as well as kinematic groups such as the Hercules stream
and the Arcturus moving group. Hence, the selection function is
very complex and the sample should not be used to infer various
parameter distributions of the two disks. It is, however, well-
suited to probing the properties of kinematic sub-structures in
the Galactic disk and the extremes of the thin and thick disks.

The analysis is based on equivalent width measurements
in high-resolution and high signal-to-noise spectra, and 1D,
LTE, plane-parallel MARCS model stellar atmospheres. Stellar

parameters and abundances were determined following a purely
spectroscopic approach, i.e. surface gravity from ionisation bal-
ance between Fe  and Fe , effective temperature from excita-
tion balance of Fe , and microturbulence from the balance of
Fe  with reduced line strength. All Fe  abundances were cor-
rected for NLTE effects on a line-by-line basis in every step
of the analysis. We note that the excitation and ionisation bal-
ance method appears to fail for stars on the lower main sequence
(Teff � 5600 K and log g � 4.2), producing an erroneously hor-
izontal main sequence that is not seen if log g is determined
from H parallaxes. As we wanted to keep the analy-
sis strictly spectroscopic, and distance-independent, we applied
an empirical correction that was derived through comparisons to
stars that have small uncertainties in their parallaxes.

In summary, our main findings and conclusions are:

1. The Solar neighbourhood appears to contain two stellar pop-
ulations that have distinct, elemental abundance trends with
a gap in the [α/Fe] − [Fe/H] plane for metallicities be-
tween −0.7 < [Fe/H] < −0.2. This gap becomes more
prominent if stars that are more susceptible to uncertainties
(Teff < 5400 K) are discarded.

2. The α-enhanced population is old and reaches at least solar
metallicities, if not higher. It also shows an age-metallicity
relation, from∼10 Gyr below [Fe/H] < −0.4 to around 8 Gyr
at [Fe/H] ≈ 0.

3. The α-poor population has a lower metallicity limit around
[Fe/H] ≈ −0.7. It does not show an age-metallicity relation,
but a wide spread in ages (between 2–7 Gyr) over the whole
metallicity range.

4. The α-enhanced and metal-rich stars around solar [Fe/H],
claimed by Adibekyan et al. (2011) to possibly be a unique
population of its own, cannot be resolved as a unique pop-
ulation in our data set. Instead we find that it most likely is
the metal-rich extension of the thick disk. The status of the
HAMR stars should be further explored with a sample that
has a controlled and well-defined selection function.

5. A majority of the stars that are old and α-enhanced have
Galactic orbits with Rmean < 7 kpc showing that their birth-
places are located in the Galactic inner disk, significantly
closer to the Galactic centre than the Sun. The stars with
Rmean > 9 kpc on the other hand, are essentially all young
and less α-enhanced. This finding is consistent with a short
scale-length for the thick disk that was proposed by Bensby
et al. (2011b) and later verified by Cheng et al. (2012) using
the Segue G dwarf sample.

6. Our solar abundances compare within ±0.05 dex with those
of nearby and young (thin disk) stars in a narrow metallicity
range around [Fe/H] = 0. Hence, we cannot claim that the
Sun’s abundances deviate significantly from those of other
nearby disk stars.

7. Kinematical criteria to select thin and thick disk stars are
significantly biased. Ages appear to be a better discrimina-
tor, but as ages with small error bars are notoriously difficult
to determine, age criteria also yield samples with overlap
between the two populations, although somewhat less than
when using kinematical criteria.

8. The Hercules stream does not show any distinct and/or ho-
mogeneous age or abundance patterns. Hence we confirm
previous findings that it most likely is a feature in velocity
space produced by dynamical interactions with the Galactic
(short?) bar.

9. The candidate stars of the Arcturus moving group shows an
abundance pattern that very much resembles what we see
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in the thick disk, confirming the conclusion of Ramya et al.
(2012) that it most likely is not a disrupted cluster. In addi-
tion we show that also the age distribution is very similar to
what is seen in the thick disk. Although an extra-galactic ori-
gin cannot be excluded, our results most likely suggests that
the Arcturus group is also a dynamical feature in velocity
space produced by the Galactic (long?) bar.

10. We also find that the standard 1D, LTE, analysis where sur-
face gravity is based on ionisation balance of abundances
from Fe  and Fe  lines, and effective temperature is based
on excitation balance of abundances from Fe  lines, pro-
duces an HR-diagram with where the lower main sequence
stars line up horizontally rather than showing the common
steady increase in log g with decreasing Teff on the lower
main sequence. We find that this most likely is an arte-
fact introduced by forcing ionisation balance for these stars.
Where the problem lies, if it is NLTE, 3D, or both, or some-
thing else, lies beyond the scope of the current paper. Instead
we apply an empirical correction based on a comparison
to stellar parameters where log g is determined from stars
that have accurate H parallaxes with uncertainties
less than 5%. From that comparison we see that stars in the
turn-off, subgiant, and giant regions of the HR diagram are
not affected. We also note that the “flat main sequence syn-
drome” appears to be present in several other studies that
utilise ionisation balance (e.g. Adibekyan et al. 2012), while
other studies that utilise other methods (H paral-
laxes) appears not to be hampered by the “flat main sequence
syndrome” (e.g. Reddy et al. 2003, 2006).
That log g cannot be readily determined from ionisation bal-
ance for lower main sequence stars may be a problem for
studies of distant stars where accurate distances are rarely
available. Ages and spectroscopic distances will be severely
affected for such stars. On the other side, studies of distant
stars usually utilise turn-off or more evolved stars, for which
log g:s from ionisation balance appears to be on par with
log g:s from stars with accurate H parallaxes.

The above findings show that the Milky Way indeed appears to
have dual stellar populations that are chemically distinct, as well
as separated in age. While the Galactic thick disk is more cen-
trally concentrated than previously thought, the thin disk is the
clearly dominant population in the outer disk, even at large dis-
tances from the Galactic plane. The epoch where we see a sep-
aration between the two disks, around 8 Gyr ago, coincides with
other observational evidence of mergers between the Milky Way
and another, dwarf galaxy. For instance, Gilmore et al. (2002)
and Wyse et al. (2006) claim to have detected debris stars from
a major merger ∼10 Gyr ago, and Deason et al. (2013) find that
the density profile of the Milky Way halo is discontinuous, and
that this break likely is associated with an early (6–9 Gyr ago)
and massive accretion event.

While this paper has presented the stellar sample, the obser-
vations, analysis, and results, we are delving into greater detail
on the dichotomy of the Milky Way stellar disk, and possible
formation scenarios for the thick disk (Feltzing et al., in prep.).
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Appendix A: Kinematical selection criteria

The kinematical criteria that we have used as a starting point
to select candidate thin and thick disk stars assumes that the
Galactic space velocities (ULSR, VLSR, and WLSR) of the stellar
populations have Gaussian distributions,

f = k · exp

⎛

⎜

⎜

⎜

⎜

⎝

−
(ULSR − Uasym)2

2σ2
U

−
(VLSR − Vasym)2

2σ2
V

−
W2

LSR

2σ2
W

⎞

⎟

⎟

⎟

⎟

⎠

,

(A.1)

where

k =
1

(2π)3/2σUσVσW

(A.2)

normalises the expression. σU , σV , and σW are the characteris-
tic velocity dispersions, and Vasym is the asymmetric drift. The
values for the velocity dispersions, rotational lags, and normal-
isations in the Solar neighbourhood that we used are listed in
Table A.1.

Table A.1. Characteristics for stellar populations in the solar
neighbourhood† .

σU σV σW Uasym Vasym X

———– [km s−1] ———–
Thin disk 35 20 16 0 −15 0.85
Thick disk 67 38 35 0 −46 0.09
Halo 160 90 90 0 −220 0.0015
Hercules 26 9 17 −40 −50 0.06
Arcturus ? ? ? ? −100 ?

Notes. (†) Columns (2)–(4) give the velocity dispersions (σU, σV,
and σW) for the different populations in Col. (1); Cols. (5)–(6) give the
asymmetric drifts (in U and V) relative to the LSR; and Col. (7) gives
the normalisation fractions for each population in the Solar neighbour-
hood (in the Galactic plane). Values are taken from Bensby et al. (2005,
2007a) for the thin disk, thick disk, the stellar halo, and the Hercules
stream. For the Arcturus moving group only the VLSR velocity is know
and is taken from Williams et al. (2009).

To get the probability (which we will call D, T D, and H,
for the thin disk, thick disk, and stellar halo, respectively) that a
given star belongs to a specific population the probabilities from
Eq. (A.1) should be multiplied by the observed fractions (X)
of each population in the Solar neighbourhood. By then divid-
ing the thick disk probability (T D) with the thin disk (D) and
halo (H) probabilities, respectively, we get two relative probabil-
ities for the thick disk-to-thin disk (T D/D) and thick disk-to-halo
(T D/H) membership, i.e.

TD/D =
XTD

XD
·

fTD

fD
, (A.3)

and likewise for other probability ratios.

Appendix B: Description of error analysis method

The method is taken from Epstein et al. (2010) and is based on
the fact that the four stellar parameters m j = (Teff, ξt, log g,
log(Fe)) have been determined using four observables, oi:

– o1: the first observable is the slope from the linear regression
when plotting abundances from Fe  lines versus excitation
potential. For the best fit of the effective temperature (Teff)
this slope should be zero;

– o2: the second observable is the slope from the linear re-
gression when plotting abundances from Fe  lines versus re-
duced line strength (log(W/λ)). For the best fit of the micro-
turbulence parameter (ξt) this slope should be zero;

– o3: the third observable is the abundances from Fe  and
Fe  lines. For a correctly determined surface gravity, they
should be equal;

– o4: the fourth observable is the difference between the out-
put abundance from Fe  lines and the input metallicity of
the stellar model that is used. For the best fit this difference
should be zero.

Each observable can be written as a linear combination of devi-
ations from the best fit model:

oi = o0
i +

4
∑

j=1

bi j(m j − m0
j), (B.1)

where bi j = ∂oi/∂m j = ∆oi/∆m j are the partial derivatives
of the observables. The values for bi j are determined by vary-
ing each of the stellar parameters one at a time by an amount
of ∆m j. We choose to set ∆m1 = ±100 K, ∆m2 = ±0.1 km s−1,
∆m3 = ±0.1 dex, and ∆m4 = ±0.1 dex. Applying these changes
in the stellar parameters, we then calculate four sets of new abun-
dances for all lines. Compared to the best fit model, we will now
see changes in the observables ∆oi = oi − o0

i
(where o0

i
is the

value of the observable from the best fit model). Eq. (B.1) gives
a system of equations to be solved. Inverting the 4 × 4 matrix
of bi j gives a new 4 × 4 matrix of elements cik. As each observ-
able oi is associated with an error (σk), the uncertainties in the
stellar parameters (mi) can be then solved as:

σ(mi) =

√

√

√ 4
∑

k=1

c2
ik
σ2

k
. (B.2)

For o1, which is the slope of the Fe  abundances versus exci-
tation potential that is used for the determination of Teff, we
take σ1 as the uncertainty of the linear regression in that plot.
For o2, which is the slope of the abundances from Fe  lines
versus reduced line strength, we take σ2 as the uncertainty of
the linear regression in that plot. For o3, σ3 is connected to the
formal errors in the Fe  and Fe  abundances. σ4, associated
with the observable for the balance between input and output
abundances, is similar to σ3, but since we only use Fe  lines to
measure log(Fe), we use the formal error that we measure for
abundances from Fe  lines as σ4. The final estimates of the un-
certainties in the stellar parameters, as calculated by Eq. (B.2),
are given together with the best fit values of the stellar parame-
ters in Table C.3.

The measured abundance of an element (X) can be written
as a linear combination of deviations from the best fit model

X = X0 +

4
∑

j=1

κ j(m j − m0
j) = X0 +

4
∑

j=1

α j(o j − o0
j), (B.3)

where the partial derivatives κ j = ∂X/∂m j = ∆X/∆m j are cal-
culated for all elements (X) by changing the stellar model atmo-
sphere parameters by the same amounts as when determining bi j

above, and α j is given by

α j =

4
∑

k=1

κk · ck j. (B.4)
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The error in the measured average abundance for an element then
becomes

σX =

√

√

√

σ2
X0
+

4
∑

k=1

α2
k
· σ2

k
(B.5)

where σk are the uncertainties in the observables as given above,
and σX0 is the formal error of the measured abundance. The un-
certainty in a measured abundance ratio [X/Y] is then

σXY =

√

√

√

σ2
X
+ σ2

Y
− 2

4
∑

k=1

αk,X · αk,Y · σ
2
k
. (B.6)

Uncertainties in the stellar parameters and in the abundance ra-
tios ([X/Fe] and [X/Ti]) are given in Table C.3 for all 714 stars.

Appendix C: Description of online tables

We are providing three online tables. The first table (Table C.1)
lists the stars that were rejected from further analysis. The rea-
sons are given in the table but the main causes are that the stars
are either spectroscopic binaries and/or rotated too fast to allow
for proper measurements of the equivalent widths. The next table
(Table C.2) gives the atomic data and the equivalent widths and
elemental abundances for individual lines in the Sun. The third
table (Table C.3) gives the results, kinematics, ages, abundance
ratios, and uncertainties for the full sample of 714 stars. Details
on all three tables are given below.

Table C.1. Stars observed but rejected from analysis.

HIP Comment
238 Too high rotation
..
.

..

.

Notes. The table is only available in electronic form at the CDS.

Table C.2. Atomic line data and measured equivalent widths and abso-
lute abundances in the Sun.

Element Ion Wavelength log g f LEP EW Abun
[Å] [eV] [pm]

O 1 7771.940 0.37 9.14 68.1 8.83
...

...
...

...
...

...
...

Notes. The table is only available in electronic form at the CDS.

Table C.3. Stellar parameters, ages, abundance ratios, uncertainties, and
kinematical properties for the 714 stars.

Column Label Unit Comment
(1) HIP
(2) Spec Spectrograph
(3) Teff K
(4) ǫ(Teff) K
(5) log g
(6) ǫ(log g)
(7) ξt km s−1

(8) ǫ(ξt) km s−1

(9) log ε(Fe ) Absolute abundance from Fe  lines
(10) log ε(Fe ) Absolute abundance from Fe  lines
(11) mass sun Best mass
(12) massl sun Lower limit on mass
(13) massu sun Upper limit on mass
(14) Age Gyr Best age
(15) Agel Gyr Lower limit on age
(16) Ageu Gyr Upper limit on age
(17) [Fe/H] Sun
(18) [O/Fe] Sun
(19) [Na/Fe] Sun
(20) [Mg/Fe] Sun
(21) [Al/Fe] Sun
(22) [Si/Fe] Sun
(23) [Ca/Fe] Sun
(24) [Ti/Fe] Sun
(25) [Cr/Fe] Sun
(26) [Ni/Fe] Sun
(27) [Zn/Fe] Sun
(28) [Y/Fe] Sun
(29) [Ba/Fe] Sun
(30) ǫ[Fe/H] Abundance ratio uncertainty
(31) ǫ[O/Fe]
(32) ǫ[Na/Fe]
(33) ǫ[Mg/Fe]
(34) ǫ[Al/Fe]
(35) ǫ[Si/Fe]
(36) ǫ[Ca/Fe]
(37) ǫ[Ti/Fe]
(38) ǫ[Cr/Fe]
(39) ǫ[Ni/Fe]
(40) ǫ[Zn/Fe]
(41) ǫ[Y/Fe]
(42) ǫ[Ba/Fe]
(43) [Ti/H] Sun
(44) [O/Ti] Sun
(45) [Na/Ti] Sun
(46) [Mg/Ti] Sun
(47) [Al/Ti] Sun
(48) [Si/Ti] Sun
(49) [Ca/Ti] Sun
(50) [Cr/Ti] Sun
(51) [Ni/Ti] Sun
(52) [Fe/Ti] Sun
(53) [Zn/Ti] Sun
(54) [Y/Ti] Sun
(55) [Ba/Ti] Sun
(56) ǫ[Ti/H] Abundance ratio uncertainty
(57) ǫ[O/Ti]
(58) ǫ[Na/Ti]
(59) ǫ[Mg/Ti]

Notes. The table is only available in electronic form at the CDS.
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Table C.3. continued.

ColumnLabel Unit Comment
(60) ǫ[Al/Ti]
(61) ǫ[Si/Ti]
(62) ǫ[Ca/Ti]
(63) ǫ[Cr/Ti]
(64) ǫ[Ni/Ti]
(65) ǫ[Fe/Ti]
(66) ǫ[Zn/Ti]
(67) ǫ[Y/Ti]
(68) ǫ[Ba/Ti]
(69) N(Fe ) Number of lines used
(70) N(Fe )
(71) N(O )
(72) N(Na )
(73) N(Mg )
(74) N(Al )
(75) N(Si )
(76) N(Ca )
(77) N(Ti )
(78) N(Ti )
(79) N(Cr )
(80) N(Cr )
(81) N(Ni )
(82) N(Zn )
(83) N(Y )
(84) N(Ba )
(85) σ(Fe ) 1-σ line-to-line dispersion
(86) σ(Fe )
(87) σ(O )
(88) σ(Na )
(89) σ(Mg )
(90) σ(Mg )
(91) σ(Si )
(92) σ(Ca )
(93) σ(Ti )
(94) σ(Ti )
(95) σ(Cr )
(96) σ(Cr )
(97) σ(Ni )
(98) σ(Zn )
(99) σ(Y )
(100) σ(Ba )
(101) π mas H plx
(102) σπ mas plx uncertainty
(103) d kpc Distance
(104) l deg Galactic longitude
(105) b deg Galactic latitude
(106) ULSR km s−1

(107) VLSR km s−1

(108) WLSR km s−1

(109) Rmin kpc
(110) Rmax kpc
(111) zmax kpc
(112) e
(113) LZ

(114) E/ELSR Total energy normalised to the LSR
(115) T D/D
(116) T D/H
(117) Her/T D
(118) Her/D

(119) Teff (u.i.b) K Un-corrected ion.bal temp
(120) log g (u.i.b) Un-corrected ion.bal grav
(121) Teff (hip) K H temp
(122) log g (hip) H grav
(123) log ε(Fe ) (hip) Absolute abundance using H plx
(124) log ε(Fe ) (hip) Absolute abundance using H plx
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