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Abstract

Oxygen is required for the survival of the majority of eukaryotic organisms, as it is important for many cellular processes. 

Eukaryotic cells utilize oxygen for the production of biochemical energy in the form of adenosine triphosphate (ATP) 

generated from the catabolism of carbon-rich fuels such as glucose, lipids and glutamine. The intracellular sites of oxygen 

consumption-coupled ATP production are the mitochondria, double-membraned organelles that provide a dynamic and 

multifaceted role in cell signalling and metabolism. Highly evolutionarily conserved molecular mechanisms exist to sense 

and respond to changes in cellular oxygen levels. The primary transcriptional regulators of the response to decreased oxygen 

levels (hypoxia) are the hypoxia-inducible factors (HIFs), which play important roles in both physiological and pathophysi-

ological contexts. In this review we explore the relationship between HIF-regulated signalling pathways and the mitochondria, 

including the regulation of mitochondrial metabolism, biogenesis and distribution.
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Introduction

In humans (and other higher eukaryotes) the availability of 

molecular oxygen is an important determinant of biologi-

cal outcomes in both physiological and pathophysiological 

processes, ranging from vascular patterning and tissue archi-

tecture during development, to the proliferation, invasive-

ness and metastasis of malignant cells in cancer. Oxygen is 

important for many cellular processes by cells to produce 

biochemical energy in the form of adenosine triphosphate 

(ATP) [1]. The sites of oxygen consumption-coupled ATP 

production in the cell are the mitochondria, which are there-

fore centrally important organelles for cell survival, as well 

as in influencing oxygen availability both inside and outside 

the cell. There are numerous non-mitochondrial processes 

which also generate ATP, such as glycolysis [1], and the 

enzyme creatine kinase (CK) which plays an important 

role in buffering ATP levels in tissues with high energetic 

demands such as skeletal muscle [2, 3]. Furthermore, a 

small number of eukaryotes are facultative anaerobes, and 

can generate ATP and survive in environments with little or 

no oxygen, such as yeast [4] and aquatic invertebrates [5].

In humans, reductions in the availability of oxygen 

(hypoxia) are sensed directly and indirectly by several cel-

lular signalling pathways, which elicit a variety of transcrip-

tional, metabolic and morphological responses to maintain 

cellular homeostasis. The major transcriptional regulators 

of the response to hypoxia consist of a highly evolutionar-

ily conserved oxygen-regulated family of transcription fac-

tors, named the hypoxia-inducible factors (HIFs) [6, 7]. The 

HIFs are dimeric transcription factors that consist of a HIF-α 

subunit (HIF-1α or HIF-2α) which is rapidly degraded in an 

oxygen-dependent manner [6, 8–10], and a proteolytically 

stable beta subunit [7, 11]. The alpha subunit is continu-

ously synthesised in the cytosol, where it is rapidly degraded 

by the 26S proteasome under normoxic conditions [10]. 

When oxygen is limiting, HIF-α is stabilised, and translo-

cates to the nucleus, where it binds to conserved sequences 

(RCGTG) in the promoter regions of HIF-regulated genes 

[9, 12, 13], which are named hypoxia response elements 

(HREs). Transcriptional transactivation of genes is depend-

ent on the association of the HIF-α with the HIF-1β subunit, 

also known as ARNT (aryl-hydrocarbon-receptor nuclear 

translocator) [14, 15], as well as other coactivators such as 
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CBP/p300 (CREB-binding protein/adenovirus E1A-binding 

protein p300) [16].

The transcriptional targets of HIF include genes involved 

in cell survival and metabolism [17], and are thus essential 

for the adaptation of cells to hypoxia. A growing number 

of HIF targets directly or indirectly influence mitochon-

drial biology, and there is a reciprocal relationship between 

mitochondria and the HIF pathway. In this review, we will 

explore the relationship between HIF and mitochondria, with 

particular focus on cancer. It is important to note, however, 

that HIFs have significant cell-specific roles in non-trans-

formed cells, resulting in different outcomes under hypoxic 

stress, e.g. the hypoxic preconditioning of cardiomyocytes 

and neurons in ischaemic disease [18, 19], the metabolic 

adaptation of skeletal muscle to altitude-related hypoxia 

[20], and the enhancement of neutrophil lifespan in hypoxic 

niches [21].

Mitochondria, oxygen consumption 
and energy production

The eukaryotic mitochondrion is hypothesised to have 

arisen as the result of an endosymbiotic fusion between an 

archaeal host cell and a protobacterium that had evolved 

the ability to generate chemical energy through oxidative 

phosphorylation (OXPHOS) [22, 23]. One fundamental out-

come of mitochondrial endosymbiosis was the acquisition by 

eukaryotes of the means to harness the oxidative power of 

molecular oxygen to efficiently generate large quantities of 

energy in the form of ATP, through enzymatic means. The 

mitochondrial ATP synthase is an F1F0-type ATP synthase, 

which catalyses the phosphorylation of adenosine diphos-

phate (ADP) to ATP, is powered by a proton-motive gradient 

between the inner matrix of the mitochondria and the inter-

membrane space (IMS). This proton gradient is formed by 

the action of three protein complexes, namely Complex (C)

I, CIII and CIV, which ‘pump’ protons against the gradient 

from the matrix into the IMS. The proton-motive action of 

CI, CIII and CIV is energetically unfavourable, and therefore 

requires energy in the form of serial transmission of elec-

trons between the complexes through two intermediaries, 

ubiquinone (CI and CII–CIII) and cytochrome c (CIII–CIV), 

which together is referred to as the electron transport chain 

(ETC), or respiratory chain. Electrons are supplied to the 

ETC by a sequence of reactions in the matrix of the mito-

chondria termed the tricarboxylic acid (TCA) cycle, which 

produces three reducing (electron donating) equivalents of 

NADH, and one reducing equivalent of  FADH2. The termi-

nal electron acceptor in the chain is CIV, which combines 

molecular oxygen, protons and the electrons received from 

CIII via cytochrome c, to produce water. Energy can also be 

produced through the glycolytic metabolism of glucose to 

pyruvate in the absence of oxygen, and pyruvate can then 

undergo anaerobic fermentation to lactate, rather than under-

going oxidation in the mitochondria. However, the yield of 

ATP from glycolysis alone is only 2 molecules per molecule 

of glucose consumed, compared with 30–38 molecules of 

ATP through glycolysis combined with oxidative phospho-

rylation [1]. Thus, oxidative phosphorylation maximises the 

release of energy stored in carbon-rich fuels such as glucose 

for use by the cell (Fig. 1).

As the major oxygen-consuming organelle of the cell, 

mitochondria are uniquely dependent on the continued avail-

ability of oxygen for ETC function. Indeed, it has been esti-

mated that as much as 90% of cellular oxygen consumption 

is carried out by cytochrome c oxidase (CIV), which has a 

very high affinity for oxygen, with a Km in the sub-micro-

molar range [24]. As a consequence, adaptations to hypoxia 

have evolved for cells to maintain bioenergetic homeosta-

sis, while minimising the harmful effects of decreased oxy-

genation such as reactive oxygen species (ROS) production. 

Many of these adaptations involve communications to and 

from mitochondrial metabolic pathways as well as changes 

in mitochondrial morphology, dynamics and subcellular 

localization. Adaptations to hypoxia are exquisitely con-

trolled by HIF and the hypoxia-response machinery of the 

cell, which includes various signalling pathways and gene 

expression changes regulated by HIF.

Oxygen‑dependent regulation of HIF 
signalling

The transcriptional activity of HIF-α proteins is regulated 

in an oxygen-dependent manner by controlling their protein 

stability in the cytosol, and through regulation of their bind-

ing to transcriptional coactivators in the nucleus. Regula-

tion at both levels is mediated by the hydroxylation of spe-

cific amino acids by oxygen-dependent dioxygenases. Two 

classes of dioxygenases are capable of hydroxylating HIF-α 

proteins: the proline-targeting prolyl hydroxylase domain 

(PHD)-containing enzymes (1, 2 and 3) [25–27], and the 

asparagine-targeting factor inhibiting HIF (FIH) enzyme 

[28–30]. Both classes of enzyme catalyse the oxidative 

decarboxylation of 2-oxoglutarate [2-OG, or α-ketoglutarate 

(α-KG)], which produces carbon dioxide, and succinate as 

by-products. Iron in the ferrous  (Fe2+) oxidation state is also 

required, which is maintained in this state by the reducing 

action of ascorbic acid [31, 32]. Proline hydroxylation of 

HIF-α subunits by the PHDs permits their recognition and 

binding by the von-Hippel Lindau protein (pVHL) [10, 25, 

26] (also see Fig. 1), which is the recognition component of 

a multimeric ubiquitin ligase. pVHL, along with elongin B 

(TCEB2), elongin C (TCEB1), cullin 2 (CUL2) and ring-

box 1 (RBX1), is responsible for the ubiquitination of HIF-α 



1761Exploring the molecular interface between hypoxia-inducible factor signalling and…

1 3

subunits which targets the protein for proteasomal degrada-

tion [33]. Loss of pVHL activity through mutation leads 

to constitutive stabilisation of HIF-α proteins in normoxia, 

which contributes to disease progression in the tumour syn-

drome von-Hippel Lindau Disease [34, 35]. Hydroxylation 

by FIH does not affect HIF-αprotein stability, but rather 

inhibits the interaction between HIF-α subunits and the tran-

scriptional co-activator, CREB-binding protein (CBP/p300) 

[28–30], which inhibits the transactivation of target genes 

by HIFs. In conditions of hypoxia, the hydroxylase activity 

of the PHDs and FIH is inhibited, which blocks the bind-

ing and ubiquitination of HIF-α proteins by pVHL, leading 

to cytoplasmic stabilisation of the HIF-α subunits [25–29]. 

Accumulated HIF-α translocates to the nucleus, where they 

then bind to HREs, dimerise with HIF-β subunits and recruit 

additional transcriptional co-activators to transactivate the 

transcription of hypoxia-responsive genes [36, 37].

HIF‑dependent regulation of mitochondria

The reduction in oxygen availability under hypoxia means 

that cells must adapt their metabolic programme to main-

tain the catabolic and anabolic reactions that rely on the 

availability of ATP normally supplied by OXPHOS. In gen-

eral, HIF-1 signalling is considered to support anaerobic 

ATP production and downregulate OXPHOS, thus reducing 

the cell’s reliance on oxygen-dependent energy production 

[38]. Indeed, this metabolic reprogramming under hypoxia 

was one of the first functions ascribed to HIF-1 activity [8, 

39, 40]. While there is evidence that HIF-1α and HIF-2α 

have some opposing roles when co-expressed, with relation 

to mitochondrial function, both have been shown to act to 

decrease a cell’s dependence on mitochondrial OXPHOS 

in a similar manner [41]. For example, in the absence of 
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Fig. 1  Oxygen-dependent ATP synthesis and HIF-α degradation. 

ATP is synthesised in the mitochondria by an F1F0-type ATP syn-

thase, also known as CV (V). It uses energy provided by an electro-

chemical gradient formed through proton (H +) pumping between the 

mitochondrial matrix and the intermembrane space, which is carried 

out by CI, CIII and CIV. Proton transfer against this electrochemical 

gradient is energetically unfavourable, and is therefore powered by 

serial transfer of electrons (e–) from CI and CII to CIII via ubiqui-

none (UQ), and from CIII to CIV via cytochrome c (cyt c). CIV com-

bines these electrons with molecular oxygen (O2) and protons to pro-

duce water (H2O). Electrons are provided to the ETC by the reducing 

equivalents NADH (to CI) and FADH2 (to CII), which are produced 

at various steps in the TCA cycle. Oxygen is also used to regulate 

the stability of HIF-α subunits. In the presence of oxygen, PHD and 

FIH enzymes hydroxylate specific residues on HIF-α proteins, which 

permit their recognition and ubiquitination by pVHL. Polyubiquitina-

tion of HIF-α proteins then targets them for degradation by the 26S 

proteasome
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HIF-1α, as in the case of certain renal cell carcinomas, 

HIF-2α instigates the same remodelling of cellular metabo-

lism away from OXPHOS and towards anaerobic means of 

ATP production [42, 43].

Suppression of the TCA cycle and ETC activity

As mentioned above, the TCA cycle is a series of enzymat-

ically catalysed reactions in the mitochondrial matrix, that 

provide electrons to the ETC, in the form of the reducing 

equivalents NADH and  FADH2. TCA cycle intermediates 

are derived from external carbon sources, whose catabo-

lism provides transitional metabolites that enter the TCA 

cycle at different points. Three major metabolites are used 

to provide carbons to replenish TCA cycle intermediates, 

namely glucose and fatty acids which are catabolised to 

acetyl-CoA, and glutamine, which in part is catabolised 

to succinyl-CoA via 2-OG by the TCA cycle. In hypoxia, 

HIF-regulated gene expression diverts glucose and fatty 

acid-derived carbons from being catabolised to acetyl-

CoA, while glutamine-derived carbons are diverted from 

being catabolised to succinyl-CoA (Fig. 2).
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Fig. 2  HIF-mediated changes to mitochondrial carbon metabolism. 

HIF signalling mediates an increase in anaerobic ATP production, by 

increasing glycolysis rates, through increased expression of glucose 

transporters GLUT1 and GLUT3, and almost all glycolytic enzymes, 

such as HK2 and ENO1. HIF signalling also diverts glucose-derived 

pyruvate away from mitochondrial respiration by increasing expres-

sion of LDHA, and PDK1, a negative regulator of PDH. Lactate 

efflux is increased by HIF-mediated increase in expression of MCT4. 

Fatty acids (FAs) are also diverted from catabolism to acetyl-CoA, 

through suppression of the rate-limiting enzyme in the mitochondrial 

import of FAs, CPT1. This is achieved through HIF-dependent upreg-

ulation of two negative regulators of PGC-1α expression, namely 

MXI1 and DEC1. FA import into the cell is increased by HIF-

dependent upregulation of FABP3 and FABP7, and their conversion 

to triglycerides and lipid droplets is increased, through upregulation 

of LPIN1 and PLIN2, respectively. Glutamine is diverted from oxida-

tion by the TCA cycle, through degradation of the 2-OG metabolising 

enzyme OGDH, by HIF-mediated increase in the expression of the 

OGDH-targeting SIAH2. This increases 2-OG availability for reduc-

tive carboxylation via IDH 1 and IDH2, which produces lipogenic 

acetyl-CoA. Glutamine flux to acetyl-CoA is also increased by HIF-

dependent upregulation of GLS1. Conversely, oxidation of acetyl-

CoA to 2-OG is suppressed through HIF-dependent upregulation of 

mir-210, which downregulates ISCU1/2, which is required for the 

activity of ACO
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To maintain ATP production from glycolysis in the con-

text of decreased oxidative phosphorylation, HIF upregu-

lates lactate dehydrogenase (LDHA) [8], an enzyme respon-

sible for the conversion of pyruvate to lactate, in a reaction 

which regenerates NAD (Fig. 2). This diverts pyruvate away 

from conversion to acetyl-CoA in the mitochondria and the 

TCA cycle, and suppresses ETC activity. HIF also upregu-

lates pyruvate dehydrogenase kinase 1 (PDK1), an enzyme 

responsible for the phosphorylation and inactivation of the 

mitochondrial enzyme pyruvate dehydrogenase (PDH) [38, 

44]. PDH is responsible for the mitochondrial conversion 

of pyruvate to acetyl-CoA, and without PDH activity more 

pyruvate is available for conversion to lactate by LDHA. 

In addition, HIF upregulates monocarboxylate transport 4 

(MCT4), a plasma membrane transporter which exports the 

increased levels of lactate out of the cell to maintain optimal 

cytoplasmic pH [45], and avoid competitive inhibition of 

LDHA. Lactate produced under hypoxic conditions is not 

merely a waste product, and can be re-oxidised by cells to 

pyruvate via LDHA, and thus contribute towards gluconeo-

genesis or oxidative phosphorylation upon reoxygenation 

[46–48]. In brain tissues, there is evidence to suggest the 

existence of a lactate shuttle whereby lactate exported from 

astrocytes under hypoxia can then be imported and utilised 

as a fuel by neurons [49, 50]. Similarly, lactate produced by 

skeletal muscle can be used as a fuel source by heart muscle 

under exercise-induced hypoxia [51]. Thus, HIF-mediated 

upregulation of LDHA under hypoxia can, in certain tissues, 

both decrease and increase mitochondrial activity to support 

energetic homeostasis. HIF also upregulates plasma mem-

brane glucose transporters (GLUT1, GLUT3) [40, 52, 53] 

and glycolytic enzymes such as hexokinase 2 (HK2) [54], 

aldolase A (ALDA) and enolase 1 (ENO1) [8]) to increase 

glycolytic flux and thus maintain ATP homeostasis, since 

glycolytic ATP production is less efficient (2 ATP/glucose 

molecule) than OXPHOS (30-36 ATP/glucose molecule).

Alongside glucose, lipids can be catabolised to pro-

duce acetyl-coA to replenish the TCA in a process called 

β-oxidation, which occurs almost exclusively in the 

mitochondria [55]. Indeed, when rates of glycolysis are 

decreased, β-oxidation is upregulated to ensure a contin-

ued supply of acetyl-CoA to support OXPHOS [56]. How-

ever, in the absence of oxygen, this process is inhibited 

by reduced respiratory chain activity, and through HIF-

mediated suppression of peroxisome proliferator-activated 

receptor gamma coactivator 1 alpha (PGC-1α), a transcrip-

tional co-activator and critical regulator of lipid homeosta-

sis [57] (described in more detail below) (Fig. 2). One of 

the transcriptional targets of PGC-1α is the mitochondrial 

protein carnitine palmitoyltransferase I (CPT1) [58] which 

catalyses the rate-limiting step in oxidation of long-chain 

fatty acids (C8 +), required for their mitochondrial import. 

Depletion of HIF-1α or HIF-2α in cultured hepatic cells 

has been shown to block the hypoxic suppression of PGC-

1α-regulated gene expression, including genes involved 

in lipid catabolism [59] (such as CPT1), while HIF-2α 

(Epas1) deletion, but not HIF-1α deletion, was found to 

have the same effect in hepatic mouse tissue [60].

HIF activity therefore suppresses the synthesis of both 

glucose-derived and fatty acid-derived acetyl-CoA through 

multiple means. In addition, HIF-1 has been shown to reg-

ulate the expression of proteins involved in the import of 

extracellular fatty acids across the plasma membrane, such 

as fatty acid-binding protein 3 and 7 (FABP3, FABP7) 

[61, 62], as well as enzymes involved in lipid storage, 

such as perlipin 2 (PLIN2) [63]. HIF-1 also regulates the 

expression of lipin-1 (LPIN1), an enzyme which catalyses 

the penultimate step in triglyceride synthesis [64]. As a 

consequence of decreased mitochondrial lipid catabolism 

and elevated lipid import, synthesis and storage, lipid 

accumulation in droplets is commonly observed in mul-

tiple cell types under hypoxia [65–67] (Fig. 2). Hypoxic 

lipid accumulation appears to be a precautionary survival 

mechanism in cancer cells, to protect from ROS-mediated 

damage and cell death during reoxygenation [63].

A further way that HIFs support lipid synthesis is 

through the stimulation of glutamine catabolism to replen-

ish TCA cycle intermediates, and ultimately generate lipo-

genic acetyl-CoA. Two distinct pathways exist to generate 

acetyl-CoA from glutamine, both the canonical conversion 

of glutamine-derived 2-OG to acetyl-CoA via malate [68], 

as well as the reductive carboxylation of 2-OG to pro-

duce acetyl-CoA via citrate through the reductive reverse 

reaction of isocitrate dehydrogenase (IDH) [69]. Under 

hypoxia, the canonical oxidative route is inhibited by 

HIF through the upregulation of siah E3 ubiquitin ligase 

2 (SIAH2), a mitochondrial ubiquitin ligase which leads 

to the proteolytic destruction of the TCA cycle enzyme 

oxoglutarate dehydrogenase (OGDH) [70]. OGDH catal-

yses the conversion of 2-OG to succinyl-CoA, and thus 

decreased OGDH activity increases the concentration of 

2-OG derived from glutamine (Fig. 2). The accumulated 

2-OG can then be converted back to acetyl-CoA through 

reductive carboxylation catalysed by the isocitrate dehy-

drogenase (IDH) enzymes, IDH1 (cytosolic) and IDH2 

(mitochondrial). Indeed, OGDH knock-out leads to nor-

moxic stabilisation of HIF-α proteins, highlighting the 

importance of this enzyme in the relationship between HIF 

and mitochondria [71]. Furthermore, HIF upregulates the 

enzyme glutaminase 1 (GLS1) [72], which is responsible 

for the conversion of glutamine to glutamate, thus increas-

ing the flux of glutamine to 2-OG, and on to lipogenic 

acetyl-CoA. While the precise contribution of HIF activ-

ity to glutamine-dependent lipid synthesis is unclear, both 

constitutive HIF-1 and HIF-2 signalling appear to be able 

to stimulate this metabolic shift [73].
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Hypoxic upregulation of microRNAs

A number of microRNAs (miRNAs) have been identified 

as regulators of genes involved in mitochondrial function, 

morphology and biogenesis (reviewed in [74]). One such 

miRNA is the HIF-upregulated miR-210 [75], which is com-

monly considered as the major hypoxia-responsive miRNA. 

miR-210 directly downregulates the expression of iron–sul-

phur cluster assembly proteins (ISCU) 1 and 2, leading to 

decreased incorporation of iron–sulphur clusters in proteins 

involved in mitochondrial metabolism, including Complex I, 

aconitase (ACO) [76] and SDHB [77] (Fig. 2). In addition, 

miR-210 has been shown to target and decrease the expres-

sion of the CIV assembly protein COX10 [78]. Together, 

these changes contribute to the reduction in OXPHOS under 

hypoxia, stimulated by HIF activity.

Detoxi�cation and suppression of ROS production

Hypoxia can stimulate the production of reactive oxygen 

species (ROS) from the mitochondria, largely from CIII 

[79], but also from CI and CII [80], as well as from enzymes 

of the TCA cycle such as OGDH [81]. Mechanistically, 

decreased CIV activity in hypoxia slows electron transfer 

along the ETC, increasing the likelihood of unwanted elec-

tron transfer to molecular oxygen, which produces the highly 

reactive superoxide anion (·O2
−). ROS can be extremely 

damaging to cells, causing peroxidation of membrane lipids, 

redox damage to proteins, and can introduce single-strand 

breaks into DNA. Because of the potential for ROS to dam-

age the cell, there are several cellular antioxidant defence 

systems, including detoxifying enzymes, and a large pool 

of the redox-active tripeptide, glutathione, to absorb free 

radicals and maintain protein redox states. HIF signalling is 

responsible for mitigating ROS-mediated damage in hypoxia 

in a variety of ways (Fig. 3).

Superoxide dismutases (SODs) catalyse the conversion of 

the superoxide radical to hydrogen peroxide  (H2O2), which 

in itself is a reactive species, but which can then be con-

verted to harmless water and oxygen by catalase enzymes. In 

mice, deletion of the epas1 gene identified that expression of 

the mitochondrial protein SOD2 was dependent on HIF-2α 

expression [82], while reporter gene assays in human cells 

showed that SOD2 expression was induced under hypoxia in 

a HIF-2 dependent manner [83]. Interestingly, SOD2 expres-

sion has also been shown to be suppressed under hypoxia in 

renal carcinoma cells in a HIF-1 dependent manner, suggest-

ing that SOD2 expression under hypoxia is context-specific 

[84], and may represent one of the opposing facets of HIF-1 

and HIF-2 activity.

The tripeptide glutathione (γ‐l‐glutamyl‐l‐cysteinylgly-

cine) represents another major defence against ROS [85]. 

Glutathione (represented as GSH) maintains protein redox 

status by serving as an electron donor, and is capable of 

reducing and breaking disulphide bonds in proteins that have 

been oxidised during oxidative stresses such as hypoxia. In 

the process, disulphide bonds are formed between cysteine 

thiol groups on adjacent molecules of glutathione, to pro-

duce glutathione disulphide (represented as GSSG) [85]. In 

addition, glutathione can directly detoxify hydrogen perox-

ide as a substrate of the peroxiredoxin (Prx) and glutathione 

peroxidase (GPx) enzymes [85, 86]. Glutathione disulphide 

(GSSG) is recycled to its monomeric form by the reducing 

power of NADPH, in a reaction catalysed by the enzyme 

glutathione reductase (GSR) [87]. As the reducing power 

of NADPH is essential for the recycling of glutathione 

and maintenance of this antioxidant defence, several key 

NADPH-producing pathways are upregulated under hypoxic 

conditions. Serine synthesis is one such pathway that gener-

ates NADPH, and HIF-1 has been shown to upregulate sev-

eral pathway enzymes, such as phosphoglycerate dehydro-

genase (PHGDH) [88], and the mitochondrial enzyme serine 

hydroxymethyltransferase 2 (SHMT2) in a MYC-dependent 

manner [89].

Not only does HIF-1 activity help to maintain glutathione 

in its decreased form, it also contributes to increased de novo 

glutathione synthesis (Fig. 3). HIF-1 is responsible for both 

upregulating enzymes directly involved in glutathione bio-

synthesis, and also enzymes involved in the biosynthesis of 

the three constituent amino acids of glutathione [88–90]. 

For example, while the serine biosynthetic pathway is an 

important source of NADPH, serine is also an important 

precursor for the synthesis of glycine and cysteine [91]. 

Thus, the HIF-1 dependent upregulation of serine synthesis 

pathway enzymes in hypoxia increases serine availability 

for glycine and cysteine synthesis. Furthermore, HIF-1 is 

responsible for the hypoxic upregulation of solute carrier 7 

family member 11 (SLC7A11), which is a component of the 

xCT cysteine import channel [90], thus increasing cysteine 

flux into the cell. SLC7A11 is an antiporter which exports 

one molecule of glutamate for every molecule of cysteine 

imported, but glutamate is the third component amino acid 

of glutathione, and so export of glutamate via SLC7A11 

would inhibit glutathione synthesis by depleting intracel-

lular glutamate levels. To counteract this, glutamate syn-

thesis from glutamine is increased through HIF-dependent 

upregulation of the glutaminase 1 and 2 enzymes (GLS1, 2) 

in the cytosol and mitochondria. Recent work has shown that 

HIF-1α stabilisation by hypoxia or EGLN1 (PHD2) deletion 

in periosteal progenitor cells stimulates GLS1 expression, 

and thus increases cellular glutathione levels, which protects 

these cells from ROS-mediated cell death [72]. Furthermore, 

HIF-1 has been shown to directly stimulate glutathione 

synthesis in breast cancer cells by upregulating the enzyme 

responsible for the rate-limiting step in the pathway, namely 

glutamate–cysteine ligase (GCLM) [90].
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Finally, while the HIFs bolster a cell’s antioxidant 

defence, they are also responsible for minimising ROS pro-

duction from the mitochondria in hypoxia. This is achieved 

firstly by reducing mitochondrial mass, as described in detail 

below, and also through regulating the expression of alter-

native isoforms of subunits of the respiratory complexes 

(Fig. 3). The CI subunit NADH dehydrogenase [ubiqui-

none] 1 alpha sub complex, 4-like 2 (NDUFAL2), is strongly 

induced in hypoxia in a HIF-1 dependent manner, and acts 

to decrease ETC activity and mitochondrial ROS produc-

tion [92]. The mechanism by which NDUFA4L2 decreases 

CI activity remains unknown, but it is induced in hypoxia 

in different cell types, and its expression is negatively cor-

related with expression of all other CI subunits in hypoxia. 

Similarly, HIF-1 decreases ROS production by upregulating 

an isoform of the CIV subunit COX4, namely cytochrome 

c oxidase subunit 4 isoform 2 (COX4-2), which makes 

electron transfer and oxygen consumption more efficient in 

hypoxia [93]. In parallel, HIF-1 upregulates the mitochon-

drial lon protease (LON), which is required for the degrada-

tion of the less efficient COX4-1 subunit [93].

Cytosol

Glutathione (GSH)

III

ROS

ROS

SOD2

2 GSH

Mitochondria

GSSG

Glutamate GlutamineCysteine

Glycine

γ-glutamylcysteine

GCLM

GLS1

CysteineGlucose

G
L
U
T
1

G
L
U
T
3

Pyruvate

SerinePHGDH3-PG

Glycine

CHO-THF THF

SHMT2

10-CHO-THF

NADP+

NADPH

Serine

SOD2

COX4-1COX4-2

LON

NDUFA4L2

GPXGR

Glutamate

S
L
C
7
A
1
1

Fig. 3  HIF-mediated suppression of ROS. Hypoxia stimulates ROS 

production, which can damage macromolecules such as proteins, 

lipids and DNA. HIF signalling upregulates synthesis of the anti-

oxidant tripeptide glutathione by multiple means. HIF upregulates 

expression of the rate-limiting enzyme in glutathione (GSH) synthe-

sis, GCLM, as well as proteins which increase the cellular levels of 

the three constituent amino acids of glutathione. Cysteine import is 

increased by upregulation of SLC7A11, while glutamate synthesis 

is increased by upregulation of GLS1. Glycine synthesis is increased 

by increased serine metabolism, first by its synthesis from glycolysis-

derived 3-PG, via HIF-dependent upregulation of PHGDH, and sec-

ond through its conversion to glycine via upregulation of the folate 

cycle enzyme SHMT2. The folate cycle also produces NADPH, 

which is utilised by GR to recycle glutathione disulphide (GSSG) 

to the ROS scavenging GSH. HIF signalling also upregulates the 

expression of SOD2, a mitochondrial enzyme capable of converting 

the superoxide free radical to  H2O2. Subunit switching is another way 

the HIF pathway reduces ROS production is also reduced by HIF-

mediated subunit switching of the ETC complexes. The HIFs upregu-

late expression of an alternative subunit of CI (I), NDUFAL2 which 

produces less ROS than isoform 1. Similarly, HIFs upregulate an 

alternative subunit of CIV (IV), COX4-2 which produces less ROS, 

as well as LON, which degrades isoform 2 (COX4-1)
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Together, these studies show that HIF signalling regulates 

mitochondrial ROS production and detoxification at multiple 

levels, which is essential for the maintenance of cell viability 

in hypoxia. It is important to note that there is a reciprocal 

relationship between HIF signalling and ROS, since ROS 

are capable of regulating HIF-α stabilisation under hypoxia, 

which is discussed in more detail.

Downregulating mitochondrial mass

New mitochondria are synthesised in advance of cell divi-

sion [94], in response to bioenergetic demand [95], and to 

replace damaged or unwanted mitochondria that have been 

cleared by mitochondrial autophagy (mitophagy) [96]. 

While mitochondria possess a small circular genome, mito-

chondrial biogenesis is largely regulated by the action of a 

number of nuclear-encoded genes. The first genes implicated 

in mitochondrial biogenesis were the nuclear respiratory fac-

tors (NRFs) 1 and 2, which are transcription factors that 

regulate the expression of many genes involved in OXPHOS, 

including all ten nuclear CIV subunit genes [97, 98]. Along 

with the NRFs, the orphan nuclear receptor estrogen-related 

receptor alpha (ERRα) [99] and the initiator element bind-

ing factor yin yang 1 (YY1) [100] are also involved in the 

expression of genes involved in mitochondrial function and 

biogenesis. The transcriptional activity of each of these 

nuclear factors is dependent on the expression and activity 

of the PGC family of transcriptional co-activators, which 

includes PGC-1α, PGC-1β, and PRC. Energetic stress can 

be signalled via AMP-activated protein kinase (AMPK) and 

sirtuin 1 (SIRT-1) to activate PGC-1α by phosphorylation 

[101] and deacetylation [95], respectively. Activation of 

PGC-1α and its subsequent association with other nuclear 

factors stimulates the expression of numerous genes involved 

in mitochondrial biogenesis, including genes that regulate 

replication such as DNA-directed RNA polymerase mito-

chondrial (POLRMT), as well as transcription and transla-

tion, such as transcription factor A mitochondrial (TFAM) 

of the mitochondrial genome [102].

There is considerable overlap between the AMPK and 

HIF signalling pathways, as both are involved in respond-

ing to energetic stresses, though the relationship is complex, 

with both opposing and co-operative outcomes depending 

on the context. For example, both AMPK and HIF increase 

glucose uptake [40, 103], glycolytic flux [54, 104] and 

autophagy [105, 106], and both suppress protein translation 

via mTOR [107, 108]. AMPK is also a potent stimulator of 

mitochondrial biogenesis as described above, which in nor-

moxic conditions acts to restore ATP homeostasis. However, 

under hypoxia which constitutes an energetic stress, and thus 

leads to AMPK activation [109], additional mitochondrial 

biogenesis and oxygen consumption would only exacerbate 

the stress caused by decreased oxygen availability, and thus 

HIF signalling under prolonged hypoxia generally acts to 

decrease mitochondrial mass. Thus, the HIF and AMPK 

signalling pathways respond to specific but related stresses, 

and are able to indirectly influence each other depending on 

the cellular context. A more detailed discussion of the rela-

tionship between HIF and AMPK signalling can be found 

elsewhere [110].

The relationship between HIFs and mitochondrial bio-

genesis has primarily been investigated in renal carcinoma 

cells, which are commonly deficient in pVHL activity [43, 

111, 112]. Loss of pVHL leads to constitutive stabilisation 

of HIF-α subunits, as well as constitutive expression of 

HIF-regulated genes. Microarray studies have shown that 

pVHL deficiency and constitutive HIF activation leads to 

the upregulation of genes involved the suppression of oxida-

tive phosphorylation, while reconstitution of pVHL reverses 

these gene changes, and increases both mitochondrial mass, 

ETC activity and oxygen consumption rates [57, 113]. One 

of these genes, MAX-interactor 1 (MXI1) encodes a nega-

tive regulator of C-MYC expression and activity, and thus 

constitutive MXI1 expression decreases C-MYC-dependent 

expression of PGC-1α, which suppresses mitochondrial 

biogenesis [113] (Fig. 4). While it appears that HIF-1 is 

unequivocally an antagonist of C-MYC, the relationship 

between C-MYC and HIF-2 is less clear. Co-immunopre-

cipitation experiments have shown that HIF-1α associates 

with and sequesters various cofactors required for C-MYC 

activity, including SP1 and MAX [41]. Conversely, HIF-2α 

overexpression increases C-MYC binding to these same 

cofactors, and increases the expression of C-MYC-regulated 

genes, such as cyclin D1 (CCND1) and transcription factor 

E2F1 (E2F1) to promote proliferation [41]. The expectation 

might then be that HIF-1 and HIF-2 have differential effects 

on mitochondrial biogenesis. However, a separate study 

showed that shRNA-mediated silencing of both HIF-1α and 

HIF-2α in pVHL deficient renal carcinoma cells suppressed 

MXI1 expression, leading to increased C-MYC-dependent 

PGC-1α expression, and increased mitochondrial biogen-

esis [57]. Both HIF-1 and HIF-2 have also been shown to 

positively regulate the expression of another transcriptional 

repressor, deleted in esophageal cancer 1 (DEC1), which 

suppresses PGC-1α expression [57], and leads to decreased 

mitochondrial biogenesis. Thus, while the regulation of 

mitochondrial biogenesis may represent one feature of the 

regulation of metabolism that differs between HIF-1 and 

HIF-2 in a context-specific manner, taken together the evi-

dence suggests that hypoxia (and HIF) stimulates a reduction 

in mitochondrial biogenesis.

In addition to the suppression of mitochondrial biogen-

esis, it has been reported that hypoxia induces mitochon-

drial turnover [114], through organelle-specific autophagy, 

termed ‘mitophagy’. Autophagy is a bulk degradative 

process which leads to the lysosomal digestion of cellular 
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contents, including whole organelles when they are dam-

aged or unwanted. Mitochondria are flagged for autophagy 

by various means, and each encourages the interaction of 

the outer mitochondrial membrane with nascent autophago-

cytic membranes, that eventually surround and isolate the 

unwanted mitochondrion (Fig. 4). Two such autophagic 

tags are the closely related proteins BCL2/adenovirus E1B 

19 kDa protein-interacting protein 3 (BNIP3) and BCL2/

adenovirus E1B 19 kDa protein-interacting protein 3-like 

(BNIP3L/NIX) [105], both of which are localised to the 

outer mitochondrial membrane, and are HIF-regulated genes 

that are strongly induced under hypoxia [115, 116]. While 

BNIP3 and NIX expression stimulate the expression of bio-

chemical markers of autophagy, such as LC3B lipidation 

[117], hypoxia-induced mitophagy has yet to be confirmed 

by more direct methods such as electron microscopy. Thus, 

while HIF-dependent BNIP3 and NIX expression correlate 

with decreased mitochondrial mass, the direct relationship 

between HIF signalling and mitophagy is incompletely 

understood.

Changing mitochondrial distribution

The name ‘mitochondria’ was coined in 1898 by Carl Benda, 

and is derived from the Greek words ‘mitos’ meaning 

‘thread’, and ‘chondros’ meaning ‘granule’. This describes 

the dual nature of mitochondria, as an interconnected net-

work of discrete compartments. The mitochondrial network 

is a highly dynamic cellular compartment, both in terms of 

its distribution and its morphology. The advent of live-cell 

imaging has uncovered the degree to which the mitochon-

drial network behaves like a single organelle that is in con-

stant flux with regard to its continuity and its localisation. 

In the majority of resting cells, the mitochondrial network 

is primarily reticulated and distributed throughout the cyto-

plasm, but mitochondria are far from static, and have varying 

degrees of motility depending on the cell type and context. 

In neurons, for example, mitochondria travel greater dis-

tances than in other cells because of their axon which can 

vary in length, and the high energetic demand of the remote 

synaptic terminal. Defects in mitochondrial trafficking have 

been identified in a number of neurodegenerative diseases in 

humans, including Alzheimer’s disease [118] and Hunting-

ton’s disease [119], while genetic deletion of various traf-

ficking proteins leads to neuronal phenotypes in mice [120] 

and drosophila [121]. Together, these examples indicate that 

the nervous system is particularly reliant on effective mito-

chondrial trafficking, which is likely due to the functionality 

of the neuronal type and length of their axons.

Hypoxia has been identified as one of the few bona fide 

physiological stimuli to induce a shift in the distribution of 

the mitochondrial network, and in all cases this has been 

Fig. 4  HIF-mediated regulation 

of mitochondrial mass. The HIF 

pathway reduces mitochondrial 

number in the cell by suppress-

ing mitochondrial biogenesis 

and increasing mitochondrial 

degradation through mitophagy. 

Mitochondrial biogenesis 

is regulated by the PGC-1α 

pathway, which upregulates 

mitochondrial proteins required 

for expression of genes encoded 

by the mitochondrial genome, 

such as TFAM and POLRMT. 

This is achieved through HIF-

dependent upregulation of two 

negative regulators of PGC-1α 

activity, namely MXI1, which 

inhibits C-MYC-directed 

PGC-1α expression, and 

DEC1, which inhibits PGC-1α 

transcription by binding to its 

promoter. HIF signalling also 

upregulates the expression of 

two related proteins expressed 

on the mitochondrial outer 

membrane, namely BNIP3 and 

NIX (BNIP3L). These proteins 

flag mitochondria for degrada-

tion by the autophagy pathway
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reported as a retrograde redistribution towards the nucleus 

(Fig. 5). A perinuclear accumulation of the mitochondrial 

network has been described after short (3 h) and long (72 h) 

exposures to hypoxia. This shift in distribution is microtu-

bule-dependent, and appears to be required for the efficient 

delivery of mitochondrial ROS to the nuclei, for the full 

activation of the promoter regions of certain HIF-1α target 

genes, including vascular endothelial growth factor (VEGF) 

[122].

Hypoxia-upregulated mitochondrial movement regulator 

(HUMMR) is a HIF-1α-upregulated gene that has been iden-

tified as a regulator of the interaction between mitochondria 

and the cytoskeleton via the trafficking proteins mitochon-

drial Rho GTPase 1 and 2 (MIRO1, 2) [123]. Mitochondrial 

movement occurs along microtubules (MTs) in a retrograde 

(towards the MT minus-end) or anterograde (towards the 

MT plus-end) fashion. The polarity of the microtubules 

is defined relative to the microtubule organizing centre 

(MTOC), whose intracellular localization depends on the 

cell-type and cellular context (e.g. cell-cycle stage) [124]. 

Hypoxic upregulation of HUMMR leads to both elevated 

anterograde movement of the mitochondria, and increases 

mitochondrial axonal content which is dependent on HIF-1α 

[123]. In addition, exogenous overexpression of HUMMR in 

astrocytes and the tumour cell line HEK-293 leads to a col-

lapse of the mitochondrial network around the perinucleus 

[123]. HUMMR may therefore represent a biomechanical 

link between hypoxia and changes in the intracellular dis-

tribution of mitochondria, but is likely to be cell-type- and 

context-specific. Similarly the mitochondrial IMS protein 

coiled-coil helix domain containing protein 4 (CHCHD4, 

Mia40 in yeast) has also been shown to stimulate mitochon-

drial perinuclear clustering, and thus intracellular oxygena-

tion, in a HIF-1α-dependent manner in U2OS osteosarcoma 

cells [125]. Perinuclear mitochondrial clustering has also 

been described in a number of other physiological settings, 

including fertilization and embryonic development [126]. 

Since hypoxia is a key stimulant of vasculogenesis during 

development, and HIF-1α is essential for embryogenesis, 

it is possible that the relationship between hypoxia signal-

ling and mitochondrial distribution plays an important role 

during development. Indeed, overexpression of HUMMR 

(MGARP in mice) in mouse neocortical cells leads to aber-

rant mitochondrial transport, as well as defects in neocortical 

development [127].

Changing mitochondrial morphology

In addition to regulation of the subcellular distribution of 

mitochondria within the mitochondrial network outlined 

above, changes in mitochondrial morphology are also 

highly regulated. Mitochondria undergo repeated fission and 

Fig. 5  HIF-mediated regula-

tion of mitochondrial size and 

intracellular distribution. HIF 

targets regulate the subcellular 

distribution of mitochondria. 

The HIF-target HUMMR 

regulates mitochondrial traf-

ficking along microtubules, 

and promotes perinuclear 

clustering of the mitochondrial 

network. The mitochondrial 

DRS protein CHCHD4 also 

stimulates perinuclear clustering 

of the mitochondria in a HIF-

dependent manner. Perinuclear 

accumulation of the mitochon-

dria stimulates ROS-mediated 

HIF-dependent upregulation 

of VEGF transcription. The 

HIF-regulated genes BNIP3 and 

NIX (BNIP3L) are involved in 

the MFN1- and MFN2-depend-

ent fusion of mitochondria. 

Enlargement of the mitochon-

dria confers increased mito-

chondrial membrane integrity, 

and protection against apoptosis
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fusion events, which together is referred to as mitochon-

drial dynamics. Mitochondrial dynamics are regulated by 

the opposing functions of a core group of GTPases, as well 

as a number of accessory and regulatory proteins. Studies 

of these GTPases have shown that mitochondrial dynam-

ics are also determinants of mitochondrial distribution. 

Overexpression of the fusion inducing protein mitofusin 2 

(MFN2) leads to enlargement of the mitochondria, as well 

as perinuclear clustering of the mitochondrial network [128]. 

Similarly, overexpression of a dominant negative form of 

the fission inducing protein dynamin-related protein (DRP1) 

encoded by the DNML1 gene, leads to hyperfusion of the 

mitochondrial network and perinuclear aggregation [129] 

(Fig. 5).

Hypoxia and mitochondrial dynamics are closely con-

nected, as has been shown by a number of studies [122, 

125, 130, 131]. Under chronic hypoxia (72 h) mitochondria 

have been observed to enlarge through additional MFN1-

dependent (hyper) fusion and decreased DRP1-dependent 

fission in cancer cells [130]. The HIF-1α target genes BNIP3 

and BNIP3L (NIX) also appear to play an important role, 

and together this elevated mitochondrial fusion confers 

resistance to apoptosis by improving mitochondrial mem-

brane integrity [130]. Shorter exposures (24 h) to hypoxia 

in NIH 3T3 cells on the other hand appear to promote 

mitochondrial fission, through mechanisms which are only 

partially dependent on HIF-1α. Instead, degradation of the 

mitochondrial scaffolding protein A-kinase anchor protein 1 

(AKAP121), by SIAH2, relieves AKAP121-mediated sup-

pression of DRP1 activity [131]. SIAH2 regulates HIF-1α 

stability, through the downregulation of PHDs 1 and 3 

under hypoxia, and therefore may play a role in regulating 

the HIF-dependent changes in mitochondrial dynamics and 

distribution.

Hypoxia-reoxygenation stress has also been shown to 

result in the appearance of shorter mitochondria due to 

impaired ATP synthesis [132]. In addition, short expo-

sures to hypoxia (1 h) in glucose-free medium, or hypoxia-

reoxygenation in glucose-containing medium leads to the 

formation of toroidal mitochondria, due to anomalous 

fusion events caused by swelling and detachment from the 

cytoskeleton [132]. However, since these effects occur after 

hypoxia exposures shorter than those generally required for 

HIF-mediated transcriptional responses, it is likely they are 

independent of HIF activity. The effect of hypoxia on mito-

chondrial dynamics appears therefore to be time-dependent, 

and also dependent on the underlying nutrient availability 

to cells.

Mitochondrial regulation of HIF signalling

As mitochondria are the major oxygen-consuming orga-

nelles of the cell, it is perhaps unsurprising that they are 

capable of influencing the oxygen-dependent degradation of 

both HIF-1α and HIF-2α subunits [133]. Indeed, ethidium 

bromide-mediated depletion of mitochondria to generate 

ρ0 cells is capable of blocking HIF induction in hypoxia, 

though the HIF response remains intact under exogenous 

anoxia  ([O2] ≤ 0.1%) [79]. In addition, the use of ETC 

inhibitors, such as rotenone (CI) and antimycin A (CIII), 

or knockdown of subunits of ETC complexes inhibits the 

hypoxic stabilisation of HIF-α proteins. The mechanisms 

by which mitochondria regulate HIF signalling (that have 

been experimentally demonstrated) all appear to converge on 

PHD-mediated hydroxylation of the HIF-α subunits (Fig. 6).

The availability of molecular oxygen

Oxygen-dependent hydroxylation is the primary mechanism 

by which the PHD and FIH enzymes transmit the signal 

of changes in cellular oxygenation to the HIF machinery. 

Measurements of intracellular oxygenation using phospho-

rescence lifetime imaging [134] or immunofluorescence 

imaging of the nitroimidazole agent pimonidazole in cells 

[125] have demonstrated that regions of low oxygenation co-

localise with the mitochondria [125, 134]. Another imaging 

study using renilla luciferase to measure intracellular oxy-

gen demonstrated that ETC inhibition redistributed oxygen 

towards the PHDs [135]. It has also been shown that mito-

chondrial oxygen consumption at CIV of the ETC influences 

intracellular oxygenation and hypoxia, as well as HIF-1α sta-

bilisation [125]. Additionally, stimulation of mitochondrial 

biogenesis through exogenous overexpression of PGC-1α 

leads to increased HIF signalling through an elevation in 

mitochondrial OCR and intracellular hypoxia [136]. This is 

of particular interest in cancer when allied with the obser-

vation that PGC-1α upregulation is a critical feature of cir-

culating tumour cells in a mouse xenograft model of breast 

cancer metastasis, and is strongly correlated with distant 

metastases in breast cancer patients [137]. Thus, mitochon-

drial biogenesis is not only experimentally linked to HIF sig-

nalling through PGC-1α, but also to tumour cell dissemina-

tion. Moreover, there has been repeated demonstration that 

chemical inhibition of the ETC using a variety of inhibitors 

of complexes I, III and IV is capable of blocking hypoxic 

HIF-α induction in hypoxia [138–140]. Together, these stud-

ies demonstrate the importance of the mitochondria and their 

oxygen-consuming activity in regulating the stabilisation of 

HIF-α proteins and HIF signalling under hypoxia.
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TCA cycle intermediates

The hydroxylation of HIF-α by PHDs requires 2-oxoglutar-

ate (2-OG), and produces succinate as a by-product [31, 32]. 

Both of these metabolites are freely diffusible intermediates 

of the TCA cycle, which takes place exclusively in the matrix 

of the mitochondria (Fig. 6). Elevated levels of succinate are 

capable of inhibiting the hydroxylation reaction [141], as is 

elevation in the levels of a second TCA cycle intermediate, 

fumarate [142]. Thus, the intracellular ratio of 2-OG-to-

succinate or fumarate greatly influences PHD activity, and 

the degree of HIF-α stabilisation in both hypoxia and nor-

moxia [142]. Indeed, treatment of succinate dehydrogenase 

(SDH, CII)-deficient cells with cell-permeable 2-OG deriva-

tives is capable of reversing normoxic HIF-α expression by 

competitively reversing the inhibition of PHDs caused by 

succinate accumulation [143]. In addition, pharmacological 

activators of HIF signalling include 2-OG analogues, such as 

dimethyloxalylglycine (DMOG) [144] and N-oxalylglycine 

(NOG). In a disease setting, inactivating mutations in the 

enzyme fumarate hydratase (FH) or subunits of succinate 

dehydrogenase (SDH) or its assembly factors (SDHAF1, 2) 

are causative for certain rare tumour syndromes [145–147] 

in which constitutive HIF stabilisation is detectable and 

is thought to contribute to disease progression [148]. The 

primary metabolic defect in SDH and FH deficiency is an 

accumulation of succinate or the closely related compound 

fumarate, respectively. Both metabolites are capable of 

inhibiting PHD and FIH activity by competitive occupation 

of the enzymatic active site, thus blocking the hydroxyla-

tion and subsequent degradation of HIF-α subunits [141, 

142]. Despite the constitutive stabilisation of HIF-α in these 

cases, PHD inhibition and constitutive HIF signalling does 

not appear to be critical for tumorigenesis, as silencing of 

HIF-1β does not reverse the increased expression of genes 

involved in regulating epithelial-to-mesenchymal transition 

(EMT) [149]. Furthermore, cyst formation was not inhibited 

in double Fh1/Hif-1α KO mice, and these cysts also grew 

larger, suggesting that HIF1A may indeed be a tumour sup-

pressor in this context [150]. Instead, the accumulation of 

these metabolites also inhibits the TET family of oxygen-

dependent dioxygenases, responsible for the demethylation 

and expression of an antimetastatic miRNA cluster. Loss of 

expression of these miRNAs leads to the expression of an 

EMT gene signature, including increases in the expression of 

vimentin, and loss of expression of E-cadherin [149].

Fig. 6  Mitochondrial regulation 

of HIF signalling. Mitochon-

drial oxygen consumption 

at CIV (IV) regulates the 

intracellular availability of 

oxygen, which is required for 

hydroxylation of HIF-α subunits 

by the PHD enzymes. The 

mitochondria also metabolise 

the PHD substrate 2-OG, and 

consequently regulate its intra-

cellular levels. Two products of 

mitochondrial 2-OG metabo-

lism, succinate and fumarate, 

are capable of competitively 

inhibiting PHD activity, and 

thus TCA cycle enzyme activ-

ity influences intracellular 

levels of these metabolites, 

and influence PHD-mediated 

HIF-α hydroxylation. Disease-

associated mutations in IDH2 

cause a neoenzymatic reaction 

which produces 2-HG which 

is also a competitive inhibi-

tor of the PHD enzymes. ROS 

production by the mitochondria 

also regulates PHD activity by 

influencing the REDOX state of 

the ferrous (Fe) ion cofactor
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Mutations in the TCA enzyme isocitrate dehydrogenase 2 

(IDH2), or its cytoplasmic homologue IDH1 are commonly 

detected in gliomas [151] and certain types of AML [152], 

as well as in cases of non-malignant metabolic disorders 

such as D-2-hydroxyglutaric aciduria [153]. The disease-

associated active-site mutations cause a neo-enzymatic 

reaction in which 2-OG is reduced to 2-hydroxyglutarate 

(2-HG) by NADPH reduction [154]. As a metabolite that 

is closely related to 2-OG, 2-HG competitively inhibits the 

PHDs, leading to constitutive HIF-α stabilisation and activ-

ity [155]. Indeed, 2-HG has been shown to accumulate under 

hypoxia via promiscuous metabolism of 2-OG by the malate 

dehydrogenase (MDH) and lactate dehydrogenase (LDH) 

enzymes, leading to enhanced hypoxic stabilisation of HIF-α 

proteins [156]. However, as with fumarate and succinate 

accumulation, the primary oncogenic influence of 2-HG 

accumulation appears not to be due to HIF-α stabilisation 

and activation. Instead, 2-HG is also capable of inhibiting 

histone demethylases which, like the PHDs, are oxygen-

dependent dioxygenases, leading to increases in methyla-

tion and the blocking of malignant cell differentiation [157].

Reactive oxygen species

As discussed above, several mitochondrial ETC com-

plexes are a significant source of ROS, and ROS produc-

tion is elevated under hypoxia. Exogenous treatment of cells 

with ROS such as  H2O2 is capable of leading to normoxic 

HIF-1α accumulation in both wild-type HEK293T cells, and 

HEK293T cells lacking mitochondria [158]. It has also been 

shown that mitochondrially derived ROS are required for 

maximal HIF-α protein stabilisation under hypoxia [158], 

and the ROS-scavenging antioxidant ebselen is capable of 

blocking HIF-1α stabilisation [79] and its binding to HREs 

[159]. Using mitochondrially encoded cytochrome b-deleted 

cybrids of HEK293T cells, the primary source of HIF-induc-

ing ROS has been identified as CIII, and that this activity 

relies on the Q0 site within the complex [160]. It appears 

that inhibitors of CIII differentially influence HIF stabilisa-

tion and signalling depending on their ability to induce ROS 

production from CIII [158]. It has been proposed that the 

mechanism by which ROS lead to HIF stabilisation is due 

to their effect on the redox state of the ferrous cofactor in 

the active site of the PHDs [161]. By oxidising this group 

from a 2 + to a 3 + state, ROS are thought to decrease HIF-α 

hydroxylation and pVHL recognition [161] (Fig. 6).

The role of ROS in HIF signalling has been reviewed 

recently [162]. While there is no doubt that mitochondria 

are significant sources of ROS in both normoxia and hypoxia 

[79, 163], it still remains unclear as to when endogenously 

produced mitochondrial ROS are required for HIF signal-

ling. Much of the uncertainty arises from experimental mod-

els that do not unequivocally distinguish between the effects 

of ROS production and oxygen consumption. Interestingly, 

in a study by Chua et al. [138] they proposed that the ROS-

producing activity of CIII was not required for HIF-1α pro-

tein stabilisation in 143B cells. Hypoxic HIF-1α protein 

stabilisation was similarly blocked by inhibitors of CI, CIII 

and CIV, and furthermore, inhibition of CIII activity using 

either a ROS-inducing inhibitor of CIII (antimycin A) or a 

ROS-reducing inhibitor of CIII (myxothiazol) both blocked 

hypoxic HIF-1α stabilisation [138]. In addition, myxothiazol 

completely inhibited oxygen consumption (at CIV), while 

co-treatment with TMPD which donates electrons to CIV 

via cytochrome c, was capable of restoring both oxygen con-

sumption and HIF-1α stabilisation [138]. This same study 

demonstrated that exogenous  H2O2 had no direct influence 

on PHD activity in vitro [138], calling into question the 

mechanistic basis for ROS-mediated HIF-1α stabilisation. 

Finally, several studies have shown that exogenous ROS 

scavengers such as N-acetylcysteine (NAC) and MnTBAP 

are incapable of influencing hypoxic stabilisation of HIF-1α 

under conditions of CIII inhibition [135], hypoxia [138], 

or elevated oxygen consumption through CHCHD4 overex-

pression [139]. Thus further mechanistic work to clarify the 

connection between ROS and HIF-1α protein stabilisation 

and the precise molecular mechanisms involved is needed.

Closing remarks

As oxygen is central to mitochondrial metabolism it is 

not surprising that the HIF-mediated response to hypoxia 

involves a global cellular response allowing cells to met-

abolically adapt and survive when oxygen is limiting. 

Hypoxia-mediated metabolic adaptations involve changes 

in the regulatory control of key molecular components of 

metabolic pathways involving mitochondria, as well as 

dynamic changes in the morphology, mass and subcellular 

localization of mitochondria themselves. Since mitochondria 

are of such fundamental importance to oxygen-dependent 

metabolism, it is perhaps also not surprising that HIF-

mediated adaptations to hypoxia impinge on mitochondrial 

function at many levels. In general it is clear that the aim 

of HIF-mediated adaptation to hypoxia is to decrease mito-

chondrial activity, and thus a cell’s reliance on oxygen for 

survival. Intriguingly, HIF-1α protein has been detected 

in mitochondrial fractions, suggesting the possibility that 

HIF-1α protein has a direct, non-transcriptional effect on 

mitochondria [164].

What is perhaps less well appreciated is the recipro-

cal nature of the relationship between HIF signalling and 

mitochondria. The HIFs are responsive to perturbations of 

mitochondrial biochemistry, and are thus in many ways sen-

sors of mitochondrial health. Conversely, the mitochondria 
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are capable of transmitting numerous metabolic stresses to 

the HIF pathway, and thus participate centrally in HIF sig-

nalling. Hypoxia is a fundamental feature of metazoan life, 

and underlies physiological processes during development 

as well as pathophysiological processes involved in diseases 

such as cancer. The relationship between hypoxia signalling 

and mitochondria is important in diverse biological contexts, 

and therefore warrants continued investigation and expan-

sion of our understanding.
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