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Abstract

Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks,
describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system
elements communicate with each other depends not only on the structure of the network, but also on the nature of the
system’s dynamics which are constrained by the amount of knowledge and resources available for communication
processes. Complementing widely used measures that capture efficiency under the assumption that communication
preferentially follows shortest paths across the network (‘‘routing’’), we define analytic measures directed at characterizing
network communication when signals flow in a random walk process (‘‘diffusion’’). The two dimensions of routing and
diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by
different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of
network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-
objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace,
specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are
identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences
about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection
pressures that have shaped network topology.
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Introduction

Characterizing the communication efficiency of a complex

network should take into account dual sets of constraints, imposed

by the topology and by the dynamical process operating on it. In

this regard it is crucial to know whether communication is better

described by routing (navigation) or by diffusion processes. These two

types of dynamics differ radically in terms of whether interactions,

matter and energy flows, or communication along paths occurs

with partial or full knowledge of the global structure of the network

[1,2]. On the one hand, a routing/navigation process implies that

communication flows from a specific source to a specific target

along the fastest or most direct route, which implies global

knowledge about the network topology. On the other hand, a

diffusion process implies that communication occurs in the

absence of specific targets, or that, even if targets are specified, a

lack of knowledge about global network topology prevents

particles or messages from taking shortest paths. To some extent,

undirected diffusion or spreading occurs in social networks

(innovations [3], rumors [4], contagious diseases [5]), and possibly

also in neuronal communication [6].

One of the most widely used efficiency measures is defined as

the average of the inverse of shortest path lengths between every

pair of nodes in a graph [7,8], here referred to as routing efficiency

Erout. The use of Erout for characterizing network efficiency implies

that particles or messages can selectively navigate through shortest

paths and that shortening path lengths, for example through the

addition of edges, automatically improves the routing efficiency of

the system. However, when dynamics are best described by

diffusion, shortening the path length, e.g. by adding edges, may

decrease the efficiency of communication between pairs of nodes.

Another difference between navigation and diffusion dynamics

concerns the importance of resources, for example expressed by

the number of particles needed to achieve reliable communication.

In routing processes, even single particles or messages can reach

their destinations along efficient paths, while in diffusion processes

the ability to send multiple particles may greatly increase the

efficiency of communication. Hence, characterizing the commu-

nication efficiency of a system requires considering a combination

of three different characteristics: network topology (structure), the

ability to find shortest paths among all alternatives (knowledge),

and the capacity to increase message traffic (resources).
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In this paper we first introduce and define a set of interrelated

measures of communication efficiency for systems whose dynamics

are based on diffusion processes. These measures capture the

probability with which single particles travel through shortest

paths, their average propagation velocity across the network, and

the degree to which additional resources help the system to

approach optimal performance. These measures of diffusion

efficiency complement the classical measure of routing efficiency

[8]. In the main part of the paper we take routing and diffusion

efficiency as the principal axes for defining an ‘‘efficiency

morphospace’’ [9] for complex networks, i.e. a space where each

combination of routing and diffusion efficiency is associated with

characteristic aspects of network topology. We explore this space

following three different approaches: (i) by examining a number of

canonical and idealized network models; (ii) by employing a multi-

objective optimization strategy to evolve network topologies that

either facilitate or impede routing and/or diffusion efficiency; and

(iii) by investigating routing and diffusion efficiency in a collection

of real-world systems, including brain, protein-interaction, genetic

regulatory, social, virtual social, transportation and digital circuit

networks. We frame our discussion in the context of what our

exploration of a morphospace for communication efficiency in

complex networks tells us about possible limits and selection

pressures on efficient communication imposed by network

structure, knowledge and resources.

Materials and Methods

Graph Theory
In this section we briefly define some basic graph theory

concepts relevant to the work described in this article (see [7,10]

for detailed reviews on network theory). Let us define a binary

undirected graph as G:(V ,C), composed by a set of n nodes

V~ 1,:::,nf g and a set of l undirected edges C~ i,jf g,:::, k,lf gf g,
excluding self-connections. The graph’s connection topology is

described by a n|n symmetrical adjacency matrix AG~ aij
� �

,

with aij~1 if edge i,jf g exists, and aij~0 otherwise. The degree of

a node i, denoted by ki refers to the number of direct neighbors

and can be expressed as ki~
P

j aij . The average degree of a

graph is the mean over all node degrees SkT~ 1
n

P

n

i~1

ki and the

graph density is the fraction of edges that are present out of all

possible, dG~
2l

n(n{1)
. Assortativity is defined as the Pearson

correlation coefficient of all degree-degree pairs of connected

nodes [11]. The heterogeneity of the graph’s degree distribution

can be characterized by its Shannon entropy [12], given as

H~{
P

n

k~1

p(k):log(p(k)) as described in [13,14]. The graph’s

community structure can be determined by identifying a partition

into non-overlapping modules (using an optimization algorithm

such as the Louvain method [15]) that maximizes a modularity

metric [16]. All graph algorithms used in this article were

implemented in Matlab and are available as part of the Brain

Connectivity Toolbox (www.brain-connectivity-toolbox.net) [17].

Markov Chain Theory
A Markov chain M:(S,P) is formed by a set of states

S~ s1,:::,snf g, and a matrix of transition probabilities or transition

matrix P~½pij � that characterizes the probability of going from one

state si to another state sj in one step [18]. A connected graph can

be expressed as a Markov chain where states S~ s1,:::,snf g
correspond element by element to the set of nodes V~ 1,:::,nf g.

Diffusion in networks is generally modeled as a random walk

process, which in the simplest case involves the use of only local

information about connectivity. In a binary network, the

probability to go from one state (corresponding to the source node)

si[S to another state (the target node) sj[S in one step is denoted by

pij~
aij
ki
which assumes uniform probability of choosing one of the

possible ki edges.

The next sections describe a set of measures characterizing

communication efficiency. One measure has been introduced

previously [8] and addresses communication along shortest paths,

hence denoted here as routing efficiency. In addition, we introduce

three related measures describing communication associated with

diffusion processes, denoted shortest-path probability, diffusion

efficiency and resource efficiency. All efficiency measures de-

scribed in this study assume conservation of particles or walkers.

The measures as defined here apply to connected undirected

binary graphs, for which a diffusion process or random walk can

be modeled by an ergodic (irreducible) Markov process [18].

Ergodicity is ensured by connectedness as it requires that any state

can be reached from any other state in a finite number of steps.

While most measures can be generalized to connected undirected

weighted graphs, for simplicity we limit our analyses in the present

paper to connected undirected binary graphs.

Routing Efficiency
The shortest path length between two nodes of an undirected

binary graph is defined as the minimum number of edges (and thus

steps) that separate two nodes within a graph. The set of shortest

path lengths between all node pairs is denoted by the symmetric

matrix W~ Qij

h i

. As defined in [8], assuming parallel communi-

cation across the network, a global measure of efficiency (originally

termed global efficiency Eglobal and here denoted as routing

efficiency Erout), can be computed as

Erout~

P

i

P

j 1
.

Qij

n(n{1)
, i=j:

This measure assumes that communication operates in the

shortest-path-regime.

Shortest-Path Probability
Given a random walk process on a graph, an analytic expression

can be derived that gives the probability that a single particle

departing from a node i arrives at node j for the first time within

exactly L steps [19]. This criterion can be applied for each source-

target pair by setting L to their shortest-path-length. Let us denote

by PG~½pij � the n|n symmetric matrix containing, for each pair

of nodes, the probability that a single particle going from node i to

node j follows the shortest path (or one of them, if there exists

more than one). Each entry pij can be computed as

pij~1{
X

n

v~1

B
Qij
j

h i

iv
, i=j

where matrix Bj is the transition matrix P introduced above, but

with all zeros in the j-th column, i.e. with j acting as an absorbing

state [18,19]. Evaluating shortest-path-lengths ensures that

Vi,j pijw0. Hence, considering one particle, the average

shortest-path probability of a graph is defined as

Morphospace of Communication Efficiency
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Pspl~

P

i

P

j pij

n(n{1)
, i=j:

Diffusion Efficiency
Let us denote by the matrix TG~½tij � the mean first-passage

time of an undirected connected graph G:(V ,C) where nodes

V~ 1,:::,nf g stand for states S~fs1,:::,sng of the Markov chain.

The Markov chain associated with an undirected connected graph

ensures ergodicity. This property permits to compute the mean

first-passage time [18] from the fundamental matrix Z~ fij
� �

and

the fixed row probability vector v as

tij~
fjj{fij

vj

,i=j

The probability vector v is the left eigenvector associated with the

eigenvalue of 1, corresponding to the stationary solution of the

underlying Markov process. The fundamental matrix Z is

computed as Z~(I{PzW ){1 were I is an n|n identity

matrix, P is the transition matrix defined above and W is an n|n

matrix with each column corresponding to the probability vector

v such that Vj Wij~vi. Analogously to Erout, we express by Ediff

the mean value of all inverse entries 1
�

tij of the TG matrix

excluding the main diagonal, yielding

Ediff~

P

i

P

j 1
�

tij

n(n{1)
, i=j:

Resource Efficiency
Let us define R~½rij � as the amount of resources (i.e. number of

particles or messages) required to ensure with probability 0vlƒ1

that at least one of them will, after starting at node i, arrive at node

j in exactly Qij steps (i.e. as fast as possible given the graph

structure):

rlij~

1, if pij~1

log(1{l)

log(
P

n

v~1

B
Qij
j

h i

iv
)

, otherwise

8

>

<

>

:

The simplest case arises when node j is the only neighbor of node i

(i.e. pij~1) and thus just one particle is required for any value of

0vlƒ1.The term
P

n

v~1

½B
Qij
j �

iv
corresponds to 1{pij , as explained

above. Note that this equation differs from the one proposed in

[19] in using the shortest-path-length of each pair instead of a

fixed global number of steps for all pairs. Analogously to Erout and

Ediff, the efficiency of resources needed for a graph to operate in

the shortest-path-regime with a fixed probability l is defined as

Eres~

P

i

P

j 1
.

rlij

n(n{1)
, i=j

For the analyses performed in this paper we set l~0:5.

Scaling of Efficiency Measures
Graph measures are known to be strongly constrained by

features such as network size or density [20]. Following an

approach to scaling of network metrics applied to small-world

attributes such as the clustering coefficient and shortest path length

[21], we scale Erout of a given network relative to the average

efficiency of one-dimensional lattices and random ensembles

(denoted by SElatt
routT and SErand

rout T respectively) of the same size and

density:

Eroutk k~
Erout{SElatt

routT

SErand
rout T{SElatt

routT

Analogously, scaled versions of Ediff and Eres, are obtained and

denoted by Ediff

�

�

�

� and Eresk k respectively.

Efficiency Morphospace
The morphospace is a concept introduced originally in

paleontology and evolutionary theory [9] to allow the systematic

mapping of biological forms using structural parameters derived

from a geometric model. These structural parameters define a

space of all possible morphologies which specifies both existent

and nonexistent forms. Here, the concept of morphology is

extended to include network architectures, and the parameters

defining the axes of the morphospace correspond to measures

derived from network topology. Specifically, the scaled measures

of routing and diffusion efficiency Eroutk k and Ediff

�

�

�

� are taken to

represent the principal axes of an ‘‘efficiency morphospace’’ within

which networks are placed according to the level of communica-

tion efficiency they support. Exploring this morphospace allows

probing the extent to which the space can be occupied by

realizable network topologies, and what characteristic network

features are encountered in different regions of the space.

Canonical Network Models
Four canonical network models were used to capture the

relationship between density, shortest-path probability and routing

efficiency, selected because they capture relevant aspects of

network organization encountered in a wide range of real-world

systems. Models were Erdös-Rényi random graphs [22] (here

implemented with a small variant to fix the overall density),

networks generated by preferential attachment [23], one-dimen-

sional lattices [24], and Watts-Strogatz small-world networks [24].

Details on how graphs corresponding to these canonical models

were generated can be found in Text S1.

Multi-Objective Optimization
The use of optimization algorithms operating on the efficiency

morphospace allowed us to explore the commonalities and

differences between Ediff

�

�

�

� and Eroutk k in connected undirected

graphs, and the specific topological aspects that lead to such

differences. The computational strategy we selected for optimiza-

tion is an evolutionary algorithm operating on populations of

graphs and performing incremental rewiring to change their

topology. Population size, network size and density, as well as

rewiring rate were selected to allow comprehensive exploration of

the morphospace within the limits imposed by computational

resources.

Simulations were carried out on populations (popSize~500) of

undirected connected graphs of size n~50 at two different

densities determined by an average node degree SkT~f4,8g. At
the beginning of each experiment, 500 one-dimensional lattices

were generated. In order to create some variance in the initial

Morphospace of Communication Efficiency
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population while preserving connectedness, density and degree-

sequence, l=6 xswap rewiring steps were carried out on each lattice

(see Text S1 for details of the randomization algorithm). Following

this initialization, multi-objective optimizations [25,26] were

carried out, resulting in the formation of Pareto fronts [25] in

the morphospace defined by our two principal efficiency measures,

Eroutk k and Ediff

�

�

�

�. Four different types of optimizations were

implemented and run independently. Each started from the same

initial population, but employed a different fitness function to

explore all four directions of the two-dimensional morphospace:

maximizing Ediff

�

�

�

� and minimizing Eroutk k (front 1), maximizing

both Ediff

�

�

�

� and Eroutk k (front 2), minimizing Ediff

�

�

�

� and

maximizing Eroutk k (front 3), and minimizing both Ediff

�

�

�

� and

Eroutk k (front 4).

At each epoch, the Pareto front concept was applied to define

survival criteria by partitioning the population into non-dominated

and dominated solutions [25], which in our case are graphs.

Hence a graph is said to be non-dominated (and thus a member of

the Pareto front) if and only if no other graph exceeds it in the two

gradients along Ediff

�

�

�

� and Eroutk k (the sign of each dimension is

defined by the front and characterizes whether the objective is

maximizing or minimizing each of the axes). Remaining graphs of

the population not belonging to the front are said to be dominated.

Pareto front members survive intact to the next population (next

epoch). Finally, non-Pareto front members became extinct and

were replaced in the next epoch by (randomly chosen) Pareto front

members which were minimally rewired, with one edge added and

one edge removed ensuring connectedness when preserving

density and applying xswap when preserving degree sequence

(see Text S1 for details). This process was continued over a

maximum of 1000 epochs, unless the process was terminated

earlier if one of two stopping criteria was reached. The first

stopping criterion was based on the ‘‘age’’ of the Pareto front. If

the age of Pareto front solutions exceeded, on average, 50 epochs,

the optimization driving that front was stopped. The second

stopping criterion was based on the balance between dominated

and non-dominated graphs. If Pareto front members represented

more than 95% of the total population, the evolutionary

optimization driving that front was stopped. Two movies showing

the advance of the four Pareto fronts, corresponding to the four

fitness functions, for the two network densities SkT~f4,8g are

available (Movie S1; Movie S2).

Real-World Networks
A total of 23 real-world networks were analyzed (see Text S1 for

details and Table S1 for network features). For all networks, the

undirected un-weighted version of the giant component was used

for all the analyses and for all network and efficiency measures.

Results

Communication Efficiency in Canonical and Idealized
Network Models
First we examined how increasing density affects Erout and Pspl

(Figure 1) in four canonical graph models: Erdös-Rényi random

graphs, networks generated by preferential attachment, one-

dimensional lattices, and Watts-Strogatz small-world networks.

Erout, which represents the efficiency of the shortest-path-regime,

increased in all models as the average degree of the network

increased due to the addition of edges. In contrast, the probability

Pspl that a single particle travels along shortest paths in a diffusion

process was found to be not only small (on the order of 1022 for

networks of 50 nodes) but also tended to decrease as network

density increases. Over all network densities and at a given level of

Erout, Erdös-Rényi random graphs afforded the highest Pspl and

one-dimensional lattice graphs afforded the lowest Pspl .

Figure 2 summarizes non-scaled efficiency measures for various

idealized network topologies, with 50 nodes and varying edge

densities. A clique has the shortest possible path length and hence

optimal Erout, but also low Pspl and Eres, rendering this topology

well suited for routing, but poorly configured for diffusion

dynamics approaching the shortest-path-regime, either with a

single or with multiple particles. In contrast, chain and ring

topologies have long path length and low Erout, while also

exhibiting high Pspl , mainly due to the low network density which

limits the total number of non-optimal paths and walks. Ediff in

chain and ring is low, indicating that a diffusion process on this

graph is very inefficient. A regular lattice with SkT~6 improves

with respect to the ring (SkT~2) in both Ediff and Erout. A star has

high Pspl , high Ediff and moderately high Eres and Erout,

suggesting that the star topology is well suited for both routing

and diffusion processes. Similar characteristics were found in a

network containing a rich club [27]. Finally, a bi-modular

network, while efficient for routing, is inefficient for diffusion

since the presence of modules creates bottlenecks for inter-module

communication, resulting in low Eres since many particles are

needed to overcome these bottlenecks in inter-module communi-

Figure 1. Relation of routing efficiency and shortest-path-
probability for canonical network models. Scatter plot of Erout

and Pspl for four canonical network models at different densities: the
Erdös-Rényi model (gray), the preferential attachment model (green),
the Watts-Strogatz small-world model (red) and the one-dimensional
lattice model (blue). The average degree is indicated at the plot line for
the lattice model and dotted lines indicate equivalent average degrees
for the rest of the models. Network size is fixed at 50 nodes. Each point
represents mean values and shaded areas correspond to the 90%
confidence interval. To obtain each data point (for each model and each
average degree), 100 sample graphs were generated, except for the
regular lattice given its deterministic nature. The clique coordinates are
given as a reference point with maximum density and thus maximum
Erout but very low Pspl . As the density increases, Erout monotonically
increases whereas Pspl tends to monotonically decrease.
doi:10.1371/journal.pone.0058070.g001
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cation. Larger networks (n~100 and n~250) showed qualitatively

similar results across these different network topologies.

Evolving Networks in the Efficiency Morphospace
The characterization of these idealized network topologies

provided some intuition about which network architectures

promote different aspects of communication efficiency. However,

the cases listed in Figure 2 differ greatly in density and degree

sequence, both known to strongly affect virtually all graph

measures. To more objectively characterize the relation of network

topologies to measures of network efficiency, we implemented a

multi-objective optimization strategy designed to search for

network topologies in the two-dimensional efficiency morphospace

formed by Ediff

�

�

�

� and Eroutk k. The algorithm allowed the

connection pattern (including the degree sequence and the degree

distribution) to evolve through a process of incremental rewiring

while preserving connectedness and density (see Text S1 for details

of the rewiring methods). Using a multi-objective fitness function,

selection pressure was applied to drive networks in four different

directions within the scaled efficiency space, resulting in four

evolving populations whose leading fronts move towards high

Eroutk k and low Ediff

�

�

�

� (front 1), high Eroutk k and high Ediff

�

�

�

�

(front 2), low Eroutk k and high Ediff

�

�

�

� (front 3) and low Eroutk k

and low Ediff

�

�

�

� (front 4). Once evolutionary progress slowed, the

fronts were considered to have reached an end state (Figure S1). At

the end of each run, the surviving networks in each Pareto front

can be said to jointly optimize the multiple objectives embodied in

the fitness function.

Figure 3 shows a set of four evolutionary simulations, each

employing one of the four fitness functions, for networks with

n~50 and SkT~4 (for SkT~8 see Figure S2). Representative

networks were selected across the entire length of each of the four

final Pareto fronts corresponding to the evolved end states and

were structurally characterized. Networks in front 2 were found to

have evolved towards star-like topologies to the maximum extent

permitted by the density imposed, while condensing all the

remaining edges into a clique-like dense cluster. Networks in front

4 were found to have evolved towards chains as far as the imposed

density permitted, with two dense clusters located at the extreme

ends of the chain. Front 1 contained networks with topologies that

were intermediate between those encountered in fronts 2 and 4.

Along front 1, when moving away from the low-efficiency part of

the front, networks gradually dissolved the chain topology into

several linked clusters. Moving towards the high-efficiency part of

front 1, star-like patterns began to emerge, resembling networks

found in front 2. Front 3 exhibited a different transition from

chain-like to star-like networks involving intermediate networks

characterized by a set of densely interconnected high-degree nodes

(akin to ‘‘rich club’’ organization [27]) that link to a number of

peripheral low-degree branches. Figure S2 shows representative

evolved network topologies for SkT~8, with all Pareto fronts

showing very similar network characteristics to those seen for

SkT~4.

Figure 4 shows graph metrics (the entropy of the degree

distribution, assortativity, modularity and normalized resource

efficiency) for network topologies encountered throughout the

optimization process, mapped along the two dimensions of Eroutk k

and Ediff

�

�

�

� for n~50 and SkT~4 (for SkT~8 see Figure S3).

Degree entropy was observed to be high on fronts 1 and 3,

whereas it is lower on front 4, and lowest on front 2, due to the

abundance of nodes with either low or high degree. Assortativity

and modularity showed two main gradients across the space

spanned by Eroutk k and Ediff

�

�

�

�. When moving from front 2 to

front 4, networks proceeded from being highly disassortative to

highly assortative, and from being moderately modular to highly

modular. When moving from front 1 to front 3, networks

proceeded from a mixture of non-assortative and disassortative

networks, to assortative networks, and from mostly modular

networks to less modular networks. Resource efficiency was

highest in a region surrounding the random reference point, but

lower on all the fronts. With respect to the measure of resource

efficiency, lattice-like and star-like topologies behaved similarly

when using multiple particles to overcome a lack of structural

knowledge, but for different reasons. In lattices, almost any

communication between two nodes required a number of particles

to ensure using the shortest path with certain probability. In star-

like topologies, fast communication between perimeter nodes and

central nodes required one or only a few particles, while

communication between any two perimeter nodes required a

greater number of particles.

To further explore the role of the degree distribution in these

evolutionary experiments, additional evolutionary optimizations

Figure 2. Graph and efficiency measures for seven idealized network topologies. Descriptors shown are: number of nodes n, average
degree SkT, characteristic path length SsplT, routing efficiency Erout, shortest-path probability Pspl , diffusion efficiency Ediff and resources efficiency
Eres.
doi:10.1371/journal.pone.0058070.g002
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were carried out where all rewiring steps were performed such that

the initial uniform degree sequence (Vi ki~4) was maintained.

Preserving the uniformity of the degree sequence was found to

greatly restrict the range of Eroutk k and Ediff

�

�

�

� that can be

reached by evolving networks (Figure S4), essentially limiting such

networks to a narrow region spanning the lattice and random

reference points with a very high positive co-variance between

Eroutk k and Ediff

�

�

�

�. Thus, the uniformity of the degree sequence

(which corresponds to zero degree-sequence entropy) had a strong

impact on network communication by contracting the region of

the morphospace that is accessible and at the same time creating a

strong mutual linear dependency between routing and diffusion

efficiency.

Real-World Networks in the Efficiency Morphospace
Figure 5 shows the efficiency morphospace represented by

Eroutk k and Ediff

�

�

�

� for 23 heterogeneous real-world systems,

including brain, protein-interaction, genetic regulatory, social,

virtual social, transportation and digital circuit networks (numer-

ical values for network metrics are given in Table S1). Examining

Figure 5, three basic observations can be made. First, it appears

that most of the morphospace is empty, i.e. most combinations of

Eroutk k and Ediff

�

�

�

� are not actually encountered in real-world

networks. Second, networks found within the small region of the

morphospace form an elongated cloud of points aligned with the

positions of the two reference points for lattice and random

topologies and their Eroutk k and Ediff

�

�

�

� exhibits a strong and

significant linear correlation (r~0:86, pv10{6). Third, most

social, virtual social, digital circuit and transportation networks

are located close to the random reference point. Protein

interaction networks and genetic regulatory networks are the most

efficient, exceeding the performance of equivalent random

networks both in terms of diffusion and routing. Indeed, a visual

inspection of these networks indicates the presence of numerous

star-like patterns. Regarding brain networks, we observed a

difference in networks recorded at macroscopic (whole-brain

regional) and microscopic (single neuron) resolution. Whole-brain

human brain networks acquired by diffusion imaging and

tractography were placed within a lower efficiency regime

compared to the single-neuron network of C. elegans which

performed very similar to random networks for both efficiency

measures.

Discussion

The efficiency of communication in complex networks is of

central interest across many disciplines studying physical, social,

technological or biological systems. Here we explore the relation

between different measures of communication efficiency based on

Figure 3. Multi-objective optimization in the efficiency morphospace. Results shown are for evolutionary processes driven by network
efficiency measures for networks with n~50 and SkT~4. Blue and red squares indicate the reference points of regular lattices and randomized
networks respectively. Green points indicate the initial seed population. Gray circles indicate evolving networks over epochs, with darker shades of
gray indicating networks encountered in later epochs. Orange points show Pareto-front (non-dominated) solutions. (a) Snapshots illustrating the
expansion of the Pareto fronts at epochs 2, 25, 50, 100, and 200. (b) Final solutions were reached after 517, 704, 977, and 433 epochs for fronts 1, 2, 3,
and 4 respectively. Black asterisks denote positions of the example graphs shown in insets. Yellow points show dominated solutions of the final
populations. Grey points show coordinates visited during the evolutionary process at different epochs (denoted by the gray-level).
doi:10.1371/journal.pone.0058070.g003
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routing or diffusion processes, and different aspects of network

topology. This exploration is carried out within an efficiency

morphospace whose two axes are defined by scaled measures of

routing and diffusion efficiency. Complex networks are positioned

in this space depending on the level of communication efficiency

they support. We explore this space by adopting three different

approaches. An examination of idealized topologies, evolved

architectures and real-world networks reveals characteristic

differences in the way different network architectures facilitate or

impede communication via routing or diffusion.

Communication efficiency has been characterized in different

ways, employing routing [28], diffusion [29,30], or more complex

navigation models that include, for instance, limited information

[31], communication based on hierarchical structures [32,33,34],

selection principles with a trade-off between routing and

congestion [35], or walkers capable to benefit from learning

[36]. Contrasting different models for communication processes

such as routing and diffusion strongly suggests that when

considering global measures of network efficiency it is important

to recognize that operating in the shortest-path regime requires

that system elements can access complete knowledge of the global

network structure. This point is particularly salient for models of

network communication that are based on diffusion dynamics,

traditionally characterized by random walks of single particles

across the network [1,18]. Here system elements do not possess

knowledge about the global network topology and instead draw

exclusively on local information when moving towards one of the

neighbors of the node currently visited. This limited knowledge

Figure 4. Graph measures for evolved networks. Results shown
are for networks with n~50 and SkT~4. Heat maps are based on a
square grid with cells measuring 0.05 units in each dimension. For each

cell, graph measures coming from graphs falling on those coordinates
at any epoch of the evolutionary processes (one for each front) were
averaged. (a) Degree entropy. (b) Assortativity. (c) Modularity. (d) Scaled
resource efficiency Eresk k.
doi:10.1371/journal.pone.0058070.g004

Figure 5. Placing real-world networks in the efficiency morpho-
space. The figure shows a scatter plot of Ediff

�

�

�

� and Eroutk k for 23 real-
world networks (for description of data sets see Text S1). Blue and red
squares indicate lattice and random reference points, respectively,
linked by the green reference line. The gray line represents the linear
regression across all 23 real-world networks (r~0:86, pv10{6).
doi:10.1371/journal.pone.0058070.g005
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makes it highly improbable that a diffusion process can proceed

along the shortest paths between nodes. As a foundation for

exploring the relation of communication efficiency to network

topology we introduced a novel set of measures designed to

capture the efficiency of communication based on diffusion

processes, which complement the classic measure of routing

efficiency [8]. Scaling both measures to appropriate random

models allowed us to position different network topologies within

the space defined by Eroutk kand Ediff

�

�

�

� and draw relations

between topology and efficiency.

Star-like topologies exhibit high Eroutk k and high Ediff

�

�

�

�, but

their high communication efficiency comes at the expense of low

Eresk k and high vulnerability to targeted attack on central nodes

[37]. Modular networks exhibit higher Eroutk k than Ediff

�

�

�

�,

suggesting a trade-off between shortest paths that permit efficient

routing, and high clustering that prevents diffusing messages or

random walkers to leave local communities and reach other parts

of the network, an attribute that also results in low Eresk k. High

Eroutk k and low Ediff

�

�

�

� may be desirable in many real systems as

the dispersal of noisy perturbations, rumors or contagious diseases

remains limited to restricted parts of the network. The inverse

pattern, low Eroutk k and high Ediff

�

�

�

�, is encountered in networks

with a central and highly connected ‘core’ or ‘rich club of hubs’

linked to low density branches, with improved robustness as

indexed by high degree entropy [13]. Finally, long chain structures

linking highly connected modules represent network topologies

with low Eroutk k and low Ediff

�

�

�

�. Such networks, the antithesis of

star topologies, minimize communication efficiency regardless of

the nature of system dynamics and are rarely (if ever) encountered

in real-world systems.

The association of certain network architectures with different

levels of communication efficiency for routing and diffusion offers

a new perspective on network performance. As in our multi-

objective optimization experiments, key characteristics of network

architecture encountered in real systems may represent the result

of selection pressure on efficient communication given the

constraints imposed by system dynamics and the cost of building

and running the network’s infrastructure [38]. Importantly, the

dynamics of many real-world systems likely combine aspects of

routing and diffusion. For example, depending on context,

network communication in social or biological networks can draw

on signaling mechanisms for discovering and navigating specific

paths, or on mechanisms that aid undirected dispersion or

broadcasting. In some systems, diffusion processes can degrade

system performance as they allow the propagation of noisy

perturbations, while diffusion may be essential in other systems

where network elements have little or no knowledge about the

global topology. Thus, depending on the balance and significance

of routing and diffusion dynamics, network architectures need to

achieve a trade-off regarding these two aspects of performance in

communication. The results presented here suggest that different

levels of specialization for promoting routing or diffusion can be

achieved by implementing more distributed and modular versus

more centralized and star-like topologies. Modular networks

promote routing at the expense of diffusion, by trapping random

walkers within local communities while allowing navigation

between modules through inter-modular links. Thus, modular

networks may be favored when system performance principally

relies on routing rather than diffusion. In contrast, star-like

topologies, including those containing a rich club of highly

interconnected high-degree nodes, may be viewed as a ‘‘magnet’’

for diffusive signal traffic, attracting and dispersing information

among more peripheral parts of the network. Star topologies may

have a selective advantage when system dynamics utilizes both

routing and diffusion. It is important to note that the propensity

for real systems to implement modular or star-like topologies is

subject to a number of constraints, not explicitly included in the

fitness functions we explored, including structural cost, resistance

to missing links, density and spatial constraints.

The apparent antagonism between dynamics dominated by

diffusion versus routing can be reconciled by introducing the

concept of resource efficiency. Even if the elements of a system

cannot access global knowledge about network topology, this lack

of knowledge can be partly overcome by multiplying the number

of particles or messages (resources) used for communication. As

more resources are deployed the probability that at least one

particle travels along a shortest path increases. Hence, to achieve

targeted (and less noisy) communication the addition of resources

(involving an expense of material and/or energy) can compensate

for a lack of knowledge about network structure. A different way of

quantifying the knowledge needed to achieve shortest-path

performance utilizes an information-theoretical approach [39].

Here we propose that the amount of resources needed over the

entire graph is itself a characteristic descriptor of the graph’s

architecture. Network topologies not only promote communica-

tion by routing or diffusion processes, they can also afford greater

resource efficiency, thus helping to reconcile the difference

between routing and diffusion. Resource efficiency refers to an

aspect of network cost, since resources (messages, signals) tend to

consume energy and increase traffic volume. Interestingly, another

aspect of network cost that impacts communication efficiency is

network density. If adding edges is cheap, but multiplying

resources is expensive, dense networks favoring routing over

diffusion offer a better compromise between cost and efficiency. If

edges are expensive, but increasing resources is more affordable,

star or rich-club topologies become the more economical

alternative, which more strongly favors systems with diffusive

dynamics.

Our approach towards characterizing communication efficiency

in networks can be extended in different directions. First, the

measures and approaches introduced here could be fully explored

for undirected weighted networks. Second, additional measures for

characterizing diffusion in complex networks exist, including for

instance the entropy rate of a diffusion process [40] and the

multiple-passage time [19]. Third, other variants of random walk

models can be explored, including those with degree-biased [40],

‘‘greedy routing’’ [41,42] and intermediate [43] or learning-based

[36] routing/diffusion strategies. Finally, all our aggregate

measures can be computed for specific node pairs, allowing for

instance the identification of specific sets of nodes and commu-

nication paths for which the network architecture favors diffusion

and/or routing processes.

Future applications and extensions of the framework for

characterizing communication efficiency proposed in this article

may offer new insights into how complex networks maximize

performance when their elements operate with limited knowledge

and resources. Such limits are prominently encountered in, for

instance, neuronal networks, where the trade-off between cost and

efficiency is a major driving force of brain organization [44].

Supporting Information

Text S1 Supporting information regarding networks

and algorithms.

(DOCX)

Figure S1 Pareto fronts from an evolutionary experi-

ment with n~50 and SkT~4 (a,b) and n~50 and SkT~8
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(c,d). Pareto front size refers to the number of networks it

contains. The age of each member of the Pareto front is defined as

the number of consecutive epochs spent in it. The Pareto front age

is the average age of each member. (a,c) Evolution of Pareto front

sizes for the different fronts. A large pareto front indicates a front

expanding across a wide range of the search space, indicating that

the in trying to satisfy the multi-objective function evolving

networks cannot find a sharp gradient towards improvement. (b,d)

Evolution of the Pareto front age for the different fronts. An old

Pareto front indicates that the evolutionary process is unable to

move the front towards better solutions in order to satisfy the

multi-objective function.

(TIF)

Figure S2 Graph evolution driven by network efficiency

measures, for networks with n~50 and SkT~8. Blue and

red squares indicate the reference points of regular lattices and

randomized networks, respectively. Green points indicate the

initial seed population. Gray circles indicate evolving networks

over epochs, with darker shades of gray indicating networks

encountered in later epochs. Orange points show Pareto-front

(non-dominated) graphs. (a) Snapshots illustrating the expansion of

the Pareto fronts at epochs 2, 25, 50, 100, and 200. (b) Final

solutions were reached after 1000, 1000, 1000, and 556 epochs for

fronts 1, 2, 3, and 4 respectively. Black points denote positions of

the example graphs shown in insets. Yellow points show

dominated graphs of the final populations. Grey points show

coordinates visited by any graph during the evolutionary process

at different epochs (denoted by their grey-level).

(TIF)

Figure S3 Graph measures for evolved network topol-

ogies with n~50 and SkT~8. Heat maps are based on a

square grid with cells measuring 0.05 units in each dimension. For

each cell, graph measures coming from graphs falling on those

coordinates at any time point of the evolutionary processes (one for

each front) were averaged. (a) Degree entropy. (b) Assortativity. (c)

Modularity. (d) Scaled resource efficiency Eresk k.
(TIF)

Figure S4 Graph evolution driven by network efficiency

measures, for networks with n~50 and SkT~4 when

degree-sequence is preserved. Blue and red squares indicate

the reference points of regular lattices and randomized networks,

respectively. Green points indicate the initial seed population.

Orange points show Pareto-front (non-dominated) solutions. Final

solutions were reached after 315, 294, 315, and 144 epochs for

fronts 1, 2, 3, and 4, respectively. Yellow points show dominated

solutions of the final populations. For comparison, evolving

networks and Pareto fronts for networks with n~50 and

SkT~4 when only density and connectedness are preserved (see

Figure 3) are outlined in grey.

(TIF)

Table S1 Graph and normalized efficiency measures

for 23 real-world networks including brain, protein

interaction, genetic regulatory, social, virtual social,

transportation and digital circuit networks. Compare to

Figure 5.

(DOCX)

Movie S1 A movie showing the complete evolutionary

process towards each front for n~50 and SkT~4. When a

front stalls, it means that its corresponding stop criterion has been

reached. Blue and red squares indicate the reference points of

regular lattices and randomized networks, respectively. Green

points indicate the initial seed population. Gray circles indicate

evolving networks over epochs, with darker shades of gray

indicating networks encountered in later epochs. Orange points

show Pareto-front (non-dominated) graphs.

(AVI)

Movie S2 A movie showing the complete evolutionary

process towards each front for n~50 and SkT~8. See

Movie S1 for details.

(AVI)
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