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Abstract

Good performance with small ensemble filters applied to models with many state variables may require ‘localizing’ the impact of an observation

to state variables that are ‘close’ to the observation. As a step in developing nearly generic ensemble filter assimilation systems, a method to

estimate ‘localization’ functions is presented. Localization is viewed as a means to ameliorate sampling error when small ensembles are used to

sample the statistical relation between an observation and a state variable. The impact of spurious sample correlations between an observation

and model state variables is estimated using a ‘hierarchical ensemble filter’, where an ensemble of ensemble filters is used to detect sampling

error. Hierarchical filters can adapt to a wide array of ensemble sizes and observational error characteristics with only limited heuristic tuning.

Hierarchical filters can allow observations to efficiently impact state variables, even when the notion of ‘distance’ between the observation and

the state variables cannot be easily defined. For instance, defining the distance between an observation of radar reflectivity from a particular radar

and beam angle taken at 1133 GMT and a model temperature variable at 700 hPa 60 km north of the radar beam at 1200 GMT is challenging. The

hierarchical filter estimates sampling error from a ‘group’ of ensembles and computes a factor between 0 and 1 to minimize sampling error. An

a priori notion of distance is not required. Results are shown in both a low-order model and a simple atmospheric GCM. For low-order models,

the hierarchical filter produces ‘localization’ functions that are very similar to those already described in the literature. When observations are

more complex or taken at different times from the state specification (in ensemble smoothers for instance), the localization functions become

increasingly distinct from those used previously. In the GCM, this complexity reaches a level that suggests that it would be difficult to define

efficient localization functions a priori. There is a cost trade-off between running hierarchical filters or running a traditional filter with larger

ensemble size. Hierarchical filters can be run for short training periods to develop localization statistics that can be used in a traditional ensemble

filter to produce high quality assimilations at reasonable cost, even when the relation between observations and state variables is not well-known

a priori. Additional research is needed to determine if it is ever cost-efficient to run hierarchical filters for large data assimilation problems instead

of traditional filters with the corresponding total number of ensemble members.
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1. Introduction

Ensemble filter methods for data assimilation in the

atmosphere and ocean have been in use for more than a decade.

Progressively more powerful and simpler implementations have

been applied to a growing array of problems, ranging from low

order idealized model studies, through operational atmospheric

prediction [1–3].
The Data Assimilation Research Section at NCAR is

developing simple, generic assimilation methods for use by
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scientists with modeling or observational expertise but limited

experience with assimilation. Ensemble filters described in

the literature still require the specification of model and

observation specific parameters for good performance. One

common requirement is specifying functions that ‘localize’ the

impact of an observation to a subset of the model state variables,

usually a subset that is physically close to the observation [4].

Localization can be essential for small ensemble filters to

provide high quality assimilations in large models.
In simple models, for instance univariate low-order

models [5], it may be easy to localize the impact of

observations. Making a physically motivated assumption that

observation impacts should be weighted by a locally supported
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Gaussian-like function and tuning the width of this function

works very well for many applications. Matters are more

complicated in large, multivariate, multidimensional models

for atmospheric and oceanic prediction. While many large

ensemble filter applications have localized observation impact

in the horizontal by a two-dimensional Gaussian-like function,

vertical localization has been more challenging [6]. Limiting

multivariate impacts, for example the impact of a temperature

observation on a wind observation, is also an issue and has

received limited study. Observations taken at times different

from the model time can also require temporal localization.

Questions like: “how should the impact of a radar reflectivity

observation from a particular beam angle at 0045 GMT be

allowed to impact a model temperature variable located 150

km north of the radar at 300 hPa at 0100 GMT?” [7] need to

be addressed in a systematic fashion.

Here, ensemble filtering algorithms are derived as a Monte

Carlo approximation to the Bayesian filtering problem [8,9].

Localizing observation impacts on state variables is related to

sampling errors in the ensemble filter. A hierarchical Monte

Carlo method, in which an ensemble (group) of ensemble

assimilations is performed, can estimate these sampling errors.

In one-dimensional models, results can be similar to the

methods already in use although the new method can estimate

the width for Gaussian-like localizations. In large multivariate

models, computed localization functions are often non-

Gaussian and would be difficult to approximate a priori. The

hierarchical Monte Carlo method may enhance performance

in realistic atmospheric and oceanic assimilation/prediction

applications. Short assimilations with a hierarchical filter can

be used to provide localization functions for traditional filters

for users that are not assimilation or modeling experts. The

localization information from the hierarchical filters can then be

used to give good performance in small traditional ensembles.

Further research is needed to evaluate whether it is ever efficient

to use limited computing resources to run a group filter, as

opposed to a correspondingly costly larger traditional filter, in

real assimilation applications. For now, the hierarchical filters

presented here should simply be viewed as a tool for finding

appropriate localizations for traditional filter assimilations.

2. Sources of error in ensemble filters

Most key works in the ensemble (Kalman) filtering literature

start from the classical Kalman filter [10,11]. Anderson [12]

presented an alternative, starting from Bayesian filtering [8]

and describing ensemble filtering as the impact of a single

observation on a single state variable without loss of generality.

Fig. 1 depicts an ensemble filter implemented in this way.

First, a model advances a sample (ensemble) of state estimates

from a previous time, tk , to the time, tk+1, when the next

observation is taken (step 1); dashed lines represent model

trajectories. A forward operator, H, is applied to each prior

state estimate to obtain a prior sample estimate of the observed

variable, y (step 2). The observed value, yo, and observational

error distribution (gray density superposed on the y-axis) come

from the instrument (step 3). The prior sample and observation

Fig. 1. Schematic representation of the implementation of the ensemble filter

used here with possible error sources marked by numbers 1 through 5.

are combined giving an updated sample estimate of y (thin

ticks on y-axis) and corresponding increments (vectors below

y-axis) (step 4). The details of step 4 distinguish most ensemble

(Kalman) filter variants [13–15]. Finally, the prior joint sample

of y and a state variable, xi , are used to compute corresponding

increments for each sample of the state variable (vectors at the

end of dashed model trajectories at tk+1) (step 5). Usually this

is done using linear regression (this is implicit in Kalman filter

derivations of ensemble methods). When linear regression is

used, each state variable can be updated independently [12] to

give a sample of the model state vectors conditioned on the

observation.

Errors can be introduced at each step. Model error [16,17],

including the fact that model sub-grid scale parameterizations

are often not stochastic [18], is introduced in step 1. Forward

operators, H, in step 2 are rife with error sources including

time and space interpolation errors, representativeness errors,

etc. Step 3 introduces errors in retrieving and transmitting

observations from instruments and the use of often poorly

known instrumental error distributions. Algorithms for step

4 generally approximately model the prior distribution (a

Gaussian assumption is most common) and make additional

approximations when computing the updated conditional

probability. Sampling error from small ensembles is also an

issue here. Finally, in step 5 the model-generated relationship

between observation and state variables can differ from the

relation in the physical system. Errors are also introduced

by assuming a linear relation between the observation and

state variable increments. Sampling error in linear regression

in step 5 can be the dominant source of error in the whole

filtering procedure. This paper focuses on ways to minimize

this regression sampling error. Sampling error in step 4 can be

addressed in a similar fashion but is not addressed here.

3. Dealing with regression error in ensemble filters

There are many ways to deal with sampling errors in

the regression step (or observation increment step) of an

ensemble filter. The first is to ignore them (and treat results

with less confidence). Although simple cases in low order

models (Section 5) can work when ignoring sampling error, this

approach often fails because filters diverge from the true state

of the system.
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A second method is to make heuristic assumptions that

reduce the confidence given to sample statistics during filter

execution. For instance, covariance inflation [19] can alleviate

impacts of error from all sources in Section 2 and is predicated

on the idea that serious errors in ensemble filters are those

that lead to overconfidence in prior estimates. An overconfident

prior reduces weight given to subsequent observations leading

to further separation of the ensemble from the truth. This

can lead to filter divergence where the ensemble estimate is

oblivious to observations. Covariance inflation avoids this by

increasing the prior variance. After the model is advanced in

time (step 1 in Fig. 1), the prior sample variance of each state

variable, xi , is increased by linearly ‘inflating’ the ensemble

around its mean,

xi, j = √
γ
(

xi, j − x̄ j

)

+ x̄ j . (1)

Here, i indexes the ensemble member, j indexes the state

variable element, an overbar is an ensemble mean, and γ is the

covariance inflation factor. One can argue that much important

information in the prior is retained since inflation leaves the

mean and correlations between state variables unchanged [20].

A third method applies physically based assumptions

about the underlying prior distribution. Distance dependent

localization [21,4] reduces the impact of an observation on a

state variable (step 5 in Fig. 1) by a factor that is a function

of the ‘physical distance’ separating them. The compactly

supported Gaussian-like fifth order polynomial of Gaspari and

Cohn [22], called a GC envelope here, is most commonly used.

Another localization used in the literature is the boxcar function

used by Anderson and Anderson [20] and found to be inferior

to the more smoothly varying GC method. A similar method

used by Ott et al. [23] appears to produce good results. Distance

dependent localization requires that a ‘distance’ be defined a

priori between an observation and each state variable.

A fourth method for dealing with sampling errors makes

a statistically based a priori estimate of the expected error

in the regression coefficient given the numerical model and

the set of observations. This appears to be extremely difficult

in problems with large non-linear models and complicated

forward observation operators.

A fifth method uses a posteriori statistical information

from a filter to estimate corrections needed for a subsequent

assimilation. Assume that sample regression coefficients

between an observation taken periodically at a fixed station

and all state variables are available from a long successful

ensemble assimilation. Estimates of the sampling error can be

computed under a variety of different assumptions about the

underlying ‘true’ distributions of the coefficients. The sampling

error can then be corrected during a subsequent assimilation.

In many cases, this method begs the question since an initial

successful filter run cannot be made without knowing how to

correct for the sampling errors. A related method that is the

closest published result to that described here has been used

by Houtekamer and Mitchell [24] who split their ensemble into

two parts and use statistics from one half to update the other

half.

A sixth method uses a Monte Carlo technique to evaluate

sampling errors in an ensemble filter. In this study, ‘groups’ of

ensembles are used to understand regression sampling errors in

the ensembles.

4. A hierarchical ensemble filter

Assume that m groups of n-member ensembles (m × n

total members) are available. When using linear regression

to compute the increment in a state variable, x , given

increments for an observation variable, yo, m sample values

of the regression coefficient, β, are available. The regression

coefficient for each group is calculated as in a standard

ensemble filter as βi = σx,y/σy,y where the numerator is

the prior sample covariance of the state variable x and the

observed variable y and the denominator is the prior variance

of the observed variable both computed using the n members

of the i th group. Neglecting other error sources, assume that

the correct but unknown value of β is a random draw from

the same distribution from which the m samples were drawn.

The uncertainty associated with the sample value of β for a

given ensemble implies that increments computed for the state

variable are also uncertain. A regression confidence (weighting)

factor, α, is defined to minimize the expected RMS difference

between the increment in a state variable and the increment that

would be used if the ‘correct’ regression factor were used. α is

chosen to minimize
√

√

√

√

m
∑

j=1

m
∑

i=1,i 6= j

(

αβi − β j

)2
(2)

where βi is the regression factor from the i th group. This is

equivalent to finding the α that minimizes

m
∑

j=1

m
∑

i=1,i 6= j

(α2β2
i − 2αβiβ j + β2

j ). (3)

Taking a derivative with respect to α and seeking a minimum

gives

2α

m
∑

j=1

m
∑

i=1,i 6= j

β2
i − 2

m
∑

j=1

m
∑

i=1,i 6= j

βiβ j = 0. (4)

The first sum in Eq. (4) can be rewritten as

(m − 1)

m
∑

i=1

β2
i (5)

and the second sum as

(

m
∑

i=1

βi

)2

−
m
∑

i=1

(

β2
i

)

(6)

so that

αmin =











(

m
∑

i=1

βi

)2/ m
∑

i=1

β2
i



− 1







/

(m − 1) . (7)
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Fig. 2. Regression confidence factors as a function of the ratio Q of regression

sample standard deviation to the absolute value of the sample mean for 2 (thin

solid), 4 (thick dashed), 8 (thin dashed) and 16 (thick solid) groups.

αmin can be computed directly from Eq. (7) as a function of the

sample values β. It can also be written as a function of the ratio,

Q, of the sample standard deviation to the absolute value of the

sample mean of β

αmin = max

[

m − Q2

(m − 1)Q2 + m
, 0

]

. (8)

Fig. 2 plots αmin, referred to as a regression confidence factor

(RCF), as a function of the ratio Q for group sizes 2, 4, 8 and

16; if αmin is less than zero it is set to zero. Smaller groups have

smaller RCFs, especially on the tail of the distribution. When

uncertainty is large (larger Q), small groups cannot distinguish

signal from noise and the observation is not allowed to impact

the state variable.

The hierarchical ensemble filter proceeds as follows. Each

n-member ensemble is treated exactly as described in Section 2

except for step 5, the regression computation. A regression

coefficient, βi , i = 1, . . . , m is computed for each of the m

ensembles and the sample mean and standard deviation are

computed, along with the ratio Q; the RCF is computed from

Eq. (8). The regression is completed for each ensemble using

its sample regression coefficient multiplied by the RCF. The

set of RCFs for a given observation and the set of model

state variables is called a ‘regression confidence envelope’.

The envelope can be viewed as a localization. Applying a

hierarchical filter may also reduce the covariance inflation

required for a given assimilation since part of the regression

error is often corrected by inflation.

The hierarchical approach is analogous to turbulence closure

schemes [25]. Like these, the hierarchical technique must be

‘closed’ at some level. Here, a second level scheme in which

‘groups’ of ensembles are used is applied. A ‘closure’ is

obtained by dealing with sampling error in the groups using

some other method. This makes sense only if the sampling error

at level two is less severe than that from just using one of the

other methods in Section 3 for a single ensemble.

5. Regression confidence envelopes in the L96 model

5.1. Experimental design

The 40-variable model of Lorenz (Appendix) [5] is

configured with 40 state variables equally spaced on a unit

periodic one-dimensional domain. This L96 model has an

attractor dimension of 13 [26]. A free integration of the

model and prescribed observational error are used to generate

synthetic observations to be assimilated by the same model.

Forty randomly located ‘observing stations’ are used in most

experiments and observations are available every model time

step. The 40 stations are marked by asterisks at the top

of Fig. 4a. Forward observation operators, H, are linear

interpolations from the nearest model state variables while

observational errors are Gaussian with mean 0 and observation

error variance varying between 10−7 and 107 for different

experiments. It is not necessary to assume that the model state

is defined at the observing station locations. The stations simply

define the forward observation operators.

As noted in Section 2, ensemble filters variants are

distinguished by the algorithm used to compute the observation

variable increments in step 4. Here, the deterministic square

root filter [27] referred to as an Ensemble Adjustment Kalman

Filter (EAKF) in Anderson [19] is used. Most results do not

change qualitatively when using other observation space update

methods such as the classical ensemble Kalman filter [10] or

some more exotic techniques [12].

For efficient application of hierarchical filters small group

sizes must produce good results. Group sizes of 2, 4, 8 and 16

have been evaluated and comparisons for different group sizes

are examined in selected cases.

All hierarchical filter assimilations start with ensemble

members selected from a ‘climatological’ distribution of the

L96 model generated by integrating slightly perturbed states for

100,000 time steps. 4000-step assimilations are performed, the

first 2000 steps are discarded and results shown from the second

2000 steps. A covariance inflation factor (selected from the set

1.0, 1.0025, 1.005, 1.0075, 1.01, 1.015, 1.02, 1.025, 1.03, 1.04,

1.06, 1.07, 1.08, 1.09, and 1.10 to 1.40 by intervals of 0.02)

is tuned by experimentation to give the smallest time mean

RMS error for the ensemble mean prior estimate over the final

2000 steps. Initial conditions for the second 2000 steps from the

first group of the hierarchical ensemble filter are used as initial

conditions for additional single filter assimilations discussed

below.

RCF values are kept for each observation/state variable pair

at each assimilation time and the time mean and median are

computed from the last 2000 steps. Additional assimilation

experiments are performed using a single ensemble filter with

the same ensemble size. The time mean (median) values

of RCFs from the hierarchical filter multiply the regression

factors for each observation/state variable pair from the single

ensemble; these are referred to as time mean and time median

filter assimilations. The covariance inflation factor for the time

mean and median cases is selected so that it minimizes the time
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Fig. 3. 2000-step time mean RMS error (normalized by the observational error

standard deviation) for observational error variance of 10−7 with 13, 8 and

5 member ensembles for standard Gaspari–Cohn localized (base) filter, four

group filter and corresponding time mean and time median filter, and eight

group filter and corresponding time mean and median filter.

mean RMS error of the ensemble mean over the 2000 steps of

the single ensemble assimilation.

In addition, traditional ensemble filters with localization

using a GC function are performed for each hierarchical filter

case. The optimal value of the GC half-width is selected by

searching from the set of values 0.025, 0.05, 0.075, 0.10, 0.125,

0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.6, 0.75, 1.0 and 108 for

that value producing the smallest time mean RMS error over

the 2000 steps of the experiment. For each GC half-width the

optimal value of the covariance inflation is determined as for

the other filters. Results from the combination of GC half-width

and covariance inflation that minimizes the RMS are presented.

Time mean values of the RMS error of the prior ensemble

mean state variables are used as a rough measure of

performance. The time mean of the RMS difference between

ensemble members and the ensemble mean (a measure of the

ensemble spread) is also computed. In ideal situations, error

and spread values should be statistically indistinguishable. For

most cases discussed here, the spread is slightly greater than

the RMS error for the cases with the smallest RMS error (see

Tables 1–5).

5.2. Small observational error results

Initially, tiny observational error variances of 10−7 are

prescribed. Table 1 includes RMS error and spread values

along with optimal values of the covariance inflation factor and

GC localization half-width (for the standard filter cases) for a

variety of ensemble and group sizes. Fig. 3 compares time mean

RMS errors for a variety of filters for ensemble sizes of 13, 8

and 5.

Results for any ensemble size n > 13 combined with any

number of groups are nearly identical after long assimilations

(for small groups, this may be much longer than the standard

2000 steps). Time median RCFs are 1.0 for nearly all

observation/state variable pairs and means are greater than 0.99.

Table 1

Comparative RMS error and spread for assimilations with 40 randomly located

observations with 10−7 error variance for ensemble sizes >13, 13, 8 and 5 and

for four-group and eight-group filters with corresponding time mean and time

median filters and a traditional filter with Gaspari–Cohn localization (base)

Ensemble

size

Group size

and type

GC Half-

width

Covariance

inflation

Time

mean

RMS

error

Time

mean

spread

>13 Four

groups

None None 0.2335 0.2481

13 8 groups None 1.04 0.2412 0.2903

Mean None 1.03 0.2487 0.2837

Median None 1.03 0.2456 0.2748

Four

groups

None 1.04 0.2544 0.2950

Mean None 1.03 0.2562 0.2877

Median None 1.03 0.2596 0.2838

Base 0.5 1.04 0.2527 0.2851

8 8 groups None 1.04 0.2651 0.3297

Mean None 1.05 0.3017 0.3145

Median None 1.05 0.2845 0.3171

Four

groups

None 1.05 0.2830 0.3274

Mean None 1.07 0.3003 0.3523

Median None 1.05 0.2996 0.3308

Base 0.3 1.06 0.2890 0.3113

5 8 groups None 1.10 0.3084 0.4114

Mean None 1.16 0.3895 0.4637

Median None 1.14 0.3830 0.4872

Four

groups

None 1.12 0.3497 0.4392

Mean None 1.16 0.3877 0.4723

Median None 1.07 0.3698 0.4007

Base 0.15 1.12 0.3792 0.4332

3 8 groups None 1.24 0.6395 0.8450

Mean None 1.28 0.5965 0.7755

Median None Any Diverges

Four

groups

None 1.30 0.9075 1.208

Mean None 1.28 0.7235 0.9566

Median None Any Diverges

Base 0.1 1.36 0.7595 0.8155

Error and spread values are normalized by the observational error standard

deviation.

This indicates that the m ensembles have converged to nearly

identical sample covariance estimates. With such tiny error

variances, all error sources outlined in Section 2 are so small

that sampling error for both the regression and the observation

increment becomes negligible. Since all m samples of the

regression factor are nearly the same, the true value is known

nearly exactly. There is no need for the traditional distance

dependent localization.

While sample covariances for n > 13 converge to

the same values, the sample covariance from any sub-

sample of an ensemble does not converge. This is why the

hierarchical ensemble filter technique requires independent

ensembles rather than partitioning a single large ensemble when

computing RCFs.

For n < 14, the mean and median RCFs become

increasingly localized. Fig. 4a, b shows mean (median) RCFs

for the observation at 0.6424, about 70% of the way between
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Table 2

Comparative RMS error and spread for assimilations with 40 randomly located observations with various error variances

Observation error variance Ensemble size Group size and type GC half-width Covariance inflation Time mean RMS error Time mean spread

1e–5 14 Four groups None 1.02 0.2258 0.2564

14 Mean None 1.03 0.2380 0.2693

14 Median None 1.05 0.2472 0.2928

14 Base None 1.03 0.2478 0.2713

56 Base None 1.005 0.2153 0.2348

1e–3 14 Four groups None 1.02 0.2314 0.2584

14 Mean None 1.03 0.2352 0.2721

14 Median None 1.02 0.2252 0.2528

14 Base 0.4 1.03 0.2486 0.2800

56 Base None 1.0075 0.2177 0.2372

0.1 14 Four groups None 1.02 0.2488 0.2776

14 Mean None 1.04 0.2692 0.3113

14 Median None 1.03 0.2630 0.2931

14 Base 0.3 1.03 0.2657 0.2952

56 Base None 1.01 0.2396 0.2575

1.0 14 Four groups None 1.03 0.2901 0.3230

14 Mean None 1.03 0.3121 0.3377

14 Median None 1.05 0.3146 0.3652

14 Base 0.3 1.05 0.3080 0.3426

56 Base 0.5 1.01 0.2816 0.2885

10.0 14 Four groups None 1.05 0.3782 0.4294

14 Mean None 1.05 0.4052 0.4482

14 Median None 1.04 0.4075 0.4502

14 Base 0.2 1.06 0.4285 0.4245

56 Base 0.25 1.02 0.3560 0.3712

1e7 14 Four groups None None 23.21* 23.02*

14-member ensembles are used for four-group and eight-group filters with corresponding time mean and time median filters. Traditional filters (base) for ensemble

sizes of 14 and 56 are also included. Error and spread values are normalized by the observational error standard deviation.

Table 3

Comparative RMS error and spread for assimilations with 40 randomly located

observations with 1.0 error variance for ensemble size 14 for 2, 4, 8 and 16

groups with corresponding time mean and time median filters and a traditional

filter with Gaspari–Cohn localization (base)

Group size and

type

GC

half-width

Covariance

inflation

Time mean

RMS error

Time

mean

spread

2 groups None 1.05 0.3066 0.3505

Mean None 1.06 0.3243 0.3980

Median None 1.05 0.3297 0.3787

Four groups None 1.03 0.2901 0.3230

Mean None 1.03 0.3122 0.3377

Median None 1.05 0.3146 0.3652

8 groups None 1.03 0.2854 0.3346

Mean None 1.04 0.3150 0.3550

Median None 1.05 0.3096 0.3640

16 groups None 1.03 0.2795 0.3210

Mean None 1.04 0.3080 0.3523

Median None 1.03 0.3042 0.3414

Base 0.3 1.05 0.3080 0.3426

state variables 26 and 27, and all 40 state variables. For n = 13,

the maximum of the median is 1.0 for state variables 26, 27

and 28 and the minimum is about 0.12 for state variables

farthest from the observation. The mean peaks just below 1

and has a minimum of about 0.25. Reducing n to 8 and 5

leads to progressively more localization. The median still has

a maximum near 1 for state variable 27, but non-zero values are

Table 4

Comparative RMS error and spread for assimilations with 40 observations

located as in Fig. 4 to form a data dense and data void region with 1.0 error

variance for 14 member ensembles

Group size and

type

GC

half-width

Covariance

inflation

Time mean

RMS error

Time

mean

spread

Four groups None 1.015 12.75 13.33

Mean None 1.03 13.33 13.55

Median None 1.01 13.59 14.32

Base 0.2 1.02 13.77 13.86

Table 5

Comparative RMS error and spread for assimilations with 40 randomly located

observations with forward observation operators being the average of 15-

point observations surrounding the central location (for instance at locations

0.6424 + 0.025k, where k = −7, −6, . . . , 6, 7)

Group size and

type

GC

half-width

Covariance

inflation

Time mean

RMS error

Time

mean

spread

Four groups None 1.12 2.030 2.797

Mean None 1.14 2.182 3.116

Median None 1.12 2.508 3.159

Base Any Any Diverged

The observational error variance is 4.0 and the mid-points of the 40 observation

locations are the same as marked in Fig. 4a.
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Fig. 4. 2000-step time mean (a) and time median (b) regression confidence

factors for Lorenz-96 model assimilations for an observation located at 0.6424

and all 40 state variables. The asterisks at the top of (a) indicate the position

of 40 randomly located observations with observational error variance of 10−7.

Results are from hierarchical ensemble filters with four groups and ensemble

sizes of 5 (thick dashed), 8 (thick solid) and 13 (thin solid). Also shown is a

Gaspari–Cohn localization function for a half-width of 0.2 (thin dash–dotted).

confined progressively closer to the observation. The maximum

time mean decreases and the RCF is increasingly sharply

localized but does not go to 0 far from the observation.

Fig. 3 and Table 1 show that time mean RMS error and

spread increase as n is reduced for all methods (hierarchical,

time mean, time median, standard). The optimal GC half-

width for the traditional filter becomes smaller as n decreases

(Table 1), consistent with the time mean and median RCFs.

For n < 14, the sample covariance cannot represent

the actual covariance because the L96 attractor is on a 13

dimensional manifold. Attempts to apply a traditional filter

without localization with n < 14 eventually lead to filter

divergence. For the hierarchical filter, errors due to this type of

degeneracy can be characterized as noise. Smaller ensembles

have larger errors in computing β and the corresponding RCFs

are smaller (Fig. 4).

Fig. 5. 2000-step time mean RMS error (normalized by the observational error

standard deviation) for observational error variances of 10−5, 10−3, 0.01, 1.0

and 10.0 for standard Gaspari–Cohn localized filter (base 14), four-group filter

and corresponding time mean and time median filters, all with ensemble size

14.

There is remarkable similarity between the time mean/

median RCF envelopes and the GC function. The GC

localization with half-width 0.2 is displayed in Fig. 4a, b; this

is between the optimal half-widths of 0.3 for eight ensemble

members and 0.15 for five ensemble members. The central

portion of the GC is similar in shape to the time median

RCFs in Fig. 4b. The RCF envelopes produced from 2000-step

assimilations display evidence of sampling noise making them

appear less smooth than the GC functions. Noise in the time

mean and median RCFs is one factor that leads the time mean

and median ensemble filters to produce RMS errors that are

often slightly larger than those from the optimal GC traditional

filter (Figs. 3, 5 and 7; Tables 1–5).

5.3. Varying observational error variance

Noise can also be introduced into the assimilations

by decreasing the number of observations, decreasing the

frequency of observations, or increasing the observational error

variance. Here, the observational error variance is increased.

Fig. 6a, b show the time mean (median) RCFs as the

observational error variance is increased to 10−5, 10−3, 0.1, 1.0,

10.0 and 107. Table 2 shows the error, spread, and parameter

settings for filters applied in these problems while Fig. 5

compares the time mean RMS errors. Results are for four

groups and n = 14. As the error variance increases the response

of the RCF envelopes is similar to that from reducing the

ensemble size. Larger error variance leads to more compact

median RCFs and more strongly peaked means. The case with

error variance 107 has prior ensembles with climatological

distributions since the observations have negligible impact (so

there is no point in comparing error results from different types

of filters). The RCF envelopes in this case have an interesting

double peaked structure. When beginning an assimilation from

a climatological distribution (a safe and simple choice in many

cases), this approximates the appropriate localization.
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Fig. 6. 2000-step time mean (a) and time median (b) regression confidence

factors for Lorenz-96 model assimilations for an observation located at 0.6424

and all 40 state variables. Results are from hierarchical ensemble filters with

four groups and 14 ensemble members. The observational error variance for

40 randomly located observations is 10−5 (thick dash–dotted), 10−3 (thick

dashed), 10−1 (thick solid), 1.0 (thin dash–dotted), 10.0 (thin dashed) and 107

(thin solid).

Sampling error introduced into the regression by reducing

the information available from the observations is qualitatively

similar to that from degenerate ensembles (Section 5.2). While

gaining an understanding of these two sources of error may

require independent analysis, the hierarchical filter approach

addresses both types of errors.
An advantage of the hierarchical filter is that it does not

require tuning of a localization function like the GC half-

width. Heuristic tuning can require many iterations, even in one

dimensional, univariate models like L96 with simple forward

observation operators. Tuning of localization becomes much

more difficult in multivariate three-dimensional models with

complex forward observation operators.

5.4. Impact of group size on results

Fig. 7 shows RMS errors for different group sizes for the 40

random observation, 1.0 error variance case with n = 14 while

Fig. 7. 2000-step time mean RMS error (normalized by the observational error

standard deviation) for observational error variance of 1.0 and hierarchical

filters with group sizes of 2, 4, 8 and 16 along with the corresponding time

mean and time median filters.

Table 3 shows details on these assimilations. Increasing group

size leads to a gradual reduction of error. The corresponding

time mean and median filters show this behavior to a lesser

extent. Fig. 8a, b show the time mean (median) RCFs for group

sizes 2, 4, 8 and 16. Close to the observation, group size has

almost no impact. Larger differences are seen in the tails where

increasing group size leads to progressively smaller values of

the RCF. This reflects sampling error in the groups (second

level sampling error) in the hierarchical filter. Time mean error

decreases with group size (Table 3). With large enough models,

hierarchical filters can have the same type of sampling problems

as traditional filters, only at level two. The most straightforward

way to address this second level sampling error is to include a

heuristic localization (like GC) in concert with the hierarchical

filter.

5.5. Time variation of regression confidence factors

Fig. 9a, b show RCFs from steps 1000 to 1050 for the 1.0

observational error variance case with n = 14 for groups of

16 (2). The time mean (median) of the full 2000 steps can be

seen in Fig. 6a, b. Close to the observation, the median (Fig. 6b)

indicates that the RCF is usually close to 1. However, Fig. 9a,

b depict occasions when the value is small, for instance near

time 1033. The group 2 results (Fig. 9b) are noisier, with many

significantly non-zero values for state variables remote from the

observation. The relative lack of non-zero values for m = 16

suggests that much of the non-zero time mean RCF far from

the observation is related to second order sampling error.

6. Regression confidence factors for different observation

types

6.1. Spatially inhomogeneous observations

Fig. 10 shows 40 observation locations characterizing a well-

observed and a poorly observed region in the L96 model. 39



J.L. Anderson / Physica D 230 (2007) 99–111 107

Fig. 8. 2000-step time mean (a) and time median (b) regression confidence

factors for Lorenz-96 model assimilations for an observation located at 0.6424

and all 40 state variables. The observational error variance for 40 randomly

located observations was 1.0. Results are for 2 groups (thick solid), 4 groups

(thin dash–dotted), 8 groups (thin solid) and 16 groups (thin dashed) of 14-

member ensembles.

observations are equally spaced between 0.011 and 0.391 while

the 40th observation is located at 0.701. All observations have

an error variance of 1.0. The RMS error of three assimilations

as a function of state variable is also plotted. In the data

dense region, there is no visible difference between the error

characteristics of a standard filter, an m = 4 filter, and its

corresponding time mean filter, all with n = 14. However, in

the data sparse region, the hierarchical filter and the time mean

filter show reduced time mean error (see also Table 4).

Fig. 11a, b show the mean (median) RCF envelopes for

observations at 0.011, 0.191, 0.391, and 0.701. RCF envelopes

for the observation at 0.191 are relatively wide consistent

with low error cases from the previous section. Observations

located in larger time mean error areas away from the center

of the densely observed region have progressively narrower

RCF envelopes. The RCF for the observation at 0.701 is very

narrow and displays the two-lobed structure found for very

large errors in the previous section. The observation at 0.011,

Fig. 9. Regression confidence factor for Lorenz-96 model assimilations for an

observation located at 0.6424 and all 40 state variables as a function of time

between assimilation steps 1000 and 1050 of a 16 group (a) and 2 group (b)

hierarchical filter with ensemble size of 14. The contour interval is 0.2 with

values greater than 0.2 shaded and values greater than the added contour 0.95

shaded black.

immediately downstream of the poorly observed region, has

intermediate width but a triply peaked structure not seen in

previous examples.

The optimized GC half-width for the traditional filter is 0.2,

relatively broad compared to the RCFs in data sparse regions.

The result is that the standard filter performs well in the data

dense region but has increased RMS error along with reduced

spread in poorly sampled regions.

Atmospheric and oceanic prediction problems continue to

present significant disparities in observation spatial density.

Hierarchical filters could deal with these areas, but traditional

filters would require spatially varying localizations. Effects of

temporal variations in observation density are similar and may

also be significant for real assimilation problems. Traditional

data is denser at 00Z and 12Z in the atmosphere while many

remote sensing observations are only available during certain

orbital periods or under certain atmospheric conditions. A
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Fig. 10. 2000-step time mean RMS error as a function of model state variable

for 14 member ensemble assimilations of 40 observations with observational

error variance of 1.0 whose location is indicated by the asterisks at the top of

the plot. Results are plotted for a four-group hierarchical filter (thin dashed),

a filter using the time mean regression confidence factors from the four-group

filter (thin solid), and a traditional ensemble filter (base) with a Gaspari–Cohn

localization with half-width 0.2.

hierarchical filter might perform better than a standard filter or

a time mean/time median filter since it may be able to resolve

time-varying components of the sampling error.

6.2. Spatially averaged observations

Satellite observations measuring the total amount of water

vapor in an atmospheric column are used in many operational

assimilation systems. Other satellite observations have fields

of view that are not small compared to the spacing of model

gridpoints (especially in the vertical). Forward operators for

these observations must be viewed as a weighted average of

a large number of model variables.

Spatially averaged observations are simulated in the L96

model by defining a forward observation operator that averages

a 0.375 wide domain of the state variables. Given an

observation located at xo, this operator averages 15 standard

forward observation operators located at xo + 0.025k, where

k = −7, −6, . . . , 6, 7. The 40 observing stations from

Section 5.1 are used with error variance of 4.0. Filters with

n = 14 are used.

Fig. 12 shows the time mean and median RCF envelopes for

the observation at 0.6424. Both have a broad maximum with

values around 0.6 centered on the observation. The median has

an abrupt drop to 0 near the edge of the averaging region while

the mean decreases more gradually to a minimum of about 0.15.

Table 5 shows the time mean error results for a m =
4 hierarchical filter, its time mean and time median, and a

standard filter. Relatively large values of covariance inflation

were required, suggesting that the level of sampling error in

this problem is larger than in previous examples. The standard

filter diverged for all pairs of GC localization half-widths and

covariance inflation. If an n = 14 standard filter with GC

Fig. 11. 2000-step time mean (a) and time median (b) regression confidence

factors for Lorenz-96 model four-group hierarchical filter with 14-member

ensembles. The observations are as for Fig. 10 and the locations are marked

with asterisks at the top of the plot. Regression confidence factors are plotted

for the observation at location 0.011 (thick solid), 0.191 (thin dashed), 0.391

(thin solid) and 0.701 (thick dashed).

localization that works for this problem exists, it would work

only for a very narrow range of parameters. On the other hand,

the m = 4 hierarchical filter produced roughly similar RMS

error for a range of covariance inflation.

Causes of the standard filter’s problem are apparent. The

GC functions are defined so that state variables close to the

observation location receive the full impact of the observation.

The standard filter increments for a given state variable and

a relatively small GC half-width are too heavily influenced

by a group of close observations and insufficiently influenced

by more distant observations. The local over-weighting can be

corrected by large covariance inflation, but only by sacrificing

even more of the information from more distant observations.

Observations for which the forward operators involve averaging

in time or combinations of spatial and temporal averaging

should also prove challenging with a priori localization.
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Fig. 12. 2000-step time mean (thick) and time median (thin) regression

confidence factors for Lorenz-96 model assimilations with a four-group 14-

member ensemble filter for an observation located at 0.6424 and all 40 state

variables. The forward observation operators are the average of 15-point

observations surrounding the central location (for instance at locations 0.6424+
0.025k, where k = −7, −6, . . . , 6, 7). The observational error variance is 4.0

and the mid-points of the 40 observation locations are the same as marked in

Fig. 4a.

7. Assimilation of observations from different times

As observations become increasingly ‘distant’ from the state

estimate in time, one expects sampling noise to become an

increasingly large problem [28]. This is examined using an

m = 4, n = 14 hierarchical filter. The observations in

Section 5.1 with observational error variance 1.0 are used. In

addition, a single late arriving observation, located at 0.6424, is

available from a previous time. The time lag between when this

observation was taken and when it is available for assimilation

is varied from 0 to 100 assimilation times in a series of 101

experiments. The forward observation operator is applied to the

state at the time the delayed observation was taken and archived

until the time at which it is assimilated.

Fig. 13 shows the time mean RCF envelopes for the delayed

observation as a function of the lag time. For short lag times,

a horizontal cross section through Fig. 13 looks very similar to

the thick solid curve in Fig. 6a; that experiment differs only

in not having an additional lagged observation available. As

the lag increases, the RCF maximum shifts downstream and is

gradually reduced. This reflects the advection of ‘information’

by the model from the observation location. The amplitude

decrease reflects increasing noise in the sample regressions

between the lagged observation and the state as the expected

relationship becomes weaker.

There is interest in the development of ensemble smoothers

that use observations both from the past and the future to

develop an accurate analysis of the state of the system [29].

Appropriate localization in time would be crucial in smoother

applications. A plot of the impact of a future observation at

location 0.6424 as a function of lag would look very similar

to Fig. 13 reflected around a vertical line at 0.6424.

Fig. 13. 1000-step time mean regression confidence factors for simulated time-

lagged observation at location 0.6424 for assimilations with a four-group 14-

member hierarchical ensemble filter. The base observation set is the 40 random

observations as marked in Fig. 4a with error variance 1.0. The plot shows

the regression confidence factors for an observation that was taken ‘time lag’

assimilation steps prior to the time at which it was assimilated. The contour

interval is 0.1.

Ensembles are a natural tool for targeted observation

experiments [30,31]. These experiments assume that there exist

certain observations whose deployment can be controlled [32].

Normally, there is some delay involved in deploying

targeted observations. Hence, targeted observation experiments

normally involve using forecasts initiated at time t0 to

determine the deployment of observations at time t0 + ttar in

order to improve some forecast element at time t0 + tver, which

is even further in the future [33,34].

The reduction in expected spread for the function of the state

variables at time t0 + tver can be computed by regressing the

expected reduction in the spread of the ensemble estimate of

an observation at time t0 + ttar onto the verification quantity

using the ensemble sample joint distribution of the potential

targeted observation and the function at the verification time.

This regression will be subject to sampling noise [35] which

would require localization in time and space.

8. Estimating non-local model parameters

The use of assimilation to obtain estimates of model

parameters has been discussed in the literature [36].

Anderson [19] used assimilation in the L96 model to obtain

the value of the parameter F found in Eq. (A1). Localization in

ensemble filters requires addressing the question “what is the

distance between the parameter and an observation at a given

location?”; a hierarchical filter is a natural way to answer this.

A modified version of the L96 model in which the forcing

parameter, F , is treated as a 41st model variable is used for a

hierarchical filter assimilation. F is fixed at 8.0 in the control

integration that generates synthetic observations. Observation

locations are the same as in Section 5.1 with an observational

error variance of 1.0. An m = 4, n = 14 filter has an

RMS error of 1.714 with spread 1.868. The time mean RMS
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error in the estimate of F is 0.01212 (initial values for F are

randomly selected from U [7,9]). Time mean values of the

RCF between individual observations and F vary between 0.18

and 0.24 implying that F is weakly influenced by any single

observation. This is not surprising since F impacts the state

globally while the observations are correlated only with a local

portion of the state. It is intriguing that this experiment gives

the lowest RMS error for the 40 standard state variables of

any case examined although all other cases know F exactly.

Apparently the uncertainty introduced into the prior estimates

by the varying values of F corrects for other sources of error.

9. PE dynamical core on a sphere

Most simple examples of assimilation in the L96 model

result in RCF envelopes that are approximately Gaussian. It is

difficult for hierarchical group filters to perform better than the

best heuristically tuned GC localized filters in these cases. More

complicated, multivariate models in higher dimensions might

produce less Gaussian RCFs that provide additional motivation

for using hierarchical ensemble filters for assimilation. Here,

the dynamical core of the GFDL B-grid climate model is used

to do a preliminary exploration of this issue.

The B-grid core [37,38] is configured in one of the lowest

resolutions that supports baroclinic instability in a Held-Suarez

configuration [39] with a 30 latitude by 60 longitude grid

and five vertical levels. Assimilation with traditional ensemble

filters has been explored in this model in Anderson et al. [38].

1800 randomly located surface pressure stations are fixed on

the surface of the sphere and provide observations every 12 h

with error standard deviation of 1 hPa. This set of observations

can constrain not only the surface pressure field, but also the

rest of the model variables.

Assimilations are performed over a 100-day period,

starting with ensemble members drawn from a climatological

distribution. Results here are for a m = 4, n = 20 hierarchical

filter with no covariance inflation.

Fig. 14 shows the RCFs for a surface pressure observation at

22.7N 61.4E with surface pressure state variables while Fig. 15

shows the RCFs for the same observation with the v wind

field at model levels 2 to 5. The RCFs, especially for v, are

not well described by Gaussians, with multi-modal structures

being apparent. The v RCFs do not have maxima near 1.0 at

any level. The structure in the vertical is also non-Gaussian

with a minimum at the middle levels. The vertical structure

of the RCF in experiments with realistic GCMs (for instance

NCAR’s CAM3.0) is even more complex and suggests that

vertical correlation errors may be a major source of error in

traditional ensemble filters. It is important to note that the B-

grid model RCFs are even more complex than indicated in

Figs. 14 and 15 because they vary considerably depending on

the latitude of the observation.

10. Discussion and conclusions

Given ensembles of state variable assimilation results from

a successful assimilation and a description of the observing

Fig. 14. Time mean regression confidence factor for a pressure observation at

22.7N 61.4E and surface pressure state variables in the GFDL B-grid AGCM.

Contour interval is 0.1.

Fig. 15. Time mean regression confidence factors for the same surface pressure

observation as in Fig. 14 but with v at each of the model levels 2 through 5.

Contour interval is 0.1.

system, it is possible to approximate the RCFs without using

a group filter. Knowing the underlying distribution of the

correlation between an observation and a state variable allows

the computation of the expected time mean RCF. However, in

order to compute the RCF in this way, one needs a successful

assimilation that in turn requires a high-quality localization of

observation impact or a very large ensemble to reduce sampling

error. The hierarchical ensemble filter presented here provides

a mechanism for producing high quality assimilations with less

a priori information about how the impact of observations on

state variables should be localized. Instead, a Monte Carlo

technique is applied to limit the impacts of ensemble sampling

error. This technique can deal with situations in which the

appropriate ‘localization’ of the impact of an observation on
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a state variable is a complicated function of both observation

type, state variable type, spatial location of both the observation

and the state variables, and time.

In the low order L96 results that comprise most of this

report, the performance of hierarchical filters and traditional

ensemble filters that use a prescribed localization is roughly

equivalent. However, the traditional ensemble filters require

many experiments to tune. In addition, when starting from

climatological distributions (which is perhaps the safest way

to design assimilation experiments of this sort) the traditional

ensemble filter may not be able to deal with the initial phases

of the assimilation with large prior error spread while still

providing high quality assimilations once the initial error is

reduced. A hierarchical filter application is required to provide

initial conditions for the traditional ensemble filter in such

cases.

In complex multivariate models like atmospheric prediction

models, a priori specification of localization functions becomes

problematic. Even the appropriate distance between spatially

and temporally collocated observations and state variables

becomes unclear when the observation and state are of

different types. When the added complexity of non-local

forward operators, vertical and horizontal separation, and

temporal separation are considered, the problem becomes very

complex indeed. Matters are only made worse by the fact that

ensemble size and error size also come into play. While naively

localized ensemble filters have produced decent results in large

multivariate models, it appears likely that performance could be

enhanced by applying hierarchical filters.

Cost, of course, is an important consideration. While results

from even small numbers of groups appear to lead to good

estimates of sampling error in ensembles, this added expense

may be the straw that breaks the camel’s back for operational

application. However, using short hierarchical experiments to

produce statistics for creating localization functions is probably

affordable. The resulting ensemble filters using these statistics

for localization cost no more than traditional ensemble filters.

Hopefully, addressing sampling error and other error sources

in ensemble filters will continue to make them even more

competitive with other existing assimilation methods and easier

for non-experts to apply.

Appendix. The Lorenz-96 model

The L96 [5] model has N state variables, X1, X2, . . . , X N ,

and is governed by the equation

dX i/dt = (X i+1 − X i−2)X i−1 − X i + F, (A1)

where i = 1, . . . , N with cyclic indices. Here, N is 40, F =
8.0, and a fourth-order Runge–Kutta time step with dt = 0.05

is applied as in Lorenz and Emanuel [26].
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