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L.A. Garćıa-Escudero, A. Gordaliza,

C. Matrán and A. Mayo-Iscar

Departamento de Estad́ıstica e Investigación Operativa

Universidad de Valladolid. Valladolid, Spain†

Abstract

Two key questions in Clustering problems are how to determine the number of

groups properly and measure the strength of group-assignments. These questions are

specially involved when the presence of certain fraction of outlying data is also expected.

Any answer to these two key questions should depend on the assumed probabilistic-

model, the allowed group scatters and what we understand by noise. With this in

mind, some exploratory “trimming-based” tools are presented in this work together

with their justifications. The monitoring of optimal values reached when solving a

robust clustering criteria and the use of some “discriminant” factors are the basis for

these exploratory tools.

Keywords: Heterogeneous clusters, number of groups, strength of group-assignments,

trimming.

1 Introduction

Two key questions in Clustering problems are how to choose the number of groups properly

and measure the strength of group-assignments. These two questions are specially involved

when we also expect the presence of noise or outliers in our data set, as occurs when robust
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clustering methods are applied. We think that it is difficult to provide sensible answers to

these two important questions without stating formal assumptions concerning the following

issues:

a) State clearly which one is the probabilistic model assumed. Without making that de-

cision, previous questions are not well-posed ones. This formal statement avoids the

view of Cluster Analysis as “model-free” or merely “heuristically” motivated tech-

niques (see, e.g., Flury 1997). A review of adequate probabilistic models to be applied

in Clustering can be found in Bock (1996).

b) Put constraints on the allowed group structures. For instance, we should clearly specify

in advance if we assume spherical, elliptical or other different shapes. Moreover, we

can force similar group scatters or we can allow for very different ones. Banfield and

Raftery (1993) and Celeux and Govaert (1995) presented several ways of forcing these

constraints on the group structures.

c) State clearly what we understand by noise or outliers. A clear distinction should be

made about what a “proper group” means compared to what could be merely a (small)

fraction of outlying data. This establishes a subtle link between Clustering and Robust

Estimation methods (see, e.g., Hawkins and Olive 2002, Rocke and Woodruff 2002,

Hennig and Chrislieb 2002, Garćıa-Escudero et al. 2003, Hardin and Rocke 2004 or

Woodruff and Reiners 2004).

Several “mixture modeling” and “crisp clustering” approaches to model-based Clustering

can be found in the literature. Mixture modeling approaches assume that data at hand

x1, ..., xn in R
p come from a probability distribution with density

∑k
j=1 πjφ(·; θj) with φ(·; θj)

being p-variate densities with parameters θj for j = 1, ..., k. This leads to likelihoods of the

form
n∏

i=1

[ k∑

j=1

πjφ(xi; θj)

]
. (1.1)

On the other hand, “crisp” (0-1) clustering approaches assume classification likelihoods

k∏

j=1

∏

i∈Rj

φ(xi; θj), (1.2)

with Rj containing the indexes of the observations that are assigned to group j.

In this work, we adopt a crisp clustering approach and therefore we try only to provide

answers to the initial questions within this framework. Moreover, we put special emphasis in

robustness aspects due to the (aforementioned) connections between Clustering and Robust

Estimation as well as the real experience of practitioners that reveals that the presence of
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outlying data in Clustering is the rule rather than the exception. We also assume that φ(·, θj)

stands for the multivariate normal distribution with parameters θj = (µj,Σj) where µj is the

population mean and Σj is the variance-covariance matrix. This is our choice of underlying

probability model in a) which, indeed, it is a frequent choice in many Clustering procedures.

A general framework for trying to simultaneously handle issues a), b) and c) in the crisp

clustering framework was introduced in Gallegos (2002) and Gallegos and Ritter (2005).

The so-called “spurious-outliers model” assumes the presence of a fraction α of the data

generated by an extraneous mechanism that may be trimmed off or discarded. Within this

framework, the TCLUST methodology presented in Garćıa-Escudero et al. (2008) is able to

handle different types of constraints for the group scatter matrices which allows for addressing

point b) through a restriction on the group scatter matrix eigenvalues. A different way of

controlling the group scatters has been recently introduced in Gallegos and Ritter (2009).

Alternatively, constraining the minimum group size is proposed in Gallegos and Ritter (2010)

also within this “spurious-outliers model” framework.

The TCLUST has a theoretically well-founded background and a feasible algorithm for

its implementation was given in Garćıa-Escudero et al. (2008) once parameters k (number of

groups) and α (trimming proportion) are fixed in advance. However, procedures for choosing

k and α when applying TCLUST have not been proposed yet. We will see in this work how

suitable choices for k and α can be obtained throughout the careful examination of some

Classification Trimmed Likelihoods curves which are based on “trimmed” modifications of

(1.2). The presented methodology can be surely adapted to other types of group covariance

constraints within the “spurious-outliers model” framework.

The choice of k in clustering problems has a long history in Statistics (see, e.g., Milligan

and Cooper 1988). When trimming is allowed, some recent proposals for choosing k and α

are based on modified BIC notions (Neykov et al 2007 and Gallegos and Ritter 2009 and

2010). Gallegos and Ritter’s proposals also include the consideration of normality goodness-

of-fit tests and outlier identification tools (see, e.g., Becker and Gather 1999 and references

therein).

The choice of k in the mixture modeling has also received a lot of attention in the literature

(e.g., Wolfe 1970, Titterington et al. 1985, McLachlan 1987, Fraley and Raftery 1998 and

Keribin 2000). Robust mixture modeling approaches try to fit noisy data through MLE with

additional components for the noise (Fraley and Raftery 1998 and Dasgupta and Raftery

1998) or fitting mixtures of t distributions (McLachlan and Peel 2000). Unfortunately, it

is easy to see that these approaches do not always work correctly when noisy data depart

notably from the assumptions (Hennig 2004a). The here presented “trimming” approach

differs from “robust mixture modeling” ones in that noisy data are completely avoided and

no attempt to fit them is tried. A “trimming” approach to mixture modeling can be found in

Neykov et al (2004 and 2007) and in Cuesta-Albertos et al. (2008). Take also into account
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that “mixture modeling” and “crisp clustering” approaches pursue different goals and so

answers to our initial questions may be completely different (see, Biernacki, Celeux and

Govaert 2000). There are other proposals for choosing k resorting to validity measures being

functionals of the group partitions and quantifying concepts like clusters “separation” or

“compactness”. These ideas will not be explored here.

The outline of the work is as follows. Section 2 briefly reviews the TCLUST methodology

while the Classification Trimmed Likelihood curves are introduced in Section 3. Section

4 provides graphical displays based on “discriminant” factors which provide confirmatory

graphical tools to see the appropriateness of the final choice of k and α. Some simulated

and real data examples are presented in Section 5. The Appendix includes some theoretical

results justifying the use of the presented tools.

An R package called tclust for implementing the TCLUST and the proposed graphical

tools is available at the CRAN (http://cran.r-project.org) repository.

2 The TCLUST methodology

Starting from the “classification likelihood” in (1.2), Gallegos (2002) and Gallegos and Ritter

(2005) proposed the “spurious-outlier” model by considering a “likelihood” like:

k∏

j=1

∏

i∈Rj

φ(xi; θj)
∏

i∈R0

gi(xi), (2.1)

with {R0, R1, ..., Rk} being a partition of indexes {1, ..., n} in Rα defined as

Rα =
{
{R0, R1, ..., Rk} : ∪k

j=0Rj = {1, ..., n}, Rr ∩Rs = ∅ for r ̸= s and #R0 = [nα]
}
.

The densities φ(·; θj) are p-variate normal densities with parameters θj = (µj,Σj) and the

gi(·)’s are assumed to be probability density functions in R
p satisfying

argmax
Rα

max
{θj}kj=1

k∏

j=1

∏

i∈Rj

φ(xi; θj) ⊆ argmax
Rα

∏

i/∈R1∪...∪Rk

gi(xi).

This last assumption is reasonable whenever a fraction α of non regular data points (with

indexes in R0) may be just considered as noisy observations. Precise examples for these

gi(·)’s are given in Gallegos and Ritter’ papers. We can see there that the maximization of

(2.1) simplifies into the maximization of

k∏

j=1

∏

i∈Rj

φ(xi; θj).
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Additionally, the TCLUST method introduced in Garćıa-Escudero et al. (2008) assumes

the presence of some unknown weights πj ∈ [0, 1] for the regular part of data proposing the

maximization of
k∏

j=1

∏

i∈Rj

πjφ(xi; θj),

with {R0, R1, ..., Rk} ranging in Rα.

Notice that this likelihood is not a “mixture likelihood” and these weights are intended to

take into account the different sizes of the groups when making the final group assignments.

The TCLUST method also considers a group scatters similarity constraint in terms of

the eigenvalues of the group covariance matrices. If λl(Σj)’s are the eigenvalues of the group

covariance matrix Σj and

Mn = max
j=1,...,k

max
l=1,...,p

λl(Σj) and mn = min
j=1,...,k

min
l=1,...,p

λl(Σj)

are the maximum and minimum eigenvalues, the constraint Mn/mn ≤ c for a constant c ≥ 1

is imposed. Closely related constraints were first applied in the mixture modeling framework

by Hathaway (1985).

Hence, the TCLUST problem is defined throughout the maximization:

LΠ
c (α, k) := max

{Rj}kj=0
∈Rα,{θj}kj=1

∈Θc,{πj}kj=1
∈[0,1]k

k∑

j=1

∑

i∈Rj

log(πjφ(xi; θj)), (2.2)

with Θc = {(θ1, ..., θc) such that θj’s satisfy the constraint Mn/mn ≤ c}. The values where

the maximum of (2.2) is attained are denoted by {R̂0, R̂1, ..., R̂k}, (θ̂1, ..., θ̂k) and (π̂1, ..., π̂k).

An “unweighed” problem can be also defined throughout the maximization:

Lc(α, k) := max
{Rj}kj=0

∈Rα,{θj}kj=1
∈Θc

k∑

j=1

∑

i∈Rj

log φ(xi; θj). (2.3)

These problems are closely connected with some trimmed likelihood proposals in Neykov

et al (2004 and 2007). However, instead of using explicit constraints on the group scatter ma-

trices to avoid undesired singularities, no explicit model-based rules for choosing/eliminating

spurious solutions are provided in those works (apart from some sensible protections in the

algorithms aimed at “maximizing” the trimmed likelihood).

The maximization of (2.2) or (2.3) has obviously a very high computational complexity

due to the “combinatorial” nature of the problem. A feasible algorithm aimed at approx-

imately solving (2.2) was given in Garćıa-Escudero et al. (2008). This algorithm may be

easily adapted to solve (2.3) just assuming equal weights πj = 1/k. These algorithms belong

to the family of Classification EM algorithms (Celeux and Govaert 1992) but, in order to per-

form the data-driven trimming, some “concentration” steps (as those behind the fast-MCD
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algorithm in Rousseeuw and van Driessen 1999) are also applied. A quadratic programming

problem is solved to force the solutions to satisfy the eigenvalue ratio constraints.

Solving problems like those in (2.2) and (2.3) in the untrimmed case with different group

scatter constraints has a long history in Clustering. For instance, classical k-means (McQueen

1967) are just the solution of problem (2.3) with α = 0 and assuming Σ1 = ... = Σk = σ2I.

The determinant criterium (Friedman and Rubin 1967) is based on the assumption Σ1 =

... = Σk = Σ. Other constraints can be found in Banfield and Raftery (1998) and Celeux

and Govaert (1992). The consideration of weights πj’s in classification likelihoods like in

(2.2) goes back to Symons (1981). This criterium also appears in Bryant (1991) under the

name of “penalized classification likelihood”.

Many procedures for choosing k in Clustering are based on monitoring the size of “like-

lihoods” like (2.3) depending on k. For instance, see Engelman and Hartigan (1974) or

Calinski and Harabasz (1974) when assuming Σ1 = ... = Σk = σ2I and when α = 0 or

Marriot (1991) when Σ1 = ... = Σk = Σ. However, there is a clear drawback in directly

monitoring the size of (2.3) since it strictly increases when k is increased. A formal proof

of this claim is given in Proposition 2 in the Appendix. This fact could lead us to over-

estimate k if no remedy is adopted. Therefore, searching for an “elbow” in summarizing

graphs or considering non-linear transformations (Sugar and James 2003) are proposed in

the literature.

Since weights πj = 0 are possible, (2.2) does not necessarily increase strictly when in-

creasing k. This fact was already noticed in Bryant (1991) in the untrimmed case α = 0.

He also mentioned the possible merit of it in order to provide helpful guidance for choosing

the number of groups in Clustering. See also the discussion of the CL2 method in Biernacki

and Govaert (1997).

As we commented in the Introduction, the choice of k should depend on the assumptions

made for issues b) and c). As a simple example, let us consider a data set with n = 1000

observations simulated through a bivariate three-component Gaussian mixture with mixing

parameters π1 = .36, π2 = .54 and π3 = .1. The assumed means are µ1 = (0, 0)′, µ2 = (5, 5)′

and µ3 = (2.5, 2.5)′, and the covariance matrices are

Σ1 =

(
1 0

0 1

)
,Σ2 =

(
4 −2

−2 4

)
, and, Σ3 =

(
50 0

0 50

)
.

The result of applying the TCLUST to this data set appears in Figure 1,(a) when k = 3,

α = 0 and a large value for the group scatters constraint constant c = 50 are chosen. This

value of c allows for finding a “main” group containing all the most scattered data points.

Alternatively, if we are not willing to accept these scattered observations as being a proper

group, a more sensible cluster solution can be found in Figure 1,(b). There, we can see k = 2

groups for a c = 5 value and a trimming proportion α = .1 (that now serves to trim all the
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most scattered data points). This example shows that the proper determination of α and k

are two closely related tasks.
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Figure 1: TCLUST results for a simulated data set: k = 3, α = 0 and c = 50 are fixed in (a)

and k = 2, α = .1 and c = 5 in (b). Symbols “◦” stand for the trimmed observations and

shown ellipsoids are 97.5% tolerance based on the estimated group means and scatters.

3 Classification Trimmed Likelihood Curves

In these section, we introduce some “classification trimmed likelihood curves” as useful tools

for choosing the number of groups k in Clustering. The k-th trimmed likelihood curve is

defined through the function:

α 7→ LΠ
c (α, k) for α ∈ [0, 1),

with LΠ
c (α, k) as defined in (2.2). This definition explicitly depends on the constant c stating

the allowed differences between group scatter matrices eigenvalues.

These curves are used to measure ∆Π
c (α, k) = LΠ

c (α, k + 1)− LΠ
c (α, k), which quantifies

the “gain” achieved by allowing increasing the number of groups from k to k+1 for a given

trimming level α.

Notice that we might have also considered ∆c(α, k) = Lc(α, k+1)−Lc(α, k), but ∆c(α, k)

would always be strictly greater than 0. This property is proved in Proposition 2 when

excluding some (non-interesting) pathological cases which happen when the data set is con-

centrated on k points after trimming a proportion α.

On the other hand, we can see that ∆Π
c (α, k) may be equal to 0 for values of k greater

or equal than the “appropriate” number of groups. For instance, Figure 2 is based on a
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simulated data set obtained as in Figure 1 but now taking π1 = .4, π2 = .6 and π3 = 0.

Figure 2,(a) shows the clustering result associated to the maximization of (2.3) when k = 3,

c = 5 and α = 0. We can see in Figure 2,(b) the values of L5(0, k) for k = 1, 2, 3. By

examining this graph, we might be tempted to think that increasing k from 2 to 3 is needed.

Figures 2,(c) shows the clustering results obtained when maximizing (2.2) for the same values

of k, c and α. Notice that one of the estimated group weights π̂j is now set to zero (with

arbitrary values for µ̂j and Σ̂j satisfying the group scatters constraint). This fact leads to

∆Π
5 (0, 3) = 0, as we can see in the plot of values of LΠ

5 (0, k) for k = 1, 2, 3 that appear in

Figure 2,(d).
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Figure 2: Clustering results when solving the problem (2.3) when k = 3, c = 5 and α = 0 is

shown in (a). The results when solving (2.2) appear in (c) for the same values of k, c and

α. Values of L5(0, k) for k = 1, 2, 3 are shown in (b) and those of LΠ
5 (0, k) in (d).

By using these classification trimmed likelihood curves, we recommend choosing the

number of groups as the smallest value of k such that ∆Π
c (α, k) is always (close to) 0 except

for small values of α. Once k is fixed, the first trimming size α0 such that ∆Π
c (α, k) is (close

to) 0 for every α ≥ α0 is a good choice for the trimming level.

Figure 3 shows the classification trimmed likelihood curves LΠ
5 (α, k) when k = 1, 2, 3, 4

and α ranges in [0, .3] and c = 50. We can see that no significant improvement happens
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when increasing k from 3 to 4 and α = 0. Moreover, no significant improvement is detected

when k increases from 2 to 3 once we discard the proportion α0 = .1 of the most scattered

data points. This figure so suggests k = 3 and α = 0 or k = 2 and α = .1 as two possible

sensible choices for k and α for this data set when c = 50.
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Figure 3: Classification trimmed likelihood curves LΠ
5 (α, k) when k = 1, 2, 3, 4, α ranges in

[0, .3] and c = 50 for the data set in Figure 1.

The presented approach just provides some graphical “exploratory” tools. Although these

curves are very informative, it would also be interesting to develop formal statistical tools

in order to numerically quantify when ∆Π
c (α, k) is (close to) 0. This is an ongoing work.

As the TCLUST is a computationally demanding procedure, the Classification Trimmed

Likelihood curves are only evaluated over a grid of α values. Moreover, as it was pointed

out in Garćıa-Escudero et al. (2003), a precise resolution is indeed only needed when α ∈

[0, 1/(k + 1)] for the k-th curve. Notice that Garćıa-Escudero et al. (2003) had already

suggested the interest of monitoring (trimmed k-means based) likelihoods like (2.2) when

choosing k and α in a more constrained case.

4 Strength of Cluster Assignments

For a given TCLUST clustering solution, we now introduce some “confirmatory” graphical

tools that will help us to evaluate the quality of the cluster assignments and the strength of

the trimming decisions.

Let us considerer an optimal solution R̂ = {R̂0, R̂1, ..., R̂k}, θ̂ = (θ̂1, ..., θ̂k) and π̂ =

(π̂1, ..., π̂k) returned by the TCLUST for some k, α and c values. Given an observation xi,
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let us define

Dj(xi; θ̂, π̂) = π̂jφ(xi, θ̂j) for j = 1, ..., k. (4.1)

The values in (4.1) can be sorted as D(1)(xi; θ̂, π̂) ≤ ... ≤ D(k)(xi; θ̂, π̂). A nontrimmed

observation xi would be assigned to group j if Dj(xi; θ̂, π̂) = D(k)(xi; θ̂, π̂) (Garćıa-Escudero

et al. 2008). Therefore, we can measure the strength of the assignment of xi to group j by

analyzing the size of D(k)(xi; θ̂, π̂) with respect to the second largest value D(k−1)(xi; θ̂, π̂).

We, thus, define the discriminant factors DF(i)’s as

DF(i) = log
(
D(k−1)(xi; θ̂, π̂)/D(k)(xi; θ̂, π̂)

)
.

(throughout this section and in the Appendix section, we will omit the dependence on the c

value in the notation).

The idea of using “posterior probabilities” like (4.1) to measure assignment strengths

is not new in Clustering. The use of these DF(i)’s was already suggested in Van Aelst

et al. (2006). The main novelty here will be the definition of discriminant factors also

for trimmed observations. Let us consider di = D(k)(xi; θ̂, π̂) for all the observations in

the sample and sort them in d(1) ≤ ... ≤ d(n). The TCLUST trims off a proportion α of

observations with smallest assignment strengths. In other words, the trimmed observations

are R̂0 = {i ∈ {1, ..., n} : d(i) ≤ d[nα]}. Therefore, we can quantify the certainty of the

“trimming” decision for the trimmed observation xi through

DF(i) = log
(
d([nα]+1)/D(k)(xi; θ̂, π̂)

)
.

Large values of DF(i) (e.g., DF(i) > log(1/8)) indicate doubtful assignments or trimming

decisions. Of course, this log(1/8) threshold value is a subjective choice. With this in mind,

different summaries of the discriminant factors may be obtained. For instance, “silhouette”

plots (Rousseeuw 1987) like those in Figure 4,(b) and Figure 5,(b) can be made. The

presence of groups in the silhouette plot containing many large DF(i) values or, equivalently,

having a large DF(i) mean-value, would indicate that the obtained solution includes some

groups having not enough strength. Moreover, we can also plot observations having large

DF(i) values (Figure 4,(c) and Figure 5,(c)) and these observations correspond to doubtful

assignment or trimming decisions. For instance, the observations in the frontier between the

two clusters that appear when (artificially) splitting one of the main groups in Figure 4,(a)

are labeled as doubtful assignments. Some trimmed observations in the boundaries of the

main groups may be considered as “doubtfully trimmed” ones. Notice that appropriate lower

dimensional representations of the data are needed when p > 2 (see, e.g., Hennig 2004b).

By examining these plots, we can see that many doubtful assignments are made when

k = 3 (Figure 4) and less are made when k = 2 (Figure 5).

The here presented discriminant factors are not directly connected with the well-known

“Bayes Rule” which constitutes the benchmark for Discriminant Analysis techniques. This
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Figure 4: (a) TCLUST solution for k = 3, α = .1 and c = 1. (b) Associated silhouette plot.

(c) Observations with discriminant factors larger than log(1/8) (dotted vertical line in (b)).

connection is only possible when clusters are very separated. Recall also that θ̂ and π̂

are biased “clustering” estimators for the “mixture” parameters θ and π that appear when

assuming likelihoods like (1.1). Anyway, Proposition 3 in the Appendix shows that the here

presented discriminant factors consistently estimate some population discriminant factors

defined for the theoretical (unknown) distribution that generates our data set.

5 Examples

5.1 Simulated Examples

5.1.1 “Noise” and “proper groups”

Let us go back to the simulated data in Figure 1. We had seen there (through the examination

of Figure 3) that we can obtain a cluster including all the most scattered data points when

we fix k = 3, α = 0 and a large enough value for the constant c (for instance, c = 50). We

can see in Figure 6, with a smaller value c = 5, that increasing k from 3 to 4 when α = 0

seems to be still needed since the most scattered data points can not be fitted within a single

group. We can also see in Figure 6 that k = 2 and α around .1 are still reasonable choices

for k and α when c = 5.

This example clearly shows how the answer to the question about whether we have a

background noise or a proper main group should depend on the choice of constant c made

by the researcher.
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Figure 5: (a) TCLUST solution for k = 2, α = .1 and c = 5. (b) Associated silhouette plot.

(c) Observations with discriminant factors larger than log(1/8) (dotted vertical line in (b)).

It is also important to note that the presented approach does not pose any strong distri-

butional assumption on the contaminating part of the data. This fact makes it very flexible.

Other approaches can be very sensitive to deviations from the requirements posed on the

contamination. For instance, we can see that Fraley and Raftery’s MCLUST (1998) applied

to a data set like that in Figure 1 would correctly find 3 groups or 2 groups plus a 10% noise

proportion, depending on whether we allow for a uniform background noise component or

not. In this case, the non-overlapping part of the third more scattered group is properly

fitted through the addition of a uniform component. However, the behavior of the MCLUST

is not so satisfactory when handling more “structured” types of noise like those shown in

Figure 7. In this figure, we have simulated a data set like that in Figure 1 but replacing

the 10% proportion of data corresponding to the more scattered group by more structured

noise patterns. With this in mind, a 10% proportion of data is placed in two circumference

segments and in a straight line segment.

MCLUST finds a new extra group in Figure 7(1.a) because this “outlying” data is far

from being a uniform background noise. Moreover, the clustering solutions may be notably

altered as we can see in Figure 7(2.a) and Figure 7(3.a). In all these examples, MCLUST

was implemented in such a way that a 10% contamination level was declared as the expected

number of outlying data when initializing the procedure. In a similar fashion, these types

of noise would also affect McLachlan and Peel’s (2000) approach based on fitting mixtures

of t distributions. On the other hand, the TCLUST approach has no problem to address

these types of noise as we can see in Figure 7(1.b), 7(2.b) and 7(3.b). Notice also that
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Figure 6: Classification trimmed likelihood curves LΠ
5 (α, k) when k = 1, 2, 3, 4 and α ranges

in [0, .3] for the data set in Figure 1 with c = 5.

the consideration of eigenvalue ratio constraints has also been very important to achieve

the clustering results shown in Figure 7(3.a) and 7(3.b). Otherwise, the subset made of

collinear data would introduce a singularity in the likelihood to be maximized. This fact

could severely affect clustering methods that do not consider any kind of protection against

this problem.

Figure 8 shows the associated classification trimmed likelihood curves for the data sets

in Figure 7. The examination of these curves clearly suggests the choice of parameters k = 2

and α ≈ .1 for applying the TCLUST method.

It may be argued that the three contaminations added in Figure 7 could indeed constitute

further main groups, but these decisions should again be dependent on the type of clusters we

are searching for. For instance, these added points should clearly be outlying data whenever

non-degenerated (elliptical) normally distributed clusters are expected.

5.1.2 Clustering and mixture approaches

In this example, we consider two types of three-component Gaussian mixtures presented in

Biernacki et al (2000). n = 400 data points are randomly drawn from mixtures with mixing

proportions π1 = π2 = .25 and π3 = .5, means given by µ1 = µ2 = (0, 0)′ and µ3 = (8, 0)′,

and, covariance matrices given by

Σ1 = Σ3 =

(
.11 0

0 9

)
and Σ2.
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Figure 7: Clustering results for a simulated data set with 3 different sources of structured

outlying data. MCLUST results are shown in the top row while TCLUST results with k = 2

and α = .1 are shown in the bottom row.

Depending on the matrix Σ2, we have two different mixtures. As a first case, Biernacki et

al (2000) set

Σ2 =

(
.96 2.61

2.61 8.15

)
,

obtaining data sets like that in Figure 9,(a) with an angle between the first eigenvector of

Σ1 and Σ2 equal to 18 degrees. However, with

Σ2 =

(
7.33 2.64

2.64 1.67

)
,

we get an angle equal to 68.5 degrees as it appears in Figure 9,(b). Figure 9 also shows the

associated TCLUST cluster solutions for these two simulated data sets when k = 3, c = 90

and α = 0. We can see that 3 groups can be found when the two mixture components

centered at (0, 0)′ are not “excessively” overlapped in Figure 9,(b). However, when they are
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Figure 8: Classification trimmed likelihood curves with c = 50 for the data sets in Figure 7

((1) corresponds to the data in (1.a), (2) to the data in (2.a) and (3) to the data in (3.a)).

very overlapped, we found only two main clusters in Figure 9,(a) and a smaller “spurious”

one. The simulated data sets are made of three Gaussian components in both cases from

a “mixture modeling” viewpoint. But, from a pure “clustering” viewpoint, we can perhaps

recognize only two clusters in Figure 9,(a) while we recognize three in Figure 9,(b). This

coincides with the feeling expressed in Biernacki et al (2000).
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Figure 9: Two simulated data sets following Biernacki et al (2000) simulation scheme and

the associated TCLUST cluster solutions when k = 3, c = 90 and α = 0.

Figure 10 shows the classification trimmed likelihood curves for the two simulated data
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sets that appear in Figure 9 when c = 90. Notice that this value of c satisfies the eigenvalue

ratio constraints for the theoretical underlying covariance matrices. Figure 10,(a) suggests a

choice of k = 2 for data set in Figure 9,(a). Unless a very high trimming value was chosen,

a value k = 3 is suggested by Figure 10,(b) for the data set in Figure 9,(b).
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Figure 10: Classification trimmed likelihood curves for the data sets appearing in Figure 9

for c = 90. The curves for Figure 9,(a) is given in (a) and for Figure 9,(b) in (b).

5.2 Two Real Data Examples

5.2.1 Old Faithful Geyser data

The “Old Faithful” Geyser data set here considered contains 272 observations on eruption

lengths of this geyser. A bivariate data set is obtained by considering these eruption lengths

and their associated previous eruption lengths, so, having n = 271 data points that are

plotted in Figure 12. Three clear main groups together with the presence of six (rare) “short

followed by short” eruptions may be seen there.

When computing the classification trimmed likelihoods for this data set, we obtain those

appearing in Figure 11. By examining them, it seems sensible to consider at least k = 3 and

that we only should consider k = 4 when we are willing to accept a fraction of approximately

8% of the data joined together as being a proper group.

The cluster solution for k = 3 and α = .08 appears in Figure 12,(a) and that for k = 4

and α = .02 in Figure 12,(b).
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Figure 11: Classification trimmed likelihoods curves for the Old Faithful geyser data.
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Figure 12: TCLUST-based clustering results for the Old Faithful geyser data: k = 3, α = .08

and c = 3 are used in (a) while k = 4, α = .02 and c = 3 are used in (b).

5.2.2 Swiss Bank Notes data

In this well-known data set (Flury and Riedwyl 1988), p = 6 variables are measured on

100 genuine and 100 counterfeit old Swiss 1000-franc bank notes roughly quantifying the

size and position of certain features in the printed image. When analyzing the associated

classification trimmed likelihoods curves in Figure 13, we can easily guess a two groups

structure corresponding due to the presence of “genuine” and “forged” bills. Moreover,

when comparing “2 vs. 3 groups”, we can observe certain improvement considering k = 3
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group unless we use a trimming level approximately equal to α = .1. In fact, this is essentially

motivated by the non-homogeneity of the group of forgeries. For instance, it is quite well-

known (see, e.g., Flury and Riedwyl 1988 or Cook 1999) the existence of a further subgroup

containing 15 data points (perhaps due to the presence of other forger at work).
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Figure 13: Classification trimmed likelihoods curves for the Swiss Bank Notes data when

c = 15.

Figure 14 shows a scatterplot of the fourth variable against the sixth one and showing

the resultant cluster assignment after the application of the TCLUST with k = 2, α = .08

and c = 15. Trimmed points essentially coincide with the previously commented subset of

15 forged bills with a different forgery pattern.

Appendix: Technical Results

In this section, IA(·) stands for the indicator function for the set A, Ac for the complementary

set of A and B(m, r) denotes the ball centered at m with radius r.

The problem (2.2) introduced in Section 2 admits a population version. Given a prob-

ability measure P , we will search for θ̂ = (θ̂1, ..., θ̂k), π̂ = (π̂1, ..., π̂k), and, some zones

{Ẑ0, Ẑ1, ..., Ẑk} ⊂ R
p such that

∪k
j=0Ẑj = R

p, Ẑr ∩ Ẑs = ∅ for r ̸= s and P
[
∪k
j=1 Ẑj

]
= 1− α. (5.1)

Let Zα denote the set of all possible partitions of Rp satisfying (5.1).

We consider the following population problem:

LΠ
c,α,k(P ) := max

{Zj}kj=0
∈Zα,{θj}kj=1

∈Θc,{πj}kj=1
∈[0,1]k

P

[ k∑

j=1

IZj
(·) log(πjφ(·; θj))

]
. (5.2)
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Figure 14: TCLUST-based clustering results for the Swiss Bank Notes data. k = 2, α = .08

and c = 15 are used and only the fourth and sixth variables are plotted.

Notice that LΠ
c (α, k) coincides with LΠ

c,α,k(Pn) in this wider framework, where Pn denotes

the empirical probability measure based on the sample x1, ..., xn.

Analogously, we can extend the problem (2.3) to general probability measures through

the problem:

Lc,α,k(P ) := max
{Zj}kj=0

∈Zα,{θj}kj=1
∈Θc

P

[ k∑

j=1

IZj
(·) log(φ(·; θj))

]
. (5.3)

Again, we have Lc,α,k(Pn) = Lc(α, k).

We will start showing that the optimal values of the sample problems converges toward

the optimal values of the theoretical ones.

Proposition 1 When φ is the p.d.f. of a multivariate standard normal distribution, we have

(for every α, c and k) that

i) LΠ
c,α,k(Pn) → LΠ

c,α,k(P ) almost surely as n → ∞, and,

ii) Lc,α,k(Pn) → Lc,α,k(P ) almost surely as n → ∞.

Proof: These convergences easily follow from standard Glivenko-Cantelli results similar to

those applied in Section A.2 in Garćıa-Escudero et al. (2008). �

We continue analyzing how LΠ
c,α,k(P ) and Lc,α,k(P ) changes when increasing k. As it was

already commented in Garćıa-Escudero et al. (2008), we could have LΠ
c,α,k(P ) = LΠ

c,α,k+1(P )

since we can set an optimal zone as being Ẑj = ∅ and take π̂j = 0. In this work, we

have proposed to take advantage of this fact when trying to choose a suitable k in Clustering
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problems. On the other hand, we now prove in Proposition 2 that Lc,α,k(P ) strictly increases

when increasing k to k + 1 whenever P is not concentrated on k points after trimming a

proportion α.

Proposition 2 If φ is the p.d.f. of a multivariate standard normal distribution and if

there is not a set with k points M = {m1, ...,mk} such that P [M ] ≥ 1− α, (5.4)

then we have

Lc,α,k(P ) < Lc,α,k+1(P ). (5.5)

Proof: Given θ = (θ1, ..., θk), let us define

ϕj(x; θ) := (x− µj)
′Σ−1

j (x− µj) + log(|Σj|) := d2Σj
(x, µj) + log(|Σj|).

It is easy to see that solving the problem in (5.3) when φ is the p.d.f. of a multivariate

standard normal distribution reduces to the minimization of

Vc,α,k(P ) := min
{Zj}kj=0

∈Zα,{θj}kj=1
∈Θc

P

[ k∑

j=1

IZj
(·)ϕj(·; θ)

]
. (5.6)

Consequently, the inequality (5.5) would be proven if we prove that Vc,α,k(P ) > Vc,α,k+1(P )

whenever we have (5.4).

Let θ̂ = (θ̂1, ..., θ̂k) and {Ẑ0, Ẑ1, ..., Ẑk} be the solutions of problem (5.6) (and con-

sequently (5.3)). It may be seen that the optimal zones {Ẑ0, Ẑ1, ..., Ẑk} may be deter-

mined through θ̂ and the probability measure P . In order to do that, let us consider

ϕ(x; θ) = minj=1,...,k ϕj(x; θ),

R(θ, P ) = inf
r

{
P [x : ϕ(x; θ) ≤ r] ≥ 1− α

}
, (5.7)

and, Zj(r, θ) =
{
x : {ϕ(x; θ) = ϕj(x; θ)} ∩ {ϕ(x; θ) ≤ r}

}
. We have that the optimal zones

can be obtained as Ẑj = Zj

(
R(θ̂, P ), θ̂

)
, for j = 1, ..., k, and Ẑ0 = R

p \ ∪k
j=1Ẑj.

Since P satisfy (5.4), we have that P [∪k
j=1Zj(r, θ̂)] < 1− α for every r < R(θ̂, P ) (recall

definition (5.7)). Therefore, we can see that there exists m0 ∈ ∪k
j=1Ẑj and j satisfying that:

a) d2Σj
(m0, µ̂j) ≥

2
3

(
R(θ̂, P )− log(|Σj|)

)
> 0, and,

b) P [B(m0, ε)] > 0 for every ε > 0.

Without loss of generality, let us assume that this j is equal to k and, thus, m0 ∈ Ẑk. Take

now a δ > 0 such that δ ≤ 1
3

(
R(θ̂, P ) − log(|Σ̂k|)

)
. If we now choose a set B0 ⊂ B(m0, δ),
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we have

Vc,α,k(P ) = P

[ k−1∑

j=1

IẐj
(·)ϕj(·; θ̂)

]
+ P [Ẑk] log(|Σ̂k|)

+P

[
IB0∩Ẑk

(·)d2
Ẑk
(·, µ̂k)

]
+ P

[
IBc

0
∩Ẑk

(·)d2
Ẑk
(·, µ̂k)

]

> P

[ k−1∑

j=1

IẐj
(·)ϕj(·; θ̂)

]
+ P [B0 ∩ Ẑk] log(|Σ̂k|) + P [Bc

0 ∩ Ẑk] log(|Σ̂k|)

+P

[
IB0∩Ẑk

(·)d2
Ẑk
(·,m0)

]
+ P

[
IBc

0
∩Ẑk

(·)d2
Ẑk
(·, µ̂k)

]
.

Therefore, considering θ̂1 = (µ̂1, Σ̂1),..., θ̂k−1 = (µ̂k−1, Σ̂k−1), θ̂k = (µ̂k, Σ̂k) and θ̂k+1 =

(m0, Σ̂k), we get a possible solution for problem (5.6), when k is increased to k + 1, with

a target value strictly smaller than Vc,α,k(P ). Consequently, resorting to the optimality of

Vc,α,k+1(P ), we have that Vc,α,k(P ) > Vc,α,k+1(P ) and the result is proved. �

Let us consider Dj(x; θ, π) = πjφ(x, θj) defined for every x ∈ R
p and j = 1, ..., k and sort

them to get D(1)(x; θ, π) ≤ ... ≤ D(k)(x; θ, π). We define

R(θ, π, P ) = inf
r

{
P [x : D(k)(x; θ, π) ≥ r] ≥ 1− α

}
.

and Zj(r, θ, π) =
{
x : {D(k)(x; θ, π) = Dj(x; θ, π)} ∩ {D(k)(x; θ, π) ≥ r}

}
. If θ̂, π̂ and

{Ẑ0, Ẑ1, ..., Ẑk} are the optimal solution of the problem (5.2), it can be proved that Ẑj =

Zj

(
R(θ̂, π̂, P ), θ̂, π̂

)
, for j = 1, ..., k, and, Ẑ0 = R

p \ ∪k
j=1Ẑj.

Given a probability measure P , we can define (by using previous notation) a discriminant

factor value for x ∈ R
p as:

DF(x;P ) = log
(
D(k)(x; θ̂, π̂)/D(k−1)(x; θ̂, π̂)

)
for x ∈ ∪k

j=1Ẑj,

and

DF(x;P ) = log
(
D(k)(x; θ̂, π̂)/R(θ̂, π̂, P )

)
for x ∈ Ẑ0.

Notice that DF(xi;Pn) = DF(i) when Pn is the empirical measure.

The following result states the consistency of the empirical discriminant factors toward

the theoretical ones.

Proposition 3 If φ is the p.d.f. of a multivariate standard distribution, P has a strictly

positive density function and the solution of the problem (5.2) for that P is unique, then

DF(x;Pn) → DF(x;P ) almost surely as n → ∞ for every x ∈ R
p.

Proof: Let us denote by θ̂n, π̂n and {Ẑn
0 , Ẑ

n
1 , ..., Ẑ

n
k } to the solutions of the problem (5.2)

when P is the empirical measure Pn. Let us also denote by θ̂0, π̂0 and {Ẑ0
0 , Ẑ

0
1 , ..., Ẑ

0
k} to
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the solutions of (5.2) for the true underlying distribution P . As shown in Proposition 3

in Garćıa-Escudero et al. (2008), we have θ̂n → θ̂0 and θ̂n → θ̂0 almost surely. Moreover,

Lemma A.7 in Garćıa-Escudero et al. (2008) guaranteed R(θ̂n, π̂n, Pn) → R(θ̂0, π̂0, P ) almost

surely. All these consistencies easily entail the consistency result we want to prove. �

Remark 1 An uniqueness condition for the solution of the population problem is needed in

Proposition 3. This is not surprising because otherwise the solution of the sample problem

would be highly unstable and, thus, it is not logical to expect consistency for the empirical

discriminant factors. Moreover, the uniqueness condition many times has to do with the lack

of appropriateness of the choice of parameter k.
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