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A photon-number resolving transition edge sensor (TES) is used to measure the photon-number
distribution of two microcavity lasers. The investigated devices are bimodal microlasers with similar
emission intensity and photon statistics with respect to the photon auto-correlation. Both high-β
microlasers show partly thermal and partly coherent emission around the lasing threshold. For
higher pump powers, the strong mode of microlaserA emits Poissonian distributed photons while the
emission of the weak mode is thermal. In contrast, laser B shows a bistability resulting in overlayed
thermal and Poissonian distributions. While a standard Hanbury Brown and Twiss experiment
cannot distinguish between simple thermal emission of laser A and the temporal mode switching
of the bistable laser B, TESs allow us to measure the photon-number distribution which provides
important insight into the underlying emission processes. Indeed, our experimental data and its
theoretical description by a master equation approach show that TESs are capable of revealing
subtle effects like mode switching of bimodal microlasers. As such our studies clearly demonstrate the
benefit and importance of investigating nanophotonic devices via photon-number resolving transition
edge sensors.
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Introduction.— Analyzing the statistics of the emit-
ted light by a Hanbury Brown and Twiss (HBT) configu-
ration is a well-established method in quantum optics [1],
which essentially measures the time correlation of pho-
ton pairs to determine the second order auto-correlation
function g(2)(τ). However, a full understanding of the
processes involved in the emission of such nanophotonic
devices often requires not only information quantified in
g(2)(0) but also knowledge of the photon-number distri-
bution.
The challenge of determining the photon-number dis-

tribution of emission can be tackled by using photon-
number resolving detectors. Unfortunately, standard
single-photon sensitive detectors based on avalanche
photo-diodes are not capable of measuring the number
of impinging photons. This is different for another class
of highly efficient detectors - namely transition edge sen-
sors (TES, see Fig. 1). Such detectors have usually high
quantum efficiency in excess of 90% over a large range
of wavelengths [2] and can be used as photon-number
resolving detectors because of their calorimetric opera-
tion principle [3, 4]. Interestingly, despite of the advan-
tage of being able to experimentally access the photon-
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number distribution of ultra-low light-level emitters [5],
TESs have not been applied for the in-depth analysis of
nanophotonic devices up till now.

Knowledge about the photon-number distribution of
nanophotonic devices allows one to better understand
their operation and to improve their application in fields
where nonlinear processes are dominant e.g. for ghost
imaging [6], subwavelength lithography [7], metrology [8]
and two-photon excited fluorescence [9, 10]. Here, we
exemplarily investigate two bimodal microlasers and en-
able insight to diverse characteristics in their full photon
statistics. It is interesting to note that even though in-
tensity fluctuations of two-mode (ring) lasers have been
studied using photomultiplier tubes in photon-counting
mode, see e.g. Ref. [11], these detectors are not able to
determine the photon-number distribution of microlasers
in the few-photon limit. In contrast, TES detectors are
close to ideal devices to experimentally explore this dis-
tribution because of their high quantum efficiency and
photon-number resolving capabilities.

Microlasers are of strong interest for both fundamen-
tal research of cavity-enhanced nanophotonic devices and
their future applications due to their small size, high
speed and low energy consumption [12], for instance in
the field of quantum nanophotonics [13]. Popular micro-
laser concepts are based on photonic crystal cavities [14],
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plasmonic resonators [15] or micropillar cavities [16, 17].
These resonator structures have small mode-volumes in
common, which result in enhanced light-matter coupling.
Consequently, the associated spontaneous emission fac-
tor β, which is the fraction of spontaneously emitted
light coupled into the cavity mode, is strongly enlarged
so that the ultimate limit of thresholdless lasing can be
approached [18].

In devices with high β-factors, analyzing the input-
output characteristics is not sufficient to prove lasing op-
eration due to the lack of a significant nonlinearity at the
threshold [19]. Furthermore, optical injection, superra-
diance, mode competition and saturation of the low di-
mensional gain medium can also lead to deviations from
the standard behaviour [20–25].

Studying the correlation of photon pairs has become
an important tool to characterize microlasers as it reveals
the transition from predominantly spontaneous emission
towards stimulated emission at threshold by a change of
g(2)(0) from 2 to 1 [26]. Interestingly, in bimodal lasers
additional effects like gain competition [22, 27] and dissi-
pative coupling [28] occur which are difficult to identify
by a HBT measurement alone.

In this article, we apply a TES to measure the photon-
number distribution of two microlasers with two orthogo-
nally polarized modes. This allows us to obtain deeper in-
sight into the emission properties which is hardly possible
using standard characterization tools such as a HBT con-
figuration. Our work also highlights the big - and so far
uncovered - potential of TESs as an important measure-
ment concept in the application of microlasers and in the
wide field of nanophotonics. To illustrate this potential
we select two bimodal microlasers with, at first sight, very
similar emission features. For the first laser A the emis-
sion of both modes is in a transient state from thermal
to coherent light around the laser threshold. While for
high pump rates the stronger mode emits pure coherent
light, the weaker mode is in the thermal regime. The sec-
ond laser B has similar input-output characteristics and
g(2)(0)-values. Excitingly, for this laser gain competition
between the two emission modes leads to mode bista-
bility and an associated double-peaked photon-number
distribution. The latter can only be revealed by the TES
technique and is best described by an overlay of thermal
and Poissonian statistics.

Theoretical Methods.— To calculate the full pho-
ton statistics Pn of emission from the microlaser we solve
a master equation for the diagonal elements of the den-
sity matrix ρnN giving the probabilities to find the system
in a state with photon numbers n = (nw, ns) in the weak-
and in the strong mode of the laser and N excited emit-
ters. The master equation is a multi-mode generalization
of the equation used in [21] and is based on a statistical
birth-death model including all relevant processes of a
multimode laser on a phenomenological level.

Especially classical ring lasers [29], but also micro-
lasers based on photonic crystals [30] and micropillars
[27] have been modeled with Langevin equations where
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FIG. 1. Sketch of the experimental setup: The microlaser
sample is operated in a He-flow cryostat at 15 K and is excited
by a pulsed electrical voltage supply. The emitted light is
analyzed by a spectrometer, the TES or alternatively by a
standard HBT setup.

the spontaneous emission is introduced by a random
force or by Fokker Planck equations for the (quasi-)
probability distribution of the electric field [29, 31, 32].
Within our model, we follow the quantum mechanical
approach introduced in Ref. [21], which is based on
Ref. [33] and which gives a statistical representation
of the Einstein rate equations for the photon prob-
ability distribution. It, thus, includes spontaneous
emission and the discrete nature of the distribution.
The mean-field equations for the field intensities derived
from our model are identical with the two-level emitter
limiting case of the microscopic laser theory developed
in Ref. [34]. This model has been applied successfully
to bimodal microcavity lasers before, to address the
origin of super-thermal intensity fluctuations [22] and
to investigate the connection between non-equilibrium
Bose-Einstein condensation [35] and pump power driven
switching of the lasing mode in Ref. [36]. We take
the finite coherence time of the signal and the finite
temporal resolution of the detector into account by
folding the g(2)(τ) signal with the detector function
[26]. As reported in [37], also the non-lasing weak mode
has a relatively large coherence time for high pump
rates. Thus, we can detect the superpoissonian g(2)(0)
in this region, in contrast to the situation below the
threshold pump rate, where the low coherence time
hinders its detection. To describe the detection of
photons emitted by the microlaser with the TES, a
detection model introduced in [38], is used. The pulsed
excitation and detection applied in the present work is
theoretically described by two steps: First the steady
state of the laser system is found for a pump rate cor-
responding to the pump area. Second this steady state
decays via the leaky cavity and the leaked and detected
photons are counted (for further details see Appendix A).

Sample Technology and Experimental Setup.—
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The gain medium of the used microlasers is composed of
a single layer of In0.3Ga0.7As quantum dots with a den-
sity of 5 ·109/cm2. The active layer is embedded into the
central one-λ GaAs cavity which is sandwiched between
an upper (lower) distributed Bragg reflector consisting of
26 (30) mirror pairs that are based on λ/4-thick layers of
GaAs and AlAs. Micropillars of 4 µm diameter are pro-
duced via electron beam lithography and plasma etching.
The sample is planarized with benzocyclobutene and in-
dividual micropillars are electrically contacted with cir-
cular gold contacts. The Q-factor of the electrically con-
tacted micropillars is about 20 000. Details on the sample
fabrication are explained in Ref. [39].

The microlaser sample is placed in a continuous
flow He-cryostat and cooled down to a temperature of
T = 15 K (see Fig. 1). It is pumped by an electrical pulse
generator with variable pulse length (0.5-10 ns) and pulse
amplitude up to 5.1 VAC-Bias and a repetition frequency
of 10 kHz. A bias voltage VBias=VDC-Bias+VAC-Bias with
VDC-Bias=1.5 V is applied. For laser A a pulse length of
τP = 2 ns and for laser B a pulse length of τP = 1.5 ns is
chosen as the best balance between coherence time lim-
itations and a sufficient pulse area to reach the lasing
regime, respectively. A microscope objective collects the
emission. Polarization optics are used to separate the
two orthogonal modes, and their emission is spectrally
resolved by a spectrometer with a resolution of 30 µeV.
Finally, the signal is analyzed with a TES or alternatively
by a HBT setup.

The TES acts as a highly sensitive calorimeter to
detect the small energy input from an absorbed photon
pulse. The temperature change is measured with a
sensitive thermometer which is simultaneously the
absorber. By voltage biasing, the TES heats up within
the superconducting phase transition and is stabilized
by negative electro-thermal feedback [2] so that the ab-
sorption of a photon pulse results ultimately in a current
redistribution. The current change is measured via an
inductively coupled two-stage dc-superconducting quan-
tum interference device (SQUID) [40]. The TES/SQUID
detector unit is fiber-coupled and mounted on the cold
stage of an adiabatic demagnetization refrigerator,
which is stabilized at 130 mK. From analyzing many
pulses, a histogram of the photon-number distribution
can be extracted. The detection efficiency of the TES is
determined to be 87 %.

Experimental results.— Due to a slightly asymmet-
ric cross-section of the micropillar the degeneracy of the
fundamental emission mode is lifted [41] and two orthog-
onally polarized linear mode components with a splitting
of 20 µeV are observed. Both fundamental mode com-
ponents couple to the common gain medium and show
lasing influenced by gain competition, while higher-order
lateral modes have much less spectral overlap with the
QD-gain and do not show lasing [26]. The intensity-bias
voltage dependence of laser A [Fig. 2 (a)] reveals the typ-
ical behavior: At first, both modes increase super linearly
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FIG. 2. (a) Intensity-bias voltage characteristic of laser A.
The strong mode (blue squares) shows an s-shaped behavior
while the weak mode (orange circles) saturates in intensity
(given in number of photons inside the cavity, set to 1 at the
laser threshold)

above the threshold. (b)-(d): Photon statistics at three bias
voltages, indicated by the red arrows. The bars correspond
to the statistics measured with the TES, the dots, connected
by a line, correspond to the theory. (b) For low bias voltage

(VBias = 3.9 V) both modes possess a Poissonian
distribution. (c) Above threshold (VBias = 4.4 V), the

photon statistics exhibits a transient distribution, which is
partly thermal and partly Poissonian. (d) For high voltage
(VBias = 6.0 V), the weak mode shows a thermal distribution
whereas the strong mode exhibits a Poissonian distribution.

at the threshold, then at higher excitation gain competi-
tion leads to a further increase in the strong mode (blue
squares) [22].

Figure 2 (b)-(d) depict the photon-number distribu-
tion for three voltages. For low voltage pulses, both
modes have a Poissonian distribution. The microlaser
is expected to emit thermal light, but since the coher-
ence time is shorter than the pulse length τcoh ≪ τP , the
real character is not accessible in this regime since ther-
mal bunching arises on a scale of the coherence time [26].
Therefore, a longer pulse averages over many bunching
events and a Poissonian distribution is measured [42].
The coherence time at the bias voltage of 3.9 V can be
estimated from the linewidth as τcoh ∼ 170 ps [43]. The
theoretical calculations (dots connected by a line) which
will be detailed below do not suffer from coherence time
limitations and reproduce a thermal distribution almost
perfectly. For these low photon numbers the two distri-
butions are almost indistinguishable by the eye.

Above the threshold at VBias = 4.4 V both modes are in
a transient state and the photon-number distribution is
partly thermal and partly Poissionian [44]. In this mixed
photon-number distribution the Poissionian part, which
indicates the emission of coherent light, is recognizable
by the enhanced contribution of higher photon numbers.
Our theory describes the same behavior, however, with-
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out coherence time limitation, it predicts a higher prob-
ability for zero-photon events if compared to the experi-
mental data.
For a high bias voltage of 6.0 V, the photon-number

distribution of the weak and the strong mode differ con-
siderably. Whereas the strong mode emits pure coher-
ent light, indicated by Poissonian statistics, emission of
the weak mode has thermal properties. The experimen-
tal photon-number distribution of the strong mode is in
good agreement with the theory. Since the coherence
time (τcoh,w ∼ 530 ps) is shorter than the pulse length
(τp ∼ 2 ns), a pure thermal distribution cannot be mea-
sured for the weak mode. This explains again the devi-
ation between theory and experiment noticeable at low
photon numbers ≤ 5.
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FIG. 3. Laser A: (a) The second order auto-correlation func-

tion at zero-time delay g(2)(0) determined by the TES (small
darker symbols) is in very good agreement with the one de-
termined by the HBT (big brighter symbols) and the theory
(dashed curves). The strong mode shows a transition from
thermal to coherent emission. The weak mode increases in
g(2)(0) to values slightly above the thermal limit. The dashed
lines indicate the respective thermal values k!. (b) Third and

fourth order of the auto-correlation function g(n)(0) from the
same TES measurements exhibit a behavior analogue to the
one of g(2)(0).

Interestingly, while standard HBT measurements pro-
vide only information about the second-order autocor-
relation function, all moments and hence all orders of
the auto-correlation function at zero time delay g(k)(0),
can be calculated from the experimentally determined
photon-number distribution Pn [45]:

g(k)(0) =

∑

n

∏k−1
i=0 (n− i) · Pn

〈n〉k
. (1)

To determine the second order auto-correlation function
g(2)(0) only the mean photon number 〈n〉 =

∑

n nPn and
the variance Var(n) = 〈(n− 〈n〉)2〉 are required:

g(2)(0) = 1 +
Var(n)− 〈n〉

〈n〉2
. (2)

In Fig. 3 (a) the g(2)(0)-values of laser A for varied
pulse voltage are presented. The data calculated from the
TES measurements is close to perfect agreement with the
corresponding HBT data. For low voltage, the thermal
emission with an expected g(2)(0)= 2 is, as already dis-
cussed, not resolvable and a g(2)(0)= 1 is measured. In
the transition region, an increase up to 1.3 is visible. This
represents the transition from thermal emission to lasing
operation with the simultaneous increase of the coherence
time [25, 26, 46]. The auto-correlation of the strong mode
decreases to g(2)(0)= 1 for higher voltage, indicating co-
herent emission. For the weak mode, the auto-correlation
increases to values slightly above 2. This behavior, i.e.
g(2)(0) > 2 is an indication for thermal emission with
minor contributions from mode coupling [22]. The ac-
cordance of both techniques proves the accuracy of the
determined g(2)(0).
The third and fourth order of the auto-correlation

function [see Eq. (1)] obtained from the TES data are ex-
emplarily depicted in Fig. 3 (b). The different orders of
g(k)(0) follow the same trend as g(2)(0), but reach higher
values and the theoretical simulations confirm this be-
havior. Deviations between experimental and theoretical
g(4)(0) values at low bias voltages are attributed to addi-
tional temporal resolution limitations not considered in
our theory. Being able to address higher-order photon
autocorrelation functions to e.g. better understand the
threshold behaviour of microlasers [47] is another advan-
tage of the TES technique. Indeed, higher order auto-
correlations cannot be accessed by standard HBT exper-
iments and up till now only elaborate streak-camera mea-
surements allowed to access the auto-correlation function
up to fourth order [48, 49].
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FIG. 4. Laser B: The photon-number distributions of the
weak (a) and strong (b) mode at VBias = 5.4 V can best
be described by an overlay of a thermal distribution with a
low mean photon number 〈n〉 and a Poissonian distribution
with high 〈n〉. The input-output characteristic (inset (a)) and

g(2)(0)-values (inset (b)) of laser B are similar to laser A (cf.
Figs. 2 and 3).

To highlight the importance of investigating micro-
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lasers with a TES, a second laser B with almost identical
input-output and auto-correlation characteristics (see in-
sets of Fig. 4) is investigated. Analyzing its full photon
statistics, only accessible with a TES, we see substantial
differences between laser A and laser B. Compared to
laser A both, the weak and the strong mode, show a be-
haviour with an emission being composed of a thermal
distribution with a low mean photon number 〈n〉 and a
Poissonian distribution with a large 〈n〉. In striking con-
trast to the statistics of the laser A, for laser B the zero
photon state is the most likely one for both the strong and
the weak mode. The difference between the weak and the
strong mode results in the fact that the emission statis-
tics of the former mode is dominated by the thermal part,
whereas the strong mode is dominated by the Poissonian
part. This behavior can be explained as follows: Both
modes are potential lasing modes where carrier fluctua-
tions largely influence the switch-on process. The photon
statistics at VBias = 5.4 V are exemplary. This behavior
can be observed for a wide excitation range.

For every electrical pulse, potentially each of both
modes could reach the lasing regime while the other
mode stays in the thermal regime. In the presented
case, the analysis of the experimental photon-number
distributions yields that in ∼ 75% of the pulses, the
strong mode is in the lasing regime and emits coherent
light while the weak mode radiates thermally. In the
other ∼ 25% of the pulses the weak mode is lasing
and the strong mode is not. This bimodal behavior is
comparable to spontaneous switching under continuous
wave excitation [22, 27]. Simultaneously, the dwell
time (average time before a mode switch) is assumed
to be large compared to the pulse length, but is not
accessible for pulsed excitation. Also the theoretical
description reproduces this behavior well both in the
photon-number distribution and the g(2)(0)-values. In
the master equation the spontaneous transition between
the modes is effectively reduced (compared to laser
A) due to stronger modal interactions and carrier
population oscillations [30], thus trapping the weak
mode close to the zero photon state and giving rise to
the bistable behavior [36].

Conclusion.— We have demonstrated that TESs are
powerful detectors to investigate the photon statistics
of microscopic laser devices. Where former HBT ex-
periments are only able to detect intensity fluctuations
quantified in g(2)(0) regardless of their origin, the TES
gives direct access to the photon-number distribution and
enables the differentiation between various effects. De-
termining the full photon statistics via TES detectors
has high potential to become a powerful characterization
method to reveal and understand the physics of nanopho-
tonic devices at the quantum level. It will be of particular
importance for the further development of microcavities
towards applications which benefit from a tunable and
controllable photon statistics of emission.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Research Council under the Euro-
pean Union’s Seventh Framework ERC Grant Agreement
No. 615613, within the EURAMET joint research project
MIQC2 from the European Union’s Horizon 2020 Re-
search and Innovation Programme and the EMPIR Par-
ticipating States and from the German Research Founda-
tion within the project RE2974/10-1. The authors thank
the State of Bavaria for financial support and A. E. Lita
and S. W. Nam for providing the TES detector chips.

Appendix A: Details of the Theoretical methods

To describe the measurement theoretically, we divide
the process in two subprocesses: (i) the excitation of the
laser device by the pump pulse and (ii) the subsequent
detection of the emitted cavity photons. The first subpro-
cess is modeled by the steady state of the master equa-
tion Eq. (A1), which is determined by solving the linear
equation d

dt
ρnN = 0 (see A 1). This steady state is then

modified according to [38] (see A 2).

1. Master equation

The utilized master equation

d

dt
ρnN =P

[

ρnN−1 − ρnN
]

− τ−1[NρnN − (N + 1)ρnN+1]

−
∑

i

gi[N(ni + 1)ρnN − (N + 1)niρ
n−ei

N+1 ]

−
∑

i

ℓi[niρ
n

N − (ni + 1)ρn+ei

N ]

−
∑

i,j

Ri→j

[

ni(nj + s)ρnN

− (ni + 1)(nj − 1 + s)ρ
n+ei−ej

N

]

. (A1)

is based on a phenomenological model that takes all
of the relevant processes of the microcavity laser into
account. Here P is the pump rate, τ−1 the rate of spon-
taneous emission into non-lasing modes, gi is the rate of
emission into the lasing mode i, ℓi is the loss rates of
photons from cavity i and Ri→j is the transition rate of
the cavity photons from mode i to mode j. s is the factor
quantifying how strong the gain medium induced mode
interaction effectively reduces the spontaneous emission
between the modes. The solution of Eq. (A1) can be
interpreted as the diagonal elements of the density ma-
trix 〈n, N |ρ|n, N〉 = ρnN , giving the probability to find
the system with N excited emitters and n = (nw, ns)
photons in the weak and strong mode respectively. By
tracing over the emitters and one of the modes one can
obtain for example the distribution of the weak mode
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Pnw
=

∑

N,ns
ρnN . The parameters for the theory are

given in Tab. I.

TABLE I. Simulation parameters used in Figures 2 and 4

Parameter Fig. 2 Fig. 4

s 0.6 1

in units of τ

l1 0.1 0.1

l2 0.105 0.105

g1 0.14 0.14

g2 0.12 0.12

R21 0.03 0.03

R12 0.00325 0.00325

in units of Pthr

Pb 0.2

Pc 1.6(4.4V)

Pd 8.0(6.0V)

P 2.9 (5.4V)

2. Detection model

Since the master equation models the inside of the cav-
ity, it is necessary to study the change of the statistics
with respect to the leakage of photons out of the cavity
ℓi and the non-ideal setup, with an efficiency denoted by
ξ. Assuming that the leakage of the cavity is the relevant
process, i. e., the pump pulse has already subsided and

the rate of the intermode kinetics is comparable small,
the influence of the detection for a single mode distribu-
tion can be modeled as

P out
m (t1, t2) =

∑

ni=m

Pni

(ni

m

)

(

1− ξe−ℓit1 + ξe−ℓit2
)ni−m

×
(

ξe−ℓit1 − ξe−ℓit2
)m

, (A2)

where Pni
is the single mode distribution (see A 1),

P out
m is the detected distribution and t1 and t2 are the

times at which the measurement begins and ends, re-
spectively [38]. Although this transformation shifts the
whole statistics to a lower mean number, it does not alter
the photon auto-correlation g(2)(0). To proof this we de-
fine ζ = ξe−ℓit1 −ξe−ℓit2 and find that 〈n〉out and 〈n2〉out
can be expressed by ζ and the expectation values inside
the cavity by

〈n〉out = ζ〈n〉,

〈n2〉out = ζ2〈n2〉+ (ζ − ζ2)〈n〉. (A3)

This follows from Eq. (A2) by changing the order of
summation and using the knowledge of the mean and
the variance of the binomial distribution.
Relations (A3) can be inserted in Eq. (2) and it fol-

lows that the transformation P out
m (t1, t2) does not change

g(2)(0). The setup efficiency is estimated to be ξ = 0.1.
Since the measurement lasts much longer than the cav-
ity decay time, we set t2 → ∞ and t1 = 0, since the
initial state for the detection model is the steady state of
Eq. (A1).
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