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Abstract. Despite recent developments in modeling global
soil erosion by water, to date, no substantial progress has
been made towards more dynamic inter- and intra-annual
assessments. In this regard, the main challenge is still rep-
resented by the limited availability of high temporal reso-
lution rainfall data needed to estimate rainfall erosivity. As
the availability of high temporal resolution rainfall data will
most likely not increase in future decades since the mon-
itoring networks have been declining since the 1980s, the
suitability of alternative approaches to estimate global rain-
fall erosivity using satellite-based rainfall data was explored
in this study. For this purpose, we used the high spatial
and temporal resolution global precipitation estimates ob-
tained with the National Oceanic and Atmospheric Adminis-
tration (NOAA) Climate Data Record (CDR) Climate Predic-
tion Center MORPHing (CMORPH) technique. Such high
spatial and temporal (30 min) resolution data have not yet
been used for the estimation of rainfall erosivity on a global
scale. Alternatively, the erosivity density (ED) concept was
also used to estimate global rainfall erosivity. The obtained
global estimates of rainfall erosivity were validated against
the pluviograph data included in the Global Rainfall Ero-
sivity Database (GloREDa). Overall, results indicated that
the CMORPH estimates have a marked tendency to under-
estimate rainfall erosivity when compared to the GloREDa
estimates. The most substantial underestimations were ob-
served in areas with the highest rainfall erosivity values.
At the continental level, the best agreement between annual
CMORPH and interpolated GloREDa rainfall erosivity maps
was observed in Europe, while the worst agreement was de-

tected in Africa and South America. Further analyses con-
ducted at the monthly scale for Europe revealed seasonal
misalignments, with the occurrence of underestimation of
the CMORPH estimates in the summer period and overes-
timation in the winter period compared to GloREDa. The
best agreement between the two approaches to estimate rain-
fall erosivity was found for fall, especially in central and
eastern Europe. Conducted analysis suggested that satellite-
based approaches for estimation of rainfall erosivity appear
to be more suitable for low-erosivity regions, while in high-
erosivity regions (> 1000–2000 MJ mm ha−1 h−1 yr−1) and
seasons (> 150–250 MJ mm ha−1 h−1 month−1), the agree-
ment with estimates obtained from pluviographs (GloREDa)
is lower. Concerning the ED estimates, this second approach
to estimate rainfall erosivity yielded better agreement with
GloREDa estimates compared to CMORPH, which could
be regarded as an expected result since this approach indi-
rectly uses the GloREDa data. The application of a simple-
linear function correction of the CMORPH data was ap-
plied to provide a better fit to GloREDa and correct sys-
tematic underestimation. This correction improved the per-
formance of CMORPH, but in areas with the highest rain-
fall erosivity rates, the underestimation was still observed. A
preliminary trend analysis of the CMORPH rainfall erosiv-
ity estimates was also performed for the 1998–2019 period
to investigate possible changes in the rainfall erosivity at a
global scale, which has not yet been conducted using high-
frequency data such as CMORPH. According to this trend
analysis, an increasing and statistically significant trend was
more frequently observed than a decreasing trend.
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1 Introduction

Rainfall erosivity is among the main drivers of soil erosion,
which can be characterized by large spatial and temporal
variability (Angulo-Martínez and Beguería, 2012; Ballabio
et al., 2017; Bezak et al., 2021; Cui et al., 2020; Panagos et
al., 2017; Verstraeten et al., 2006). In order to obtain robust
rainfall erosivity estimates, high temporal resolution rainfall
data are needed (Panagos et al., 2015; Yin et al., 2017). How-
ever, according to Panagos et al. (2017), the availability of
stations with high-frequency data that can be used to esti-
mate rainfall erosivity is on average relatively low in many
parts of the world. Therefore, in areas with scarce data avail-
ability, remotely measured precipitation data can be instru-
mental in estimating rainfall erosivity (Ganasri and Ramesh,
2016; Li et al., 2020). Alternatively, approaches using sim-
pler and less data-demanding methods such as erosivity den-
sity (ED) (Nearing et al., 2017; Panagos et al., 2015, 2016b)
can also represent a viable option. Another condition that de-
termines the accuracy of the rainfall erosivity estimates is
the low availability of high temporal resolution rainfall data.
Ideally, high-frequency (e.g., 1 min) measurements obtained
using optical disdrometers are necessary to quantify the rain-
fall kinetic energy (Mineo et al., 2019; Nel et al., 2010; Petan
et al., 2010; Sanchez-Moreno et al., 2014) of a given storm
and to calculate its rainfall erosivity. However, such mea-
suring equipment is not commonly available in regional and
national measuring networks. Therefore, due to instrumental
limitations, rainfall erosivity is communally estimated using
hourly or sub-hourly rainfall records (generally ranging from
5 to 60 min) collected by tipping buckets or pluviographs,
which do not provide information about raindrop size distri-
bution (Panagos et al., 2016a; Petan et al., 2010; Petek et al.,
2018). These kinds of data are then used together with empir-
ically developed equations that relate rainfall kinetic power
and intensity (Brown and Foster, 1987; Carollo et al., 2017;
Petan et al., 2010) to obtain rainfall erosivity estimates. Al-
ternatively, rainfall erosivity estimates can also be performed
based on the rainfall volume instead of the intensity, using
daily, monthly, or annual rainfall data (Renard and Freimund,
1994; Yu and Rosewell, 1996). However, it is worth mention-
ing that the accuracy of rainfall erosivity estimates decreases
with the increase in the temporal data resolution (i.e., from
1 min to hourly, daily, monthly, or annual data). Currently,
due to data scarcity, most rainfall erosivity assessments based
on long-term estimates including a period of at least 10 years
are limited to a few regions (Angulo-Martínez and Beguería,
2012; Nearing et al., 2015; Panagos et al., 2015, 2017), leav-
ing large parts of the world under-researched. In this regard,
a step forward is needed to enable the generation of year-by-
year and sub-annual rainfall erosivity assessments for under-
researched national- or larger-scale study areas.

Recent studies have already explored the possibility of es-
timating rainfall erosivity using satellite-based products at
regional (Li et al., 2020) and national (Chen et al., 2021;

Kim et al., 2020) scales, indicating their sources of uncer-
tainties and a generally limited accuracy (Aghakouchak et
al., 2012; Ghajarnia et al., 2018; Prakash, 2019; Prakash et
al., 2015; Rahmawati and Lubczynski, 2018; Seo et al., 2018;
Wei et al., 2018). However, to the best of the authors’ knowl-
edge, no such study has been conducted on a global scale
using high temporal resolution data. A promising alternative
to the often-limited rain-gauge data may be represented by
satellite-based precipitation estimates, which currently have
both adequate temporal and spatial resolution (Chen et al.,
2021; Kim et al., 2020; Li et al., 2020; dos Santos Silva et
al., 2020; Teng et al., 2017). Moreover, once further devel-
oped and fully operational, the satellite-based methods to
estimate rainfall erosivity will have lower purchasing and
processing costs compared to the current ones. In addition,
satellite-based rainfall erosivity estimates could be especially
useful in regions where rainfall erosivity estimates are cur-
rently very limited, such as some sizable sectors of Africa,
Asia, and South America.

In this study, we aim to deepen the research on the use
of satellite-based rainfall data in estimating rainfall erosiv-
ity by performing a first inter- and intra-annual global-scale
assessment. The Global Rainfall Erosivity Database (Glo-
REDa) data (Panagos et al., 2017) were used to evaluate both
(a) the rainfall erosivity estimates obtained by satellite-based
rainfall data (i.e., CMORPH) and (b) rainfall erosivity using
the ED concept. Finally, a temporal trend analysis of global
rainfall erosivity is presented with corrections between data
based on the CMORPH and GloREDa databases.

2 Data and methods

2.1 CMORPH

The CMORPH product is a reprocessed and bias-corrected
global precipitation data set covering the area between the
60◦ S and 60◦ N parallels, with a 30 min time step and a spa-
tial resolution of 8 km× 8 km (Xie et al., 2017, 2021). The
CMORPH data are developed by the National Oceanic and
Atmospheric Administration (NOAA) and cover the period
from 1998 onwards. This method generally uses the precip-
itation estimates derived from the low Earth orbit satellite-
based passive microwave observations (Kim et al., 2020).
Additionally, the geostationary satellite infrared imagery is
used to account for possible coverage issues (Kim et al.,
2020). Since CMORPH provides an estimate of the 30 min
precipitation, each 30 min rainfall rate was assumed to be
constant during this time interval (Kim et al., 2020; Xie et
al., 2021). This data set has already been applied to several
practical applications, such as validating the climate model
simulations, identifying climate extremes, forcing numerical
weather models, and characterizing the global precipitation
(Xie et al., 2021). Additionally, details about the methodol-
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ogy can be found in the literature (Chen et al., 2020; Xie et
al., 2017, 2021).

2.2 GloREDa database

GloREDa was created with the objective of developing the
first ever global rainfall erosivity map using high tempo-
ral resolution data (Panagos et al., 2017) and moving to-
wards a new generation of Revised Universal Soil Loss Equa-
tion (RUSLE)-based soil erosion assessments for the present
(Borrelli et al., 2017) and future climate change and land use
dynamics (Borrelli et al., 2020). GloREDa contains annual
rainfall estimates for 3625 stations from 63 countries with
temporal resolution ranging from 1 to 60 min (Panagos et al.,
2017). The data sample lengths ranged from 5 to 52 years
with a mean value of around 17 years, with most of the data
covering the period from 2000 to 2010 (Panagos et al., 2017).
The number of stations in different continents greatly varied
from around 5 % (i.e., South America and Africa) to around
48 % (i.e., Europe). Based on the station data and apply-
ing the Gaussian process regression model, the global rain-
fall erosivity map was also prepared (Panagos et al., 2017).
Therefore, in the scope of this study, both the station (i.e.,
point) estimated annual rainfall erosivity and a global rain-
fall erosivity map (Panagos et al., 2017) were used. The spa-
tial resolution of the global rainfall erosivity map prepared
by Panagos et al. (2017) is 30 arcsec (i.e., around 1 km at the
Equator). The Rainfall Erosivity Database on the European
Scale (REDES) is the predecessor of GloREDa as it was de-
veloped in 2015 (Panagos et al., 2015). As the REDES made
the monthly erosivity values available (Ballabio et al., 2017),
the monthly rainfall erosivity maps of Europe were also used
here for the comparison of CMORPH to station-based rain-
fall erosivity. All data sets are available in the European Soil
Data Centre (ESDAC) (Panagos et al., 2012).

2.3 Rainfall erosivity calculation

In order to calculate the annual and monthly rainfall erosiv-
ity for each grid cell that is covered by the CMORPH prod-
uct, the time series with a 30 min time step were extracted
from the original CMORPH data set (Xie et al., 2021). For
each grid cell covered by CMORPH, a 30 min precipitation
time series (mm h−1) was extracted for the 1998–2019 pe-
riod. The erosive events were defined according to the pro-
cedure described in the RUSLE handbook (Renard et al.,
1997). Thus, two events were separated in case of less than
1.27 mm of rain within 6 h. Only erosive rainfall events with
more than 12.7 mm of rain in total or 6.35 mm in 15 min were
considered in the calculations (Kim et al., 2020; Renard et
al., 1997). In order to calculate the specific kinetic energy
eB (MJ ha−1 mm−1), the Brown and Foster (1987) equation
was applied since this equation was also used by Panagos et
al. (2017):

eB = 0.29 ·
[
1− 0.72 · exp(−0.05 · I )

]
, (1)

where I is rainfall intensity (mm h−1). In order
to calculate the annual rainfall erosivity R factor
(MJ mm ha−1 h−1 yr−1), the following two equations
were also used (Renard et al., 1997):

E = eB · I ·1t, (2)

R =

∑
nE · I30

N
, (3)

where E is the kinetic energy of the individual erosive event
(MJ ha−1), 1t is the time interval (h), and I30 is the max-
imum 30 min intensity (mm h−1) of erosive event n, which
occurred within a time span of N years. This procedure was
repeated for all grid cells covered by the CMORPH product.

2.4 ED and ERA5

The ED concept was first introduced by Kinnell (2010) and
was also used in the scope of the enhanced RUSLE approach,
named RUSLE2, which led to the improvements in rainfall
erosivity mapping (Dabney et al., 2012; Nearing et al., 2017).
The ED is defined as the ratio between annual or monthly
rainfall erosivity and annual or monthly precipitation (Pana-
gos et al., 2016b). Thus, ED is calculated as the ratio of
rainfall erosivity (R) and rainfall depth (P ) (Nearing et al.,
2017):

ED=
R

P
. (4)

Since the introduction of the ED, it has been applied in nu-
merous studies (Diodato et al., 2019; Kinnell, 2019; Nearing
et al., 2017; Panagos et al., 2016b). The global rainfall ero-
sivity map obtained by Panagos et al. (2017) was used in this
study to obtain a global rainfall ED map. For the calculation
of rainfall volume for specific years, the ERA5 reanalysis
product was used.

ERA5 is one of the latest reanalysis products produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) that provide atmospheric, land-surface, and sea-
state data. ERA5 includes a large number of historical obser-
vations and provides a long-term solution for ED estimation.
The reanalysis data combine the model data and observa-
tions across the globe into a complete and consistent data set
based on the laws of physics (ERA5, 2021a). Therefore, the
ERA5 product is widely used for different purposes (Reder
and Rianna, 2021; Sutanto et al., 2020; Tang et al., 2020).
The monthly temporal resolution on a single level was used
and a horizontal resolution of 0.25◦× 0.25◦. The temporal
coverage used in this study was from 1979 until 2020. Com-
parison with CMORPH and GloREDa was made using the
1998–2019 period. Additional information can be found in
the existing literature (An et al., 2020; ERA5, 2021b; Tang et
al., 2020). ERA5 is updated regularly (i.e., monthly updates),
which makes it the best option for the dynamic rainfall ero-
sivity assessment at a global scale using the ED concept. In
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the case of the ED concept, the annual and monthly ED maps
(Ballabio et al., 2017; Panagos et al., 2017) were multiplied
by mean monthly or annual precipitation estimates provided
by ERA5.

2.5 Data evaluation

The performance of the rainfall erosivity derived using the
CMORPH product and ED concept was evaluated using the
GloREDa point data set (Panagos et al., 2017). This eval-
uation was performed for the period 1998–2019 at global,
continental, catchment, and local scales. For the latter, point
data values (stations) were compared against values derived
at this location from both methodologies. At the catchment
scale, the HydroSHEDS catchment boundaries at the third
level were used (Lehner and Grill, 2013). The idea of using
third-level catchment boundaries was to evaluate whether the
accuracy of the CMORPH- and ED-derived rainfall erosiv-
ity changes with scale (i.e., from global to large regional or
even point scale). Moreover, a more detailed comparison was
made for Europe since monthly rainfall erosivity maps (RE-
DES) are also available (Ballabio et al., 2017) and were also
used for the comparison.

In the data evaluation process, we used the following met-
rics: Pearson correlation coefficient, percent bias, and Gini
coefficient. The Pearson correlation coefficient is a measure
of linear correlation between two data sets. The percent bias
is a measure of the mean tendency of the modeled data to be
smaller or larger than the observed data. The Gini coefficient
is a scalar metric that can be derived based on the Lorenz
curve and is frequently used in economics to describe the in-
equality of wealth (Gini, 1914; Lorenz, 1905; Masaki et al.,
2014). The Gini coefficient ranges from 0 to 1, where a value
close to 1 and 0 indicates significant inequality and no in-
equality, respectively (Masaki et al., 2014). Thus, the idea
behind using the Gini coefficient was to use an additional
metric that describes the distribution of rainfall erosivity in
the selected area (e.g., the distribution of rainfall erosivity
grid cells at catchment or continental scale). Therefore, the
Gini coefficient can be used as an indicator of the rainfall
erosivity spatial patterns. Figure 1 shows an example of dif-
ferent Gini coefficient values for three examples. In the first
one, there are similar grid values, and the Gini coefficient
is close to 0. The third example shows significant inequal-
ity where the Gini coefficient is close to 1, and the second
example represents more diverse grid values with a Gini co-
efficient of around 0.5 (Fig. 1).

Since the spatial resolutions of the input data sets
(CMORPH, GloREDa, and REDES) were not the same,
the GloREDa and REDES data (and the ED) were resam-
pled to the same grid system extent and resolution that
were used by CMORPH using the mean value (cell-area-
weighted) method that is included in the SAGA GIS soft-
ware (SAGA GIS, 2021). The same applied to the ERA5
product that was also resampled to the same grid system us-

ing B-spline interpolation (SAGA GIS, 2021). Therefore, the
above-described comparison at global, continental, regional,
and point scales was made using the resampled GloREDa
and REDES maps (Panagos et al., 2017). A preliminary in-
vestigation was done to estimate the resampling effect on
the mean global rainfall erosivity. The global mean rainfall
erosivity using the GloREDa map (1 km spatial resolution)
was 2190 MJ mm ha−1 h−1 yr−1, while in the case of resam-
pled (i.e., mean) data at 10 km resolution, this value is equal
to 2260 MJ mm ha−1 h−1 yr−1. Thus, resampling led to an
around 3 % difference in the global mean value. However,
further aggregation of the GloREDa data led to larger differ-
ences.

2.6 Trends

Based on the annual CMORPH and ED global rainfall erosiv-
ity maps for specific years in the period from 1998 to 2019,
the Mann–Kendall trend test was also calculated for each grid
cell. The Mann–Kendall test is one of the most widely ap-
plied tests for the detection of changes in the environmental
data (Burn and Hag Elnur, 2002; Rodrigues da Silva et al.,
2016). A detailed description of the Mann–Kendall test can
be found in the literature (Burn and Hag Elnur, 2002; Hamed,
2008; McLeod, 2011). The objective was to identify areas
where the detected trend in the annual rainfall erosivity data
was positive or negative with a significance level of 0.05.

3 Results

3.1 Spatial distribution of annual rainfall erosivity

The mean global annual rainfall erosivity using the
CMORPH (Fig. 2a) data is 1236 MJ mm ha−1 h−1 yr−1, with
a standard deviation of 1895 MJ mm ha−1 h−1 yr−1. The
mean global annual rainfall erosivity using the ED approach
(Fig. 2b) is 2480 MJ mm ha−1 h−1 yr−1. As can be inferred
from Fig. 2 and as further indicated in Table 1, CMORPH
and ED approaches both agreed that the highest values of
rainfall erosivity at the continental level were estimated for
South America, while the smallest ones were estimated for
Europe.

Concerning the inequality of CMORPH estimates, the
Gini coefficient reflects a high level of rainfall erosivity in-
equality for Asia, followed by Africa and North America,
while the smallest value was observed for Europe (Table 1).
Also, with regard to the ED concept, the largest Gini coeffi-
cient was obtained for Asia, whereas Europe has the smallest
value (Table 1). Both the mean global rainfall erosivity map
for the 1998–2019 period based on the CMORPH product
(Fig. 2a) and the one developed by using the ED concept and
ERA5 will be available in ESDAC (Panagos et al., 2012).
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Figure 1. Gini coefficients for three examples of 10 grid cells with the same mean value (i.e., 100) as an illustration of the added value of
the Gini coefficient. Example 1 has similar grid values (i.e., low Gini value), example 2 has more diverse grid values (i.e., Gini value around
0.5), and example 3 has significant inequality (i.e., Gini value close to 1).

Table 1. Mean, standard deviation, and Gini coefficient of the global rainfall erosivity maps derived using CMORPH and ED.

Continent CMORPH ED

Mean SD Gini (–) Mean SD Gini (–)
(MJ mm ha−1 (MJ mm ha−1 (MJ mm ha−1 (MJ mm ha−1

h−1 yr−1) h−1 yr−1) h−1 yr−1) h−1 yr−1)

Africa 1038 1619 0.62 3037 3277 0.56
Asia 1138 2242 0.73 2255 3554 0.69
Oceania 1004 1207 0.48 1630 1916 0.51
Europe 614 490 0.36 646 500 0.36
North America 892 1072 0.53 1748 1947 0.52
South America 2556 2179 0.41 6640 3961 0.32

3.2 Temporal trends in rainfall erosivity

Table 2 shows the mean and standard deviation of monthly
rainfall erosivity derived using the CMORPH product. One
can notice that the highest rainfall erosivity values were ob-
tained in July, followed by August, and the lowest were in
November (Table 2).

The temporal trends for both CMORPH- and ED-derived
rainfall erosivity data sets were also calculated. The an-
nual rainfall erosivity in the period 1998–2019 ranged from
990 to 1440 MJ mm ha−1 h−1 yr−1 using the CMORPH data
(Figs. 3, S1). Using the ED concept for global rainfall
erosivity assessment, the mean value ranged from 2380
to 2602 MJ mm ha−1 h−1 yr−1 (Figs. 3, S1) for the period
1998–2019. In addition, the fluctuation of the mean annual
erosivity in relation to the ED concept was smaller compared

to CMORPH (Fig. 3), a condition which can be related to the
fact that the adopted ED concept used a constant ED map for
the entire period, while only annual precipitation (i.e., ERA5)
changed from year to year.

3.3 Data evaluation

3.3.1 Comparison at a global scale

For most continents, relatively large differences in the mean
long-term annual rainfall erosivity between GloREDa and
CMORPH were observed, while smaller differences were
observed between ED and GloREDa, which could be ex-
pected due to the selected ED input data (Table 3). The most
significant differences in the case of CMORPH were detected
for Africa, South America, and North America (Table 3). As
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Figure 2. Mean global rainfall erosivity map for the 1998–2019 period based on the CMORPH product (a) and ED concept using ERA5 (b).

Figure 3. Trend analysis for the mean and standard deviation (SD)
for annual rainfall erosivity (R) using CMORPH and ED.

for the ED concept, the most considerable differences were
calculated for Asia, Europe, and South America. On the other
hand, much better agreement between the CMORPH and
GloREDa maps was observed for Europe and partly for Asia
(Table 3). In terms of the Gini coefficient, smaller bias values
were obtained compared to the mean annual rainfall erosivity
(Table 3). Thus, it seems that the distribution of the rainfall
erosivity of CMORPH, ED concept, and GloREDa was rela-
tively similar (i.e., smaller bias) despite the fact that the Glo-
REDa map was based on interpolation. It should be noted
that the ED provided a better fit to GloREDa compared to
CMORPH at most of the continents in terms of the Gini co-
efficient, which means that the spatial rainfall erosivity pat-
terns are quite similar. This can be regarded as an expected
result since the ED indirectly uses the GloREDa data.

3.3.2 Comparison at regional scale

The HydroSHEDS catchment boundaries (Lehner and Grill,
2013) at the third level were used to compare the data of
CMORPH to GloREDa at the regional scale. Thus, the global
land surface was divided into 288 sub-catchments at the third
level with a mean catchment area of around 460 000 km2.

Table 2. Global monthly rainfall erosivity values using the
CMORPH product. Mean and standard deviation are shown.

Month Mean (MJ SD (MJ
mm ha−1 mm ha−1

h−1 month−1) h−1 month−1)

January 101 213
February 96 198
March 99 200
April 96 193
May 99 208
June 109 227
July 124 245
August 120 228
September 102 204
October 97 195
November 93 200
December 100 221

Hence, this can be regarded as an extensive regional-scale in-
vestigation. The results demonstrated that the Pearson corre-
lation between the mean annual rainfall erosivity at the sub-
catchment level (sub-catchment average values were used)
between CMORPH and GloREDa was 0.81 (R2

= 0.66 with
p value <0.01). Moreover, the mean bias was around−50 %
in case GloREDa data were considered to be the observed
data. In terms of the Gini coefficient, the Pearson correla-
tion coefficient was 0.56 (R2

= 0.31 with p value <0.01),
while the mean bias was equal to 45 %. Therefore, CMORPH
yielded more unequal (i.e., larger Gini coefficient) spatial
erosivity patterns compared to GloREDa, which was based
on interpolation. The spatial interpolations tend to smooth
the extreme values (Dodson and Marks, 1997); therefore,
Gini is smaller.

The comparison between the ED concept and GloREDa
revealed that the Pearson correlation coefficient was equal to
0.95 (R2

= 0.90 with p value <0.01), and the mean bias was
7 %. Regarding the Gini coefficient, the Pearson correlation
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Table 3. A comparison between CMORPH-, ED-concept-, and GloREDa-derived global rainfall erosivity at a continental scale.

Continent CMORPH bias compared ED bias compared to GloREDa (MJ mm
to GloREDa (%) GloREDa (%) ha−1 h−1 yr−1)

Mean SD Gini (–) Mean SD Gini (–) Mean SD Gini (–)

Africa −66 −46 17 −1 +9 6 3055 2992 0.53
Asia −38 −23 4 +23 +22 −1 1839 2925 0.70
Australia–Oceania −40 −39 −8 −3 −3 −2 1676 1975 0.52
Europe +11 +17 0 +17 +20 0 553 418 0.36
North America −47 −48 −7 +4 −7 −9 1683 2082 0.57
South America −56 −36 24 +13 +17 −3 5866 3381 0.33

coefficient and the mean percent bias were 0.91 (R2
= 0.83

with p value <0.01) and 3.4 %, respectively. Therefore, Glo-
REDa and ED maps have similar spatial erosivity patterns,
which can be regarded as an expected result since the ED
indirectly uses the GloREDa information. Furthermore, two
examples of good (Fig. 4) and bad (Fig. 5) agreement be-
tween CMORPH, ED, and GloREDa are presented.

In Europe, we found the best agreement between
CMORPH and GloREDa (Table 3) and the smallest un-
certainty in GloREDa. For those reasons and due to the
availability of monthly rainfall erosivity estimates (Bal-
labio et al., 2017), a more in-depth assessment was
made for Europe. According to GloREDa, the mean an-
nual rainfall erosivity in Europe (i.e., without Russia)
was 668 MJ mm ha−1 h−1 yr−1 with a standard deviation
of 429 MJ mm ha−1 h−1 yr−1 (Fig. 6). According to the
CMORPH product, the mean and standard deviation were
equal to 752 and 533 MJ mm ha−1 h−1 yr−1, respectively
(Fig. 6). Additionally, the ED concept yielded a mean an-
nual rainfall erosivity value of 804 with a standard deviation
of 541 MJ mm ha−1 h−1 yr−1 (Fig. 6). Moreover, the calcu-
lated Gini coefficient using all grid cells was 0.31 in all cases
(Fig. 6). Thus, it can be seen that the CMORPH product
yielded a relatively similar erosivity distribution across Eu-
rope (without Russia) compared to GloREDa, which means
that all maps have a similar level of inequality (i.e., non-
uniform distribution of rainfall erosivity). Slightly larger
rainfall erosivity values were obtained using the ED con-
cept. It should be noted that part of these differences can
be attributed to the fact that the GloREDa data set mostly
used data in the 2000–2010 period (Panagos et al., 2017).
Moreover, in some areas (e.g., Italy, Balkan Peninsula, parts
of eastern Europe), spatial patterns in all cases were simi-
lar, although the CMORPH product and ED concept yielded
slightly variable rates (Fig. 6). On the other hand, CMORPH
yielded higher annual rainfall erosivity values compared to
the GloREDa map in some parts of the United Kingdom
and eastern Europe (Fig. 6). Furthermore, CMORPH tends
to underestimate areas with relatively high rainfall erosivity
such as the Alpine region, Spain, Italy, and other parts of the
Mediterranean basin (Fig. 6).

As there are available monthly erosivity data sets in the EU
(Ballabio et al., 2017), we compared them to the CMORPH-
and ED-derived maps (Table 4). Better agreement between
CMORPH and GloREDa for fall compared to winter and
summer was found (Table 4). The ED concept yielded higher
rainfall erosivity values in almost all months, which also re-
sulted in higher differences at the annual level (Table 4). This
could be attributed to the underestimation of the WorldClim
V1 map (Beck et al., 2020). In addition, GloREDa has lower
values compared to REDES in Europe.

Moreover, Fig. 7 shows monthly erosivity values for se-
lected months where three cases were selected (i.e., under-
estimation, overestimation, and almost complete agreement
between CMORPH and GloREDa). In July, the CMORPH
product in the Alpine region generally yielded smaller ero-
sivity values compared to both the monthly erosivity maps
prepared by Ballabio et al. (2017) and the ED map (Fig. 7).
The same conclusion is reached for other regions such as
parts of western Europe or the Iberian Peninsula (Fig. 7).
In December, parts of eastern Europe have better agreement
among the three maps (Fig. 7). On the other hand, Octo-
ber is the month with the best agreement among the three
tested maps (Fig. 7). For October, the best agreement is
found in parts of eastern and central Europe, while the worst
was detected in parts of the Iberian Peninsula (Fig. 7). The
CMORPH-derived rainfall erosivity, in some cases, is more
equally distributed (i.e., winter), and in other cases it is more
unequally distributed (i.e., summer) compared to GloREDa,
while in the case of the ED concept and GloREDa, the de-
rived Gini coefficients are relatively similar throughout the
year (Table 4).

3.3.3 Comparison at the local scale using GloREDa
stations

The station data of GloREDa were also compared to grid
cell values at the same location from the derived CMORPH
and ED rainfall erosivity maps. The Pearson correlation co-
efficient between the CMORPH and GloREDa data sets
was equal to 0.74 (R2

= 0.55 with p value <0.01), and
the mean bias was equal to −32 % (Fig. 8). In general,
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Figure 4. An example of relatively good agreement between the GloREDa (a), ED (b), and CMORPH (c) maps for parts of eastern Europe
and Turkey.

Table 4. Comparison between monthly rainfall erosivity characteristics for Europe using Ballabio et al. (2017), the ED concept, and the
CMOPRH product.

Month CMORPH bias compared ED bias compared to Monthly R (Ballabio et al., 2017)
to GloREDa (%) GloREDa (%)

Mean SD Gini Mean SD Gini Mean (MJ SD (MJ Gini (–)
mm ha−1 mm ha−1

h−1 month−1) h−1 month−1)

January +196 +164 −11 +4 +3 −5 26 36 0.63
February +117 +105 −8 +4 0 −2 24 37 0.65
March +93 +74 −20 +33 +49 +3 27 43 0.64
April +56 +71 −16 +25 +26 +2 32 34 0.51
May −15 +25 +9 +24 +43 +6 67 40 0.32
June −40 −29 +6 +12 +20 +3 101 66 0.35
July −42 −25 +22 +24 +38 +6 121 72 0.32
August −41 −35 +12 +16 +25 +3 112 72 0.33
September −29 −29 −16 +18 +36 +9 82 80 0.44
October −3 −21 −24 +13 +20 0 79 90 0.54
November +64 +46 −18 +16 +38 +5 56 74 0.61
December +80 +23 −25 −5 −7 −3 44 70 0.67

the CMORPH product yielded smaller rainfall erosivity es-
timates, especially for locations where annual rainfall ero-
sivity exceeded 5000 MJ mm ha−1 h−1 yr−1 (Fig. 8). Addi-
tionally, CMORPH products tended to overestimate rainfall
erosivity in locations near water bodies, which are also the
points located above the orange line shown in Fig. 8. A
comparison between the ED concept and GloREDa yielded
a Pearson correlation coefficient of 0.77 (R2

= 0.59 with
p value <0.01) and a mean bias of 10 %. Similarly, better
agreement between the ED concept and GloREDa was de-
tected at a global, continental, or large catchment scales com-
pared to CMORPH versus GloREDa.

3.4 CMORPH data correction using GloREDa point
data

Considering the results and comparisons presented above,
the attempt to adjust the CMORPH rainfall erosivity esti-
mates using the estimates of the GloREDa ground station

database was made. A similar attempt was also made by Kim
et al. (2020) and Wang et al. (2020). In the scope of this study,
we developed correction factors (or functions) for each of the
Köppen–Geiger climate zones (Peel et al., 2007). The cor-
rections were made both at a global scale using all GloREDa
stations and per climate zone (Fig. 9). In Table 5, we propose
the best linear function, which can be applied at CMORPH-
estimated values in order to be as close as possible to the
measured rainfall erosivity values of GloREDa.

Therefore, a generic correction linear function that can be
used to derive the corrected CMORPH data (CMORPHCOR)
for the whole globe can be written as follows:

CMORPHCOR = 1.53 ·CMORPH. (5)

From the results of comparing GloREDa to CMORPH, it is
evident that CMORPH underestimates the rainfall erosivity
for a factor close to 2 (1.85) in tropical areas where we es-
timate a high R factor (Panagos et al., 2017). In temperate
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Table 5. Correction factors that were developed based on the GloREDa–CMORPH relationship per climate zone. R2 is the coefficient of
determination. Bold text shows global area.

Climate Number Number Mean erosivity in Mean erosivity in Correction R2

Zone of of GloREDa (MJ mm CMORPH (MJ mm factor
stations outliers ha−1 h−1 yr−1) ha−1 h−1 yr−1)

Globe (all) 3373 25 1923 1264 1.53 0.71
Tropical 198 12 7368 3214 1.85 0.69
Cold 1028 17 1004 793 1.36 0.83
Temperate 1620 19 2168 1514 1.48 0.74
Arid 435 8 941 652 1.36 0.69
Polar 92 7 794 826 0.88 0.72

Figure 5. An example of worse agreement between the GloREDa
(a), ED (b), and CMORPH (c) maps for the parts of South America.

areas where the R factor is close to the global mean, the
CMORPH underestimation is about 1.5, while better agree-
ment can be seen in low-erosivity areas (arid, cold) (Fig. 9).
Thus, applying this simple linear transformation can yield
better agreement between GloREDa and CMORPHCOR, both
at a station scale (Fig. 9) as well as at a global scale
(Fig. S2). The same correction was also applied to the global
rainfall erosivity map derived using the CMORPH prod-
uct (Fig. S2) and yielded a global mean rainfall erosivity

of 2000 MJ mm ha−1 h−1 yr−1 with a standard deviation of
3314 MJ mm ha−1 h−1 yr−1. Even if one notices much better
agreement between CMORPHCOR and GloREDa after the
correction, this is relevant only for long-term mean rainfall
erosivity assessments. With regard to dynamic rainfall ero-
sivity maps (i.e., for specific years or months), different cor-
rection factors should be applied based on the relationship
between CMORPH and station rainfall erosivity for specific
years. It is worth mentioning that the applied correction can
be regarded as a relatively simple one, which could be suit-
able for global-scale modeling applications. By applying a
correction factor to CMORPH, we aim to provide a simple
method that uses available remote-sensing data to develop
dynamic erosivity values.

3.5 Temporal global erosivity trends for the period
1998–2019

The Mann–Kendall test was applied to identify areas with
statistically significant (i.e., with a 0.05 significance level)
changes (Fig. S3) during the period 1998–2019. Accord-
ing to CMORPH erosivity output, 15 % of the globe has a
statistically significant change (Fig. S3). In case of the de-
tected changes, most of the regions show a positive trend
rather than a negative one according to the CMORPH prod-
uct (Fig. S3). Therefore, the positive trend covers 80 % of the
area where statistically significant change was detected (i.e.,
around 12 % of the total area) (Fig. S3), while the remaining
20 % (3 % of the total area) has a negative trend.

On the other hand, the ED concept yielded different re-
sults, as around 13 % of the total area shows a statistically
significant trend, with positive and negative trends having
similar shares (i.e., around 6.5 % each). Consistent trends
for using both methods (i.e., CMORPH and the ED concept)
were estimated in parts of North America and Asia, while
opposite trends were found in parts of Africa, Asia, and Eu-
rope. A direct comparison to the study conducted by Bezak et
al. (2020) that investigated rainfall erosivity trends in Europe
(1961–2018) was not possible since the investigated periods
did not overlap.
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Figure 6. Comparison between the GloREDa rainfall erosivity map prepared by Panagos et al. (2017) (a), the CMORPH-derived rainfall
erosivity map (b), and the ED-concept-derived map (c) for Europe.

4 Discussion

The global mean annual rainfall erosivity derived by Pana-
gos et al. (2017) totals about 2190 MJ mm ha−1 h−1 yr−1

(i.e., the initial 1 km cell size map), with a standard devi-
ation of 2974 MJ mm ha−1 h−1 yr−1. The area covered by
CMORPH is slightly smaller (between the 60◦ S and 60◦ N
parallels) than the one covered by the GloREDa map (be-
tween the 60◦ N and ∼ 75◦ N parallels, including some
parts of Scandinavia, Siberia, and Canada). However, a Glo-
REDa global mean rainfall erosivity value of about 1.8 times
higher than the one derived based on the CMORPH data
(shown in Sect. 3.1) cannot be explained by the slight dif-
ference between the two study areas. It should be noted
that Kim et al. (2020) also reported that the CMORPH-
derived rainfall erosivity was 1.65 lower than the Glo-
REDa estimates (Panagos et al., 2017) for the United States
of America (USA), with some USA regions showing a
bias smaller than −80 % (Kim et al., 2020). More specif-
ically, Kim et al. (2020) reported a mean annual value of
1260 MJ mm ha−1 h−1 yr−1 for the USA, while in this study
a mean value of 1173 MJ mm ha−1 h−1 yr−1 was calculated
using a slightly different methodology (e.g., a different eb−I

equation was applied) and different time period. As the
station density was quite low in the case of Panagos et
al. (2017) study for Africa and North America and also parts
of Asia, this can partly explain the larger differences between
CMORH and GloREDa. On the other hand, the largest num-
ber of stations was positioned in Europe and also parts of
Asia (Panagos et al., 2017), where the agreement between
CMORPH and GloREDa was the best (Table 3). Thus, part of
the differences between CMORPH and GloREDa can be at-
tributed to the station density used by GloREDa and partly to

the issues related to the detection of rainfall by the satellite-
based products in mountainous regions (e.g., Stampoulis and
Anagnostou, 2012).

In line with what was already discussed by Kim et
al. (2020), the insights gained by conducting global analysis
suggest that the CMORPH satellite-based rainfall erosivity
estimates provide more seamless erosivity distribution with-
out employing interpolation, uniform and good spatial cov-
erage, and 30-time temporal resolution. However, it is also
clear that this product has important disadvantages, i.e., over-
estimated precipitation over water bodies, that detection ac-
curacy in hilly terrains can be problematic, that the accuracy
of annual precipitation can be low, and that relative bias at
event scale can be significant.

As previously noted, several studies have indicated that
the difference between satellite-based products and ground-
based precipitation data can be quite significant (Habib et al.,
2012; Haile et al., 2015; Jiang et al., 2018). The differences
in the rainfall intensity patterns can also be transformed into
rainfall erosivity patterns. There were numerous studies pub-
lished that investigated the accuracy of the CMORPH prod-
uct in terms of precipitation. For example, Islam et al. (2020)
showed that CMORPH overestimated the daily precipitation
amount in Australia. A similar conclusion was made by An
et al. (2020) for the Yellow River in China or by Wei et
al. (2018) for mainland China. Some studies also showed a
significant underestimation of CMORPH in winter seasons
(Gebregiorgis and Hossain, 2015). Additionally, Palharini et
al. (2020) showed that satellite-based products tended to un-
derestimate extreme precipitation, which can have an impor-
tant effect on rainfall erosivity. Underestimation of extreme
rainfall events was also reported in many other studies (Jiang
et al., 2019; Rahmawati and Lubczynski, 2018; Stampoulis

Hydrol. Earth Syst. Sci., 26, 1907–1924, 2022 https://doi.org/10.5194/hess-26-1907-2022



N. Bezak et al.: Exploring the possible role of satellite-based rainfall data in estimating erosivity 1917

Figure 7. Comparison between monthly erosivity maps for Europe prepared by the Ballabio et al. (2017) (a, d, g), CMORPH (b, e, h), and
ED concept (c, f, i) maps for July (a, b, c), October (d, e, f), and December(g, h, i).
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Figure 8. Comparison between local (i.e., grid cell values) long-
term annual rainfall erosivity from CMORPH and ED and stations’
values of GloREDa.

et al., 2013; Sunilkumar et al., 2015; Wei et al., 2018b). This
kind of underestimation can also lead to a negative bias of
the satellite-based products compared to the station-based
rainfall erosivity. Moreover, Tian et al. (2009) also showed
that, in the USA, overestimation was seen for summer (i.e.,
overestimation of heavy precipitation with an intensity over
40 mm d−1) and underestimation for winter (i.e., missing a
significant amount of light precipitation with an intensity
lower than 10 mm d−1). Tian et al. (2009) also found out that
hit bias (i.e., with respect to satellite-based data and refer-
ence data reporting precipitation coincidently) and missed
precipitation were the two dominant error sources. A sim-
ilar conclusion was also made by Jiang et al. (2018), who
pointed out the limited detection accuracy of summer thun-
derstorms by the CMOPRH product in the Shanghai region.
These drawbacks of CMORPH can also lead to underestima-
tion or overestimation of the rainfall erosivity by CMORPH.
Comparing the CMORPH outputs to the GloREDa-measured
erosivity values for almost 3400 ground stations, we found
that CMORPH underestimates erosivity in tropical areas by
a factor close to 2, while there is better agreement for low-
erosivity areas (cold, arid, polar). For the temperate climatic
regions, CMORPH underestimates erosivity by a factor close
to 1.5.

On the other hand, the only study that, to the best of the
authors’ knowledge, investigated this satellite-based derived
rainfall erosivity (Kim et al., 2020) showed that CMORPH
underestimated rainfall erosivity in the USA compared to the
GloREDa map. Thus, it is clear that underestimation of the
most extreme rainfall events can lead to large differences in
the derived rainfall erosivity map. Such characteristics can
also lead to relatively large differences in case satellite prod-
ucts are used for flood investigations (Dis et al., 2018). Un-
derestimation of the precipitation amount by the CMOPRH
product in southern Europe as shown in the Results sec-
tion was also indicated by some other studies (Skok et al.,
2016). Furthermore, Stampoulis and Anagnostou (2012) also
pointed out that satellite-based precipitation product accu-

racy tended to be lower over the mountainous regions such
as the Alpine region (or Andes). This was especially evi-
dent during the cold season (Stampoulis and Anagnostou,
2012) and was also highlighted in some other studies (Kidd
et al., 2012). Also, other studies pointed a detection problem
for winter precipitation and high-intensity rainfall events in
some parts of Europe (Stampoulis and Anagnostou, 2012).

Different examples of good and worse agreement among
presented rainfall erosivity maps can be seen around the
globe (Figs. 4 and 5). Comparing the three maps (i.e., Glo-
REDa, CMORPH, and ED) for parts of eastern Europe and
Turkey (Fig. 4), relatively good agreement between all three
maps was detected. The main reasons for this good agree-
ment are (a) the relatively large number of stations with a
measured R factor which contributed to the GloREDa map in
countries such as Romania or Turkey (Panagos et al., 2017),
(b) the relatively flat terrain without major mountainous re-
gions in parts of eastern Europe, and (c) the relatively low-
medium erosivity (<1000 MJ mm ha−1 h−1 yr−1). By con-
trast, there are many regions where differences are much
larger. An example is the Andes mountain region (Fig. 5),
where GloREDa includes only 15 stations in the central part
of Chile (Panagos et al., 2017) and gridded precipitation
products such as WorldClim also underestimate precipitation
(Beck et al., 2020).

The ED (based on the ERA5 and GloREDa data) rainfall
erosivity estimates showed better agreement with the Glo-
REDa point estimates, which could be regarded as an ex-
pected result due to the selected input data. The largest dif-
ferences between the ED and the GloREDa estimates were
observed in Asia, Europe, and South America because of the
precipitation underestimation in mountainous regions such
as the Andes, Himalayas, and Alps (Beck et al., 2020). The
deviation of ED compared to the GloREDa map could be ex-
plained by two main reasons: (a) the difference in the spatial
resolution of the GloREDa and CMORPH maps as aggregat-
ing the 1 km GloREDa map to the 0.25◦ that is used by ERA5
yielded a global mean value of 2329 MJ mm ha−1 h−1 yr−1

and that (b) the WorldClim V1 map that was used as input to
produce the GloREDa map underestimates the precipitation
and that the updated version of the WorldClim map (i.e., V2)
yields around 10 % higher annual global precipitation (Beck
et al., 2020). It should be noted that the ED concept indirectly
uses the GloREDa data for the estimation.

ED has the following advantages compared to the
CMORPH approach: (a) the ED concept can be used to pre-
pare dynamic rainfall erosivity maps that have better agree-
ment with GloREDa, and (b) there are no issues with the
accuracy near water bodies. On the other hand, ED also has
some shortcomings: (a) most of the gridded precipitation data
sets underestimate precipitation over mountain regions (Beck
et al., 2020) and (b) consider the erosivity–precipitation re-
lationship to be constant, and (c) the rainfall erosivity map is
needed as input.
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Figure 9. Comparison between CMORPH and GloREDa data sets at station scale and proposed correction factors for the whole data set
and per climate zone (tropical, cold, temperate, arid, polar). Blue line indicates the linear trend. Red dots are the few outliers (i.e., identified
based on Cook’s distance) excluded from the correlation.

5 Study limitations and other products

The density of stations used to produce the GloREDa map
is locally low, especially in the African and South American
continents. Obviously, this could have a substantial effect on
the produced global rainfall erosivity map (Panagos et al.,
2017) and consequently on the results presented in this study
since the GloREDa map was used here as a reference. How-
ever, to the best of the authors’ knowledge, GloREDa is the
only global assessment using hourly and sub-hourly rainfall
data and the best performing among the global assessments
currently available (Panagos et al., 2017). This is due to the
coarser time step of other potential global rainfall erosivity
sources (Liu et al., 2020). Since the ED concept directly uses
the GloREDa map, the results produced by the ED method
are directly influenced by the potential shortcomings of Glo-
REDa, and this should be taken into account when making
further applications using the ED.

On the other hand, the satellite-based precipitation prod-
ucts have their own sources of uncertainty, as highlighted
in the previous sections, and, consequently, CMORH sig-
nificantly underestimates global rainfall erosivity rates com-
pared to GloREDa. It should be noted that there are other po-

tential products that could have been used to produce global
rainfall erosivity maps and that could perhaps yield better re-
sults than CMORPH. For example, Multi-Source Weighted-
Ensemble Precipitation (MSWEP) uses gauge, reanalysis,
and satellite data sources, and it was shown that it outper-
forms some other products such as CMORPH (Beck et al.,
2019a, b). Its spatial resolution is 0.1◦, and it is available
from 1979. Moreover, the Tropical Rainfall Measuring Mis-
sion (TRMM) rainfall products can also be used to derive
the rainfall erosivity (Li et al., 2020). However, it should be
noted that the temporal resolution of these two products is
3 h, which requires a non-standard RUSLE approach to de-
rive the rainfall erosivity (Renard et al., 1997). Thus, alterna-
tive approaches for rainfall erosivity estimation are needed.
For example, Li et al. (2020) used a modified Brown and
Foster equation to calculate the specific kinetic energy and
consequently the rainfall kinetic energy. However, this equa-
tion was developed based on the case study from China and
can therefore be regarded as a local (not global) equation.
Thus, applying this equation to the global scale could intro-
duce additional uncertainty to the results. Furthermore, one
could also apply the correction (i.e., conversion) factor that
was suggested by Panagos et al. (2016b). However, a rela-
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tively high value is obtained for the 3 h duration (i.e., a value
of 6.6), and the equation used to calculate the conversion
factors was only developed for durations up to 1 h. There-
fore, applying the correction factors developed by Panagos
et al. (2016b) could lead to uncertain results. Thus, there is
no globally accepted method for the calculation of the global
rainfall erosivity using the 3 h data set. Moreover, these two
products also have coarser spatial resolution compared to
CMORPH, which also affects the detection of the most ex-
treme rainfall events. Other potential sources (e.g., reanaly-
sis, satellite-based, or combined) with a different temporal
and spatial resolution could be additionally tested (Beck et
al., 2019a).

6 Conclusions

The global rainfall erosivity was assessed using the
CMORPH product and the ED concept. To the best of the
authors’ knowledge, high temporal (30 min) and spatial res-
olution satellite-based products such as CMORPH have not
yet been used for the development of global rainfall erosiv-
ity maps. Past attempts to develop a global erosivity data set
based on satellite-based or reanalysis products have used ei-
ther monthly or daily data. The comparison of the derived
maps was performed at global and multiple regional scales
using annual and monthly rainfall erosivity values.

The CMORPH product leads to a marked underestimation
of annual rainfall erosivity across the globe, with an aver-
age value of 1.53 times lower than the GloREDa station-
based rainfall erosivity. The agreement between CMORPH
and GloREDa estimates varied significantly among conti-
nents and climatic zones. While the best agreement was de-
tected for Europe (i.e., percent bias around 10 %), on aver-
age, it has relatively low-erosivity values, and a consider-
ably lower performance was observed for Africa and South
America (i.e., percent bias around −60 %). Besides having a
higher average rainfall erosivity value than Europe, these re-
gions also suffer from a considerably lower number of mea-
surement stations in the GloREDa database. Interpretation of
the obtained results suggested that satellite-based products
such as CMORPH cannot correctly capture the most extreme
rainfall events that contribute to the largest proportion of the
annual rainfall erosivity in some parts of the globe. Better
agreement was generally detected between the ED concept
and GloREDa (i.e., percent bias up to around 20 %), which
can be regarded as an expected result since the ED concept
indirectly uses the information from GloREDa.

A more detailed comparison was performed for Europe,
where an investigation was also performed at a monthly
timescale. Some spatial erosivity patterns were well detected
by the CMORPH product in some regions, and monthly
erosivity values in spring and fall were relatively close to
the ones reported by the monthly erosivity maps prepared
by Ballabio et al. (2017) (e.g., in parts of eastern and cen-

tral Europe). Additionally, underestimation and overestima-
tion were detected in summer (percent bias up to −40 %)
and winter (percent bias up to 100 %) compared to Glo-
REDa, respectively. On the other hand, the ED concept con-
sistently slightly overestimated GloREDa but yielded bet-
ter agreement with GloREDa both temporally and spatially
than CMORPH (i.e., percent bias was in the range of around
30 %). As mentioned, the ED approach indirectly uses the
GloREDa information, but it is to some extent independent
as it uses a completely different rainfall data set (i.e., ERA5
instead of WorldClim).

We also estimated a temporal trend analysis at a global
scale using high temporal and spatial resolution data of
CMORPH for the period 1998–2019. A preliminary trend
investigation revealed that around 15 % of the investigated
area was characterized by the statistically significant change
in the annual rainfall erosivity, while around 80 % of this
change was positive (i.e., 12 % of the total area) according
to the CMORPH product for the 1998–2019 period. Accord-
ing to the ED concept, 13 % of the area was characterized by
a statistically significant trend. In some regions (e.g., parts
of South or North America), the detected trends were con-
sistent, while others were not consistent (e.g., parts of Africa
or Asia). Thus, detected trends according to CMORPH could
indicate that rainfall erosivity has been slightly increasing in
12 % of the globe during the last 2 decades. However, a more
detailed investigation using longer time series is needed to
confirm or reject this preliminary result.

It should be noted that in case the CMORPH product is
used for the preparation of the rainfall erosivity map, it would
be further used for soil erosion modeling where an uncer-
tainty assessment should be included in such an investiga-
tion, similar to some other scientific disciplines (e.g., Kim et
al., 2016; Sun et al., 2018).

Despite the mentioned shortcomings and strong underesti-
mation of the rainfall erosivity in some parts of the globe,
the satellite-based precipitation products tend to be an in-
teresting option for the estimation of the rainfall erosivity,
especially in regions with limited ground data. However, in
some regions and seasons, such products require additional
correction to remove bias, which is of course related to the
availability of ground-based precipitation. Thus, it is clear
that such ground-based high-frequency precipitation mea-
surements are (still) essential for accurate rainfall erosivity
estimates; however, one can expect that technological de-
velopment in the next decades will lead to improved accu-
racy (Tang et al., 2020) of satellite-based products such as
CMORPH. These kinds of products could be used as an input
to the dynamic soil erosion models, which could be used by
relevant stakeholders. At the moment, alternative approaches
such as the ED concept can provide more accurate rainfall
erosivity estimates, which can be computed more easily.
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