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Exploring the Potential of Conditional Adversarial

Networks for Optical and SAR Image Matching
Nina Merkle, Stefan Auer, Rupert Müller and Peter Reinartz, Member, IEEE

Abstract—Tasks such as the monitoring of natural disasters
or the detection of change highly benefit from complementary
information about an area or a specific object of interest. The
required information is provided by fusing high accurate co-
registered and geo-referenced datasets. Aligned high resolution
optical and synthetic aperture radar (SAR) data additionally
enables an absolute geo-location accuracy improvement of the
optical images by extracting accurate and reliable ground control
points (GCPs) from the SAR images. In this paper we investigate
the applicability of a deep learning based matching concept
for the generation of precise and accurate GCPs from SAR
satellite images by matching optical and SAR images. To this end,
conditional generative adversarial networks (cGANs) are trained
to generate SAR-like image patches from optical images. For
training and testing, optical and SAR image patches are extracted
from TerraSAR-X and PRISM image pairs covering greater ur-
ban areas spread over Europe. The artificially generated patches
are then used to improve the conditions for three known matching
approaches based on normalized cross-correlation (NCC), SIFT
and BRISK, which are normally not usable for the matching
of optical and SAR images. The results validate that a NCC,
SIFT and BRISK based matching greatly benefit, in terms of
matching accuracy and precision, from the use of the artificial
templates. The comparison with two state-of-the-art optical and
SAR matching approaches shows the potential of the proposed
method but also revealed some challenges and the necessity for
further developments.

Index Terms—Conditional generative adversarial networks
(cGANs), multi-sensor image matching, artificial image gener-
ation, synthetic aperture radar (SAR), optical satellite images.

I. INTRODUCTION

MULTI-SENSOR image fusion is a prerequisite for the

provision of complementary information through the

combination of different data. Aligned multi-sensor data en-

able a more robust interpretation of image scenes or specific

objects and is therefore crucial for tasks such as monitoring

natural disasters and change detection. In the case of optical

and synthetic aperture radar (SAR) satellites, the images

acquired by both sensors exhibit quite different characteristics:

SAR satellites have an active sensor on board which emits

electromagnetic signals and measures the strength and time
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delay of the returned signal backscattered from ground objects.

The visual interpretation of SAR images is a challenging

task, due to the specific imaging principle and the presence

of speckle in the images. In contrast, optical sensors mea-

sure the sun radiation reflected from objects on ground. The

interpretation of optical images is easier which makes the

development of feature detectors and therefore the detection

of features more efficient and robust. An advantage of a SAR

sensor (especially TerraSAR-X and TanDEM-X) is that the

images exhibit absolute geo-location accuracies within few

decimeters, whereas high resolution optical sensors still re-

quire ground control points (GCPs) to reach similar accuracies.

This can be traced back to the different image acquisition

concepts. SAR sensors determine the distance to ground object

via the signal traveling time, which can be measured precisely

if also atmospheric effects are taken into account and lead

to images with high geo-location accuracy. Due to recent

developments in SAR geodesy, high resolutions SAR satel-

lites such as TerraSAR-X exhibit an absolute geo-localization

accuracy in the range of a few decimeters [1]. Optical sensors

in contrast, require the measurement of the attitude angles in

space to determine the satellite-viewing direction to ground

objects, which often suffers from insufficient accuracy of the

measurements and results in images with lower absolute geo-

location accuracy.

The main objective of our research is therefore the im-

provement of the absolute geo-localization accuracy of optical

satellite images via automatic extracted GCPs from images

acquired by the high resolution radar satellite TerraSAR-X. If

GCPs are available, the geo-localization accuracy of the optical

images can be enhanced by using these points to correct the

underlying sensor model parameters for the geo-referencing

process. However, GCPs are commonly measured by tedious

in-situ GPS measurements or from very exact maps and are

therefore available only in the minority of cases. To overcome

this shortage this paper focuses on an automatic procedure

to generate GCPs through the matching of optical and SAR

images. Note that we will leave out the subsequent step of

geo-localization accuracy improvement of the optical images

as e.g. performed in [2] and [3].

The process of image matching and registration is of inter-

ests for a variety of applications in fields such as medicine,

computer vision and remote sensing, and hundreds of differ-

ent approaches have been developed [4], [5], [6]. Common

methods for the matching of optical and SAR images are

mostly based on intensity- or feature-based matching concepts.

Intensity-based methods often exploit similarity measures such

as normalized cross-correlation (NCC) [7], mutual information
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Fig. 1. Graphical overview of the proposed method for the absolute geo-localization improvement of optical images by matching SAR and artificial patches
generated by conditional generative adversarial networks (cGANs).

(MI) [2], [8] or cross-cumulative residual entropy [9]. On

the other hand features like lines [10], contours [11], [12]

or regions [13] are widely used for feature-based matching

approaches. A modification of the common feature detector

SIFT, which usually fails to detect corresponding features in

SAR and optical images, has been investigated in [14]. All

these approaches suffer from speckle in the SAR images and

different geometric and radiometric properties induced by the

disparate image acquisition concepts of the two sensors. This

leads to the problem of either finding a reliable similarity

measure between the images, or extracting reliable features

from the image scenes. To circumvent this problem Han et

al. [15] proposed an approach, which combines aspects of

feature- and intensity-based methods. In our previous work

we investigated the applicability of a deep learning based

method for the task of optical and SAR images matching

[3]. To handle the matching problems arising from optical

and SAR data we propose to select specific areas, where only

the radiometry is different in both images. Using these areas

we successfully trained a Siamese neural network to learn

the matching between SAR and optical image patches and

achieved better results than state-of-the-art approaches.

Inspired by the high potential and the possibilities provided

by new developments in the field of deep learning we continue

our investigation and propose a new deep learning based

technique for automatic GCPs generation through matching

of optical and SAR image patches. Towards this goal we

trained a conditional generative adversarial network (cGAN)

to generate artificial SAR-like image patches from optical

satellite images. In contrast to our previous work in [3],

where the matching between optical and SAR patches was

directly learned by a Siamese network, the idea here is to

use the artificially generated patches to improve the accuracy

and precision of common matching approaches, which are

usually inapplicable for the matching between optical and SAR

images. The evaluation focuses on one intensity-based, NCC

[16], and on two feature-based matching approaches, SIFT

[17] and BRISK [18]. Optical and SAR image pairs acquired

over Europe (from 46 TerraSAR-X and PRISM scenes) and

manually aligned, are used for training and evaluating the

network. The results are compared with two state-of-the art

optical and SAR matching approaches and demonstrate the

effectiveness of the proposed method. A visualization of the

method is depicted in Figure 1.

This paper represents an extension of our earlier work

presented in [19]. Compared to [19] we extended the method

by two additional cGAN loss functions and extensively inves-

tigated and discussed the influence of the different losses, the

different batch sizes, the different training datasets and the in-

fluence of a speckle filter on the matching results. Furthermore,

we compared the obtained results with two available state-

of-the-art optical and SAR matching approaches. The main

contributions of our paper are: (i) Providing a new concept to

handle the problem of multi-sensor image matching based on

cGAN, which (ii) improves the results of common techniques

(NCC, SIFT and BRISK) for the matching between optical

and SAR images while (iii) achieving comparable results in

regard to two state-of-the-art methods.

II. GENERATIVE ADVERSARIAL NETWORKS

Neural networks, especially convolutional neural networks,

proved their high potential in various fields like computer vi-

sion, biology, medical imaging and remote sensing. Recently,

Goodfellow et al. [20] introduced a new machine learning

architecture, GANs, which earned a lot of attention in the

field of machine learning and offers new possibilities for

several research problems by generating high quality images.

In computer vision GANs find application for problems such

as semantic segmentation [21] or single image super-resolution

[22]. In the field of medicine, GANs are successfully applied

for the generation of computed tomography (CT) images from

magnetic resonance imaging (MRI) to reduce the radiation

exposure to patients during acquisition [23]. In the context of

remote sensing, Guo et al. [24] investigated the application of

GANs for the synthesis of SAR images.

GANs are generative models with the goal of training a

generator network G to map random noise z to output images

y. The training is realized through an adversarial process,
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which is based on the simultaneous training of two networks,

the generator G and the discriminator D. The task of D is

to distinguish as good as possible between real images and

images G(z) generated by G, whereas G tries to produce more

and more realistic images to ”fool” D as often as possible. The

problem can be expressed through a two-player minimax game

min
G

max
D

LGAN(G,D) = Ey∼preal(y)[logD(y)]+

Ey∼preal(y),z∼pz(z)[log(1−D(G(z)))],
(1)

where E denotes the expected value, preal the real data distri-

bution and pz the noise distribution. D is realized by a binary

classification network and outputs the possibility that an input

image belongs either to the class 0 (”fake”) or to the class

1 (”real”). The aim of D during training is to get D(G(z))
close to 0, which means to detect all images generated by G

and label them correctly as ”fake”. In contrast, G aims to get

D(G(z)) close to 1, which means that D does not identify the

artificial images generated by G and wrongly label them as

”real”. To ensure that the output values of D lie in the range

of [0, 1] a sigmoid layer can be used as the last layer of D.

In this paper, we investigate the applicability of conditional

GANs (cGANs) and we therefore utilize the open source

implementations from Isola et al. [25]. In the following

section, we will describe the concept of cGANs and how to

use them for the matching of optical and SAR images.

III. MULTI-SENSOR IMAGE MATCHING

The proposed method deals with the problem of matching

SAR and optical image patches in three steps. In the first

stage suitable matching areas are selected from optical and

SAR images. The second stage is the generation of artificial

SAR-like patches from optical image patches through cGANs.

The third stage is the matching of artificially generated SAR

patches with the real SAR image patches using an intensity-

based (NCC) and two feature-based matching approaches

(SIFT and BRISK).

A. Matching Area Selection

The pre-selection of suitable matching areas increases the

probability to obtain accurate and reliable matching points

between SAR and optical images. Candidates for such areas

contain almost only planar objects, which exhibit the same

(at least to a certain degree) geometric appearance in the

optical and in the corresponding SAR image. Furthermore,

these areas should contain salient features to increase the

probability of a successful matching. In most cases these

features are related to man-made infrastructure objects such

as streets, street crossings, roundabouts and borders between

agricultural fields. The reason for excluding 3D objects are

the different geometric distortions induced by the different

sensors of optical and SAR satellites. Elevated objects like

buildings appear differently in SAR and optical images and

get projected to different positions within the image. These

features are therefore not suitable for the identification of

GCPs. The collection of suitable patches is realized via a semi-

manual selection procedure. For obtaining a first indication

optical patch 
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G 

Fig. 2. Overview of cGAN training procedure. On the left side the training
setup for ”fake” examples (optical and artificial generated patch) as input and
on the right side for ”real” examples (optical and SAR patch pair) as input.

of areas containing fitting patterns, the CORINE land cover

layer [26] was applied. By applying this layer to the images

all cities, industrial and forest areas can be excluded from the

image search space. This first selection was refined manually

to ensure that features within these areas are actually visible

in both the optical and the SAR images.

B. Artificial Image Generation

In contrast to the common GAN setup, where new im-

ages are generated only from noise, we want to generate

artificial images based on a specific input image (an optical

image patch). The aim is to generate an artificial SAR-like

image with geometric properties of an optical image and

with radiometric properties of a SAR image (the impact of

geometric distortion is reduced by the pre-selection of patches

as described in the previous Section III-A). Therefore, we

utilize cGANs, which rely, next to noise z, on observed images

x. The cGAN loss can be stated as

LcGAN(G,D) = Ex,y∼preal(x,y)[logD(x, y)]+

Ex,y∼preal(x,y),z∼pz(z)[log(1−D(x,G(x, z)))],
(2)

where x denotes an optical patch, y the corresponding SAR

patch (the ground truth image patch) and G(x, z) the ar-

tificially generated SAR-like patch. As in [25] we extend

equations (2) by an additional term

LL1
(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1]. (3)

This term forces G to produce output images, which are

close to the ground truth SAR patches y (in sense of the L1

distance). Adding this term lead to the final objective

G∗ = argmin
G

max
D

LcGAN(G,D) + λLL1
(G). (4)
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Fig. 3. Side by side comparison between optical, artificial SAR and original (despeckled) SAR image patches with pixel size of 2.5m for three different
setups in two columns. Setup 1: SAR-like patch generation utilizing the cWGAN loss with a batch size of 1; Setup 2: despeckled SAR-like patch generation
utilizing the cGAN loss with a batch size of 40; Setup 3: SAR-like patch generation utilizing the cLSGAN loss with a batch size of 4.

A common problem of (conditional) GANs with an objec-

tive based on the negative log-likelihood (see Equation (2)),

is the unstable training. Recent research studies like [27],

[28] try to overcome this problem by describing more stable

training procedures. We therefore investigate the influence of

two alternative training procedures on our matching results.

The first was proposed in [27] and only requires a change in

the loss function LcGAN. The idea is to replace the cGAN loss

from Equation 2 by a least square loss

LcLSGAN(G,D) = Ex,y∼preal(x,y)[(D(x, y)− 1)2]+

Ex,y∼preal(x,y),z∼pz(z)[D(x,G(x, z)))2].
(5)

We denote the new cGAN setup, where the least square loss

is utilized, with cLSGAN. The second approach was proposed

in [28]. Here, the idea is to restate the problem with the aim

of minimizing the Wasserstein distance instead of the Jensen-

Shannon divergence, which is the case for the common GAN

problem. This can be achieved by employing the conditional

Wasserstein GAN (cWGAN) loss

LcWGAN(G,D) = Ex,y∼preal(x,y)[D(x, y)]+

Ex,y∼preal(x,y),z∼pz(z)[D(x,G(x, z))].
(6)

Applying cWGANs also requires to clip the weights of the

discriminator network D to be in the interval from −0.01 to

0.01. In the following this type of cGAN will be called the

cWGAN setup and a detailed theoretical overview of it can

be found in [28].

Network Architecture: The generator G is realized via a

U-net, which is an encoder-decoder type of network with

skip connections between layer i and layer n − i (n is the

total number of layers). A skip connection between the layers

i and n− i means to concatenate all channels of layer i with

those of layer n − i. An example of this network type is

shown in Figure 2. The discriminator is realized via several

convolutional layers and the sigmoid function as the last

layer. For a detailed overview of the network architecture we

refer to [25].

Network Training: The training dataset consists of optical

and SAR image patches, where we determined to train on

patches with a size of 201 × 201 pixels (large enough to

ensure the existence of salient features within the patches

but not too large to run into problems caused by memory

limits of our available GPUs). Before extracting the patches

all images must be geometrically aligned. The discriminator

network D is alternately trained on two different kinds of

training pairs. Half of the training pairs are ”fake” examples

and are composed of optical and artificial generated SAR-like

patch pairs. The other half are ”real” examples and are

composed optical and SAR patch pairs. An illustration of

the two different training setups are shown in Figure 2. The

networks are trained with stochastic gradient descent with

the ADAM optimizer [29] and an initial learning rate of 0.01
for the cGAN and cLSGAN setups and with the RMSProp

optimizer [30] and an initial learning rate of 0.0002 for the

cWGAN setup. For all setups the two networks are trained

at the same time by alternating the training of D and G

(one gradient descent step of D is followed by one gradient

descent step of G in the cGAN and cLSGAN setups and five

gradient descent steps of D are followed by one gradient

descent step of G in the cWGAN setup). To improve the
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Fig. 4. Development of the generator over training: the optical input patch, the artificial patches at epoch 1,10, 50, 200 and the SAR target patch (from left
to right).

quality of the learning while utilizing the LcGAN loss we

follow the common practice for the training of G, which

is to maximize log(D(x,G(x, z))) instead of minimizing

log(1−D(x,G(x, z))).

Network Testing: The networks are tested by comparing the

quality improvement of the results between the matching of

artificial SAR-like (generated by the trained cGAN, cLSGAN

and cWGAN setups) with SAR patches and the matching of

optical with SAR patches. Different techniques are utilized

for the patch matching and are introduced in the following

Subsection III-C. Note that in this phase of the process only

the trained generator network G is required (as illustrated in

Figure 1) and the weights of G are not modified during the

test phase (one input patches will always lead to the same

artificial output patch). To guarantee a fair evaluation we only

utilize artificial patches for the matching, which are generated

from a test set. The test set contains optical patches, which

were never shown to the networks during training.

C. Artificial Image Matching

Several approaches exist to realize the matching between

a template T and a corresponding reference image R. In

our investigations we focus on one intensity-based and two

feature-based approaches, which usually lead to inaccurate

results for the matching of optical and SAR images. For the

later evaluation, the template T will either be a patch cropped

from the optical image or the generated artificial SAR-like

patch and R a patch cropped from the SAR image.

Intensity-based approaches measure the similarity between

T and a larger reference image R at all locations within the

search space. We use a sliding window technique to compute

the NCC [16] value for every location of T within R. The

correct matching position is given by the highest NCC value

within the search space. Since we are only interested in reliable

and accurate matching points, we use the NCC value as a

quality measure to detected outliers in the set of matching

points. More precisely, we remove all matching points with a

NCC value of less than 0.4.

In contrast, feature-based approaches are based on the

detection of features in both images, called key points, and

the measurement of their similarity in the feature space. The

two feature detectors utilized in this paper are the scale-

invariant feature transform (SIFT) [17] and the binary robust

invariant scalable key points (BRISK) [18]. The idea of both

algorithms is to find key points in T and R and to return a

descriptor for every key point. The descriptors of two images

are then matched by utilizing the Euclidean distance for SIFT

and the Hamming distance for BRISK in combination with a

nearest neighbor search. To increase the quality and reliability

of the detected matching points we remove outliers through

RANSAC [31] with an underlying affine model and with a

distance threshold of 5 pixels.

IV. EXPERIMENTS AND RESULTS

For the network training and for the evaluation of the results,

training and test datasets are generated out of 46 orthorectified

and aligned optical (PRISM) and SAR (TerraSAR-X acquired

in spotlight mode) satellite image pairs. The manual alignment

was realized within the Urban Atlas project [32] with an

overall alignment error in the range of 3m. The images cover

greater urban zones including suburban, industrial and rural

areas of 13 cities in Europe. The pixel spacing of the PRISM

images is 2.5m and of the TerraSAR-X images 1.25m. To

obtain larger training datasets the TerraSAR-X images are

resampled to 2.5m and 3.75m and the PRISM images to 3.75m

through bilinear interpolation. To investigate the influence of

speckle on the matching results we despeckled all SAR images

applying the probabilistic patch-based filter introduced in [33].

A. Matching Area Selection

For the selection of suitable regions within the images (as

described in Subsection III-A) we utilized the CORINE land

cover layer [26] from the year 2012 and with a pixel spacing

of 100m. The following classes are chosen as suitable regions:

airports, non-irrigated arable land, permanently-irrigated land,

annual crops associated with permanent crops and complex

cultivation patterns, land principally occupied by agriculture,

with significant areas of natural vegetation. After a manual

refinement we generated two different training datasets and

one test dataset. The first training dataset contains 69, 900
optical and SAR patch pairs with a resolution of 2.5m. The

second training dataset contains all patch pairs from the first

training dataset, but with a resolution of 2.5m and 3.75m. The

patches with 3.75m resolution are centered around the same

location as the 2.5m resolution patches but contain bigger

areas and only exists in the dataset if the patches do not

exceed the image boundaries. This led to a total number of

137, 450 patch pairs. The second training dataset is deployed

to enlarge the number of training samples and to investigate

the influence of different image resolutions on the quality of

the patch generation and, hence, of the later matching. Since
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Fig. 5. Side by side comparison between SAR, artificial optical and original
optical example patches with a pixel size of 3.75m in two rows.

the matching should be as precise as possible, the test dataset

contains only patches with a resolution of 2.5m, which are in

total 14, 400 patch pairs. Note that patches extracted from one

image are either used for the training or the test dataset.

B. Artificial Image Generation

We investigated several setups for the generation of artificial

SAR-like patches. This includes the generation of (despeckled)

SAR-like patches at varying scales (pixel size: 2.5m and

3.75m), the training of G through different losses (cGAN,

cLSGAN and cWGAN), the training with different batch sizes

(1, 4 and 40) and the training with despeckled and original

SAR images as reference. Here, the batch size refers to the

number of training instances used in one iteration of the

training. For every setup the cGANs are trained over 200
epochs (one epoch refers to one whole cycle through the entire

training set) on a single NVIDIA GeForce GTX Titan X GPU.

The training time varied from several days to several weeks

depending on the batch size, the size of the training dataset

and the chosen cGAN setup. An overview of the different

training setups can be seen in Table I. Note that all artificially

generated patches shown in this paper are generated from test

set patches.

Figure 3 shows examples of artificial (despeckled) SAR

patch with a pixel size of 2.5m generated by utilizing three

different setups: The first setup utilizes the cWGAN, a batch

size of 40 and the 2.5m dataset. The second setup utilizes

the cGAN, a batch size of 1 and the 2.5m dataset. In contrast

to the other two setups, here the filtered SAR images were

used for the training procedure. The third setup utilizes

the cLSGAN loss, a batch size of 4 and the 2.5m dataset.

These examples illustrate that the geometric structures of

TABLE I
OVERVIEW OF THE DIFFERENT TRAINING SETUPS.

Setup dataset batch size filter

cGAN 2.5m / 2.5m+3.75m 1/4/40 yes / no
cLSGAN 2.5m / 2.5m+3.75m 1/4/40 yes / no
cWGAN 2.5m / 2.5m+3.75m 1/4/40 yes / no

TABLE II
INFLUENCE OF THE ARTIFICIAL GENERATED TEMPLATES ON THE

MATCHING ACCURACY AND PRECISION OF NCC[16], SIFT[17],
BRISK[18] AND A COMPARISON WITH TWO BASELINE METHODS. THE

MATCHING ACCURACY IS MEASURED AS THE PERCENTAGE OF MATCHING

POINTS HAVING A L2 DISTANCE TO THE GROUND TRUTH LOCATION

SMALLER THAN 3 PIXELS, AND AS THE AVERAGE OVER THE L2

DISTANCES BETWEEN THE PREDICTED MATCHING POINTS AND THE

GROUND TRUTH LOCATIONS (MEASURED IN PIXEL UNITS). THE

MATCHING PRECISION IS REPRESENTED BY THE STANDARD DEVIATION σ
(MEASURED IN PIXEL UNITS).

matching accuracy matching precision

Methods < 3 pixels avg L2 σ

NCC[16] 35.55% 5.50 4.76
SIFT[17] 31.10% 5.61 1.64

BRISK[18] 39.58% 3.61 1.70
NCCcLSGAN 75.48% 2.94 5.79
SIFTcLSGAN 68.85% 2.40 1.05

BRISKcLSGAN 75.21% 2.22 1.10

CAMRI[2] 57.06% 2.80 2.86
DeepMatch[3] 82.80% 1.91 1.14

streets from optical images are preserved in the generated

templates, while the radiometric properties are adapted to

SAR or despeckled SAR images. The generator learned that,

in contrast to optical images, streets normally appear with

a lower intensity in SAR images. Furthermore, G tries to

represent the characteristics of speckle or the resulting pattern

from the speckle filter in case of the first and second setup.

A characteristic of the third setup is the blurry appearance

of objects such as fields and hence the absence of speckle

in the generated patches, which is caused by the utilization

of the L2 loss. The development of the learning process of

the generator G of the first (cWGAN) setup over the training

time is exemplified by Figure 4.

Future Prospects: We further considered to reverse the whole

process and to generate artificial optical images out of SAR

images. An example of such artificial optical images is shown

in Figure 5. Despite the reasonable visual appearance the

artificial optical images could not improve the later image

matching and partly led to a deterioration of the matching

results. We attribute this to the fact that optical images reveal

a higher level of detail as SAR images and that the extraction

and generation of features from SAR images is more difficult

as from optical images. Therefore it is more difficult to

preserve image features, which is important for a reliable

and accurate matching. Nevertheless, this direction provides

a possibility for a better interpretation or visual understanding

of SAR images for non-experts.

C. Artificial Image Matching

To investigate the influence of the artificial generated

patches on the NCC, SIFT and BRISK based matching we

evaluated the matching accuracy and precision between SAR

and optical image patches and we compared the results with

two state-of-the-art methods CAMRI [2] and DeepMatch [3].

Table II gives an overview of the different methods and the

corresponding matching accuracies and precisions, which are

all evaluated over the same test set. The matching accuracy is
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measured as the percentage of matching points having a L2

distance with less than 3 pixels to the ground truth location,

and as the average over the L2 distances between the computed

matching points and the ground truth locations (measured in

pixel units). The matching precision is represented by the

standard deviation σ (measured in pixel units).

The test patches are extracted from 6 different optical and

SAR image pairs. Note that we applied the SIFT and BRISK

based matching in combination with RANSAC (with an affine

model) on the patches of each image scene separately. All ar-

tificial patches used to obtain the results from Table II are gen-

erated by utilizing the same cLSGAN setup, which is trained

on the larger test set (2.5m+3.75m) and with a batch size of 4.

This setup let to the best overall results (see later discussion

about the influence of the loss function and Table III). For the

six image scenes and the application of SIFT and RANSAC

we obtained 84, 7, 10, 9, 55, 110 matching points between the

optical and the SAR patches and 235, 120, 70, 25, 363, 286
matching points between the artificial generated and the

SAR patches. For the combination of BRISK and RANSAC

we obtained 460, 52, 592, 101, 1409, 687 points for the

matching between the optical and the SAR patches and

697, 393, 520, 164, 3834, 1052 matching points between the

artificial generated and the SAR patches. For the NCC based

matching we only considered points with an NCC value of

0.4 or higher as valid matching points and obtained in total

346 points (for all 6 image pairs) for the optical and SAR

patch matching and 155 points for artificial and SAR patch

matching.

In the case of the SIFT and BRISK batch matching the

use of artificial templates increased the number of obtained

matching points and in all cases it significantly improved

the matching accuracy and precision of the NCC, SIFT and

BRISK based matching (see Table II). This is an important

requirement for the intended application of the proposed

method for the geo-location accuracy improvement of optical

images. For this application only few matching points are

required for every image scene, but these points have to

exhibit a high accuracy and precision.

Influence of the Loss Function: To identify the best setup

for our application we investigated the influence of the three

different loss functions introduced in Subsection III-B and

their dependency on the batch size and the dataset size. An

overview of the results of the tested setups is shown in Table I.

We achieved the best results for the cGAN and cWGAN setup

by training on the smaller dataset and with a batch size of 40
and 1, respectively, and for the cLSGAN setup by training

on the larger dataset with a batch size of 4. Table III shows

a comparison of the obtained results by applying the three

loss function of the cGAN, cLSGAN or cWGAN setup. The

setup that generated the best matching results (with respect

to the matching accuracy and precision) is the cLSGAN,

which utilizes the least square loss. As stated in Section IV-B

the utilization of the least square loss causes the absence

of artificial speckle in the generated patches. Therefore, the

better matching performance of the cLSGAN (compared to

the cGAN and cWGAN setups) can be traced back to the fact

TABLE III
INFLUENCE OF LOSS FUNCTION ON THE MATCHING ACCURACY AND

PRECISION OF NCC[16], SIFT[17], BRISK[18]. THE MATCHING

ACCURACY IS MEASURED AS THE PERCENTAGE OF MATCHING POINTS

HAVING A L2 DISTANCE TO THE GROUND TRUTH LOCATION SMALLER

THAN 3 PIXELS, AND AS THE AVERAGE OVER THE L2 DISTANCES

BETWEEN THE PREDICTED MATCHING POINTS AND THE GROUND TRUTH

LOCATIONS (MEASURED IN PIXEL UNITS). THE MATCHING PRECISION IS

REPRESENTED BY THE STANDARD DEVIATION σ (MEASURED IN PIXEL

UNITS).

matching accuracy matching precision

Methods < 3 pixels avg L2 σ

NCCcGAN 30.64% 4.76 4.40
SIFTcGAN 54.55% 2.84 1.19

BRISKcGAN 36.48% 4.50 1.63
NCCcLSGAN 75.48% 2.94 5.79
SIFTcLSGAN 68.85% 2.40 1.05

BRISKcLSGAN 75.21% 2.22 1.10
NCCcWGAN 24.00% 6.51 4.08
SIFTcWGAN 56.51% 2.89 1.39

BRISKcWGAN 58.06% 3.08 1.30

that the applied matching methods (NCC, SIFT and BRISK)

normally suffer from speckle in the image patches. Moreover,

since the ”real” speckle structure of the SAR patches cannot

be derived from the optical patches, it cannot be learned by

the generator. As a consequence, the generator network will

produce patches, which contain random speckle that looks

real enough to ”fool” the discriminator network. Overall, the

occurrence of artificially speckle in the generated patches

makes the matching more difficult.

Influence of the Speckle Filter: The application of a speckle

filter is an important pre-processing step for many matching

methods and is used to improve the results of CAMRI [2] and

DeepMatch [3]. Therefore we exploited two application cases

of the speckle filter. First, we investigated the influence of the

despeckled SAR patches on the NCC, SIFT and BRISK based

matching (without the use of cGANs). Only in the case of

the BRISK based matching the usage of the speckle filter led

to an improvement of the matching results (# matching points

< 3 pixels = 52.21%, avg L2 = 3.00, σ = 1.37). Second, we

investigated the generation of SAR-like despeckled patches

via cGANs and their influence on the NCC, SIFT and BRISK

based matching. Utilizing these patches led in none of the

matching setups to better matching results compared to the

matching using SAR-like artificial patches. We trace this

back to the fact that even if the texture of the speckle filter is

well imitated (as illustrated in the second row of Figure 3) it

is randomly generated and independent from the real image

objects or their properties and therefore led to unreliable

matching results.

Comparison with Baselines: For a better assessment of the

quality of the results a comparison with two state-of-the-art

approaches is carried out. By applying the SIFT and BRISK

based matching we can achieve better results than the first

baseline called CAMRI [2]. CAMRI is a mutual information

based method and is tailored to the problem of optical

and SAR images matching. The second baseline, called

DeepMatch [3], is a deep learning based matching approach,
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Fig. 6. Comparison of the score maps between the NCC based matching of the optical image with the SAR image and the generated template (from the
optical image) with the despeckled SAR image (from top down and in two columns).

where the matching between optical and SAR images is

realized through a trained Siamese network. Regarding the

accuracy of the matching points DeepMatch achieves better

results than applying a SIFT and BRISK based matching

between the artificial patches and the SAR patches and in

regard to the matching precision our proposed approach

achieves slightly better results compared to DeepMatch.

Qualitative Results of NCC: Figure 6 shows a qualitative

comparison of the NCC based matching between optical and

SAR patches, and generated templates and SAR patches. The

search space is ∆x=∆y=20 pixels in each direction around

the center position. The used templates are generated by using

the best setup (cLSGAN setup with the least square loss). The

correct matching positions are for all examples in the center of

the SAR patches. The brighter the color of the score map, the

higher is the NCC value at the corresponding location. The

examples emphasize that the generated SAR-like templates

can improve the matching between SAR and optical images

through NCC.

Limitations: A problem of (conditional) GANs is the difficult

validation of the training success. In contrast to other machine

learning architectures, where the loss function or different

metrics can be used to evaluate the quality of the training

progress over a validation set, GANs require an evaluation

mainly via the visual quality of the generated images or

(in our case) the evaluation of the matching results. This

is time consuming, since every setup has to be trained till

the end to find the best one. A further time consuming task

is the training of the cGANs, which takes from some days

to several weeks. Besides high computational cost of the

network training and data quality evaluation, the experiments

revealed that it is important to generate patches which retain

the geometric structures of the optical patches instead of

generating patches which visually look like real SAR images

(see Table III and corresponding discussion). Therefore, not

every loss and cGAN setup is applicable for the problem of

optical and SAR image matching.

Strengths: An advantage of the proposed method is that it

enables the application of well know matching techniques

(NCC, BRISK and SIFT) on the problem of matching optical

and SAR images. These three matching methods proved

their high quality for the matching of images acquired from

the same sensor (e.g. NCC for SAR to SAR matching [34]

and SIFT and BRISK for matching optical images [35]),

but normally fail in the case of optical and SAR images.

The evaluation of the results and the comparison with two

state-of-the-art matching approaches revealed the potential of

the proposed method and the possibility to apply it for the

problem of absolute geo-location accuracy improvement of

optical images. A further benefit is the fast applicability of

the proposed method to new image scenes once the generator

is trained. For the matching of new images scenes artificial

SAR-like patches can be generated within minutes from

given optical patches. Furthermore, through the variety in our

training dataset, which contains images acquired at different

times of the year and over different locations in Europe, our

proposed approach is applicable to a wide range of images

acquired over different countries.

Future Prospects: For the future the proposed method could

be further improved by utilizing the sensor model of the input

image for RANSAC instead of an affine model. The affine

model works well for relatively flat areas but is not suitable

for every image scene. Moreover, the investigation of different

generator architectures represents a further interesting inves-

tigation. Another possible enhancement for the future is the

combination of the proposed technique with DeepMatch[3].

So far, the training of the cGANs is geared to the problem

of generating images, which look realistic enough to ”fool”

the discriminator. The results reveal that patches, which look

more like real SAR images not necessarily lead to better

matching results. Therefore, it is more important to preserve

features such as edges or corners, which are beneficial for a

matching technique, in the artificial patches. By replacing the

discriminator with the Siamese matching network proposed in

[3] the training of the generator G could be tailored towards

the problem of generating artificial patches, which lead to
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better matching results than using the original optical patches.

This combination represents a promising development for the

future to further improve the results obtained by the proposed

method and by DeepMatch.

V. CONCLUSION

We proposed a new concept for the problem of multi-sensor

image matching based on conditional generative adversarial

networks (cGANs). Different cGANs setups are trained for

the task of generating SAR-like image patches from optical

images. We showed the feasibility to improve the matching

accuracy and precision of a NCC, SIFT and BRISK based

matching between optical and SAR image patches by artificial

generated patches. By applying BRISK for the matching of

SAR and artificial SAR-like patches we achieve matching

points with an average L2 distance to the ground truth lo-

cations of 2.22 pixels and a precision (standard deviation)

of 1.10 pixels. The results further validate the potential of

the proposed approach in comparison to two state-of-the-art

methods but also revealed the need for further enhancements of

the proposed method. Especially, the necessity for a generator

network, which reliably and precisely retain the geometric

structures of the optical images, should be the main focus

of further investigations. Overall, the proposed method opens

up new possibilities for future developments towards the goal

of matching optical and SAR images. The combination of

a generator network with a deep learning based matching

approach represents thereby a promising future extension to

generate even more suitable artificial images patches and

hence, to further improve the quality of the image matching.
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