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Exploring the potential of SRTM topographic data for flood

inundation modelling under uncertainty

Kun Yan, Giuliano Di Baldassarre and Dimitri P. Solomatine
ABSTRACT
The desirable data for model building and calibration to support the decision-making process in flood

risk management are often not sufficient or unavailable. A potential opportunity is now offered by

global remote sensing data, which can be freely (or at low cost) obtained from the internet, for

example, Shuttle Radar Topography Mission (SRTM) topography. There is a general sense that

inundation modelling performance will be degraded by using SRTM topography data. However, the

actual effectiveness and usefulness of SRTM topography is still largely unexplored. To overcome this

lack of knowledge, we have explored the value of SRTM topography to support flood inundation

modelling under uncertainty. The study was performed on a 98 km reach of the River Po in northern

Italy. The comparison between a hydraulic model based on high-quality topography and one based

on SRTM topography was carried out by explicitly considering other sources of uncertainty (besides

topography inaccuracy) that unavoidably affect hydraulic modelling, such as parameter and inflow

uncertainties. The results of this study showed that the differences between the high-resolution

topography-based model and the SRTM-based model are significant, but within the accuracy that is

typically associated with large-scale flood studies.
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INTRODUCTION
The growing availability of distributed remote sensing data

has allowed for significant progress in building and testing

flood inundation models over past decades (Bates ;

Schumann et al. ). Among these data, digital elevation

models (DEMs) are essential, as hydraulic modelling of

floods (Chau et al. ) is highly dependent on accurate,

high-resolution spatially distributed elevation data (Walker

& Willgoose ; Yin & Wang ; Charlton et al. ;

Ludwig & Schneider ).

Several DEM products (Hannah et al. ) with differ-

ent accuracy levels are available for modellers and

practitioners. Airborne light detecting and ranging

(LiDAR) instruments provide high-precision topographic

mapping tools via discrete surface height samples instead

of a continuous coverage across small areas (Sun et al.

), while the Shuttle Radar Topography Mission
(SRTM) provides the most complete and robust surface

elevation data at the global scale. The mission was finished

by the joint endeavour of the National Aeronautics and

Space Administration (NASA), the National Geospatial-

Intelligence Agency, and the German and Italian Space

Agencies in February 2000 (Farr et al. ). LiDAR

DEMs are often associated with high accuracy and high

price, therefore, for the majority of rivers and floodplains,

they are either not available or difficult to access, particu-

larly in developing countries. SRTM DEMs are free

products with lower resolution (90 m) and accuracy (with

the elevation accuracy varying from 5 to 16 m; Schumann

et al. ). However, their value in supporting flood inun-

dation modelling remains largely unexplored.

The scientific literature has extensively shown that the

results of hydraulic modelling are affected by many sources
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of uncertainty: model structure, model parameters, topogra-

phy data and boundary conditions (Aronica et al. ;

Romanowicz & Beven , ; Bates et al. ; Pappen-

berger et al. ; Solomatine & Shrestha ). To better

estimate the overall uncertainty, the uncertainty assessment

exercises should be carried out throughout the modelling

process, starting from the very beginning, rather than be

added after the completion of the modelling work (e.g.

Refsgaard et al. ; Merwade ; Di Baldassarre et al.

). In particular, the inflow (i.e. design flood) and the

model parameter uncertainties were found to often be the

most significant sources of uncertainty in one-dimensional

(1D) hydraulic modelling for predicting design flood profiles

(flood elevations at cross-sections computed from design

flood) (e.g. Pappenberger et al. ). Specifically, to con-

struct inflow data for hydraulic models, the design flood

estimation via flood frequency analysis is in turn affected

by other sources of uncertainty, such as observation errors

(e.g. rating curves), limited sample size and selection of

the distribution model (Di Baldassarre et al. a). In

addition, more recently, Moya Quiroga et al. () showed

that topographic uncertainty has a considerable influence

on flood extent by using a simplified sampling technique

of changing the cell elevations independently.

Given that traditional topography data, based on ground

surveys, are only seldom available, while many remote sen-

sing technologies are often too expensive (e.g. LiDAR;

Castellarin et al. ), testing the usefulness of freely and

globally available data (such as SRTM topography) in sup-

porting hydraulic modelling of floods is of extremely high

interest from both a scientific and engineering point of

view. In this context, Sander () evaluated diverse

public DEMs for flood inundation modelling, and found

that SRTM topography yielded a 25% larger flood zone com-

pared with the high-resolution topography in a steady-flow

Santa Clara River application. Indeed, whether or not this

is a useful prediction surely depends on the application

itself. Whether the high-resolution topography will justify

the cost also depends on the characteristics of the study

area (such as scale, geographic importance) as well as the

objective of the modelling exercise. In addition, SRTM topo-

graphy may appear attractive while there are other larger

sources of uncertainty. However, Sander () did not

account for the other sources of uncertainty (besides
om http://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
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topography inaccuracy) that unavoidably affect hydraulic

modelling. Hence, the novelty of our study is that the

impact of different topographical input on the performance

of flood inundation models is analysed by explicitly consid-

ering the other sources of uncertainty (such as parameters

and inflow) that would unavoidably affect any hydraulic

modelling exercise. The uncertainty introduced by topo-

graphic inaccuracy is therefore analysed in the following

perspective: to what extent do the topographic errors

affect the floodplain model results? And is this significant

in view of the other sources of uncertainty (inflow,

parameters) that are intrinsic to any modelling exercise?

To this end, design flood profiles are estimated by using

hydraulic models built based on SRTM topography. These

design flood profiles are then compared with the ones pro-

vided by a hydraulic model based on accurate and precise

topography (i.e. combination of LiDAR survey, multi-beam

bathymetry and cross-sections). This comparison is made

in view of the associated uncertainty, which is estimated

by following a simple and pragmatic approach proposed

by Brandimarte & Di Baldassarre (). They estimated

the uncertainty in predicting design flood profiles via

hydraulic modelling based on high-quality DEMs, while

we developed a SRTM-based model and compared it with

the LiDAR-based model and used a similar Monte Carlo-

based approach to estimate uncertainty. Another related

study in this area is that of Schumann et al. (), who com-

pared the water surface gradient generated by intersecting

Synthetic Aperture Radar (SAR) flood images and SRTM

DEMs to that derived from intersecting SAR flood image

with a high-resolution and quality LiDAR DEM. It was

found that they are remarkably close to each other in this

portion of the River Po. The SRTM-derived water profiles

were also compared with the ones obtained from the

LiDAR-based hydraulic model. However, the main focus

of the Schumann et al. () study was the potential of orbi-

tal SAR to estimate the magnitude of a flood wave, rather

than uncertainties in hydraulic modelling as proposed in

this study. Prestininzi et al. () investigated the ability of

timely low-resolution satellite imagery to assist the selection

of the most appropriate hydraulic model structure in this

portion of River Po. It has been proved that the two-dimen-

sional (2D) model performs better than the 1D model in the

validation (low-magnitude event) phase. Di Baldassarre
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et al. (b) calibrated the LiDAR-based hydraulic model

in the same portion of the River Po by using the 2000

flood event and validated the model against the 2008 flood

event. It was found that the hydraulic models that are able

to reproduce the high-magnitude event (2000 flood) failed

to reproduce the low-magnitude event (2008 flood) in the

same study area.
TEST SITE

The study was performed on a 98 km reach of River Po

from Cremona to Borgoforte (Figure 1). The Po River is

the largest and longest river in Italy, when considering

the drainage area of about 71,000 km2 and its 650 km

reach length. For the river reach studied, the main channel

width varies from ∼200 to ∼300 m, while the river banks

are confined by two lateral artificial levees with a width

from 400 m to 4 km. A high-resolution 2 m DEM of this

portion of the River Po was constructed by the River Po

Basin Authority. The DEM was constructed on the basis

of data collected in 2005 during numerous flights from alti-

tudes of approximately 1,500 m, using two different laser

scanners (3033 Optech ALTM and Toposys Falcon II).

Below the water surface, channel bathymetry of the navig-

able portion was acquired during the same year by a boat

survey using a multi-beam sonar (Kongsberg EM 3000D).

Moreover, these data were complemented by the ground

survey for 200 cross-sections developed by the Interregio-

nal Authority of the River Po in 2005 (Castellarin et al.

). For convenience, and also because the major part

of the DEM was constructed using the LiDAR technique,

this DEM will be called the LiDAR DEM in this study. A

relatively coarse-resolution DEM of this portion of the

River Po based on the SRTM was also used for this study

(Figure 1).
Figure 1 | Po River between Cremona and Borgoforte: LiDAR DEM (left panel, grey scale),

SRTM DEM (right panel, grey scale).

://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
HYDRAULIC MODELLING

This study uses HEC-RAS (US Army Corps of Engineers

), a 1D hydraulic model that solves the De Saint-

Venant equations with an algorithm based on the Preissmann

implicit four-point finite scheme (Preissmann ). The

model was used to simulate the flood profiles for the 98 km

reach between Cremona and Borgoforte. In particular, two

hydraulic models were built based on 88 cross-sections

including both the floodplain and the main channel. It is

worth mentioning that the in-channel bathymetries of the

LiDAR-based model come from the boat survey, while the

in-channel bathymetries of the SRTM-based model were

extracted from the raw SRTM DEM without artificial

manipulation. The locations of the cross-sections for both

LiDAR- and SRTM-based models are identical, while the

cross-section bathymetries are significantly different, particu-

larly in the main channel (Figure 2). Indeed, the use of SRTM

topography for inundation modelling should be carefully jus-

tified because radar waves cannot penetrate the water

surface. Therefore, the in-channel bathymetries are very

poorly represented by SRTM topography in general. Con-

veniently, the SRTM topography data were obtained during

an 11 day mission in February, which is winter time in the

River Po basin, meaning that the river water levels were rela-

tively low and the floodplain was not inundated. The

vegetation height and density during this winter time are

also lower than in the summer. These give the opportunity

to capture most of the in-channel bathymetries and provide

relatively accurate floodplain topography.

HEC-RAS has been widely used for hydraulic modelling

(e.g. Pappenberger et al. , ; Schumann et al. ;

Brandimarte et al. ), and a number of studies have

proven its reliability in simulating floods in natural rivers

(e.g. Horritt & Bates ; Castellarin et al. ) compared

with 2D models (LISFLOOD-FP, TELEMAC-2D). However,

it should be noted that HEC-RAS cannot reproduce the inter-

action process between the main channel and floodplain, the

2D process on the floodplain, as well as minor hydraulic

effects such as secondary circulations and high-order turbu-

lence. Often, these minor effects can be neglected

considering the accuracy requirements in large-scale pro-

blems and modelling purposes. In addition, previous studies



Figure 2 | Cross-sectional comparisons for LiDAR-based model (solid line) and SRTM-based model (dashed line).
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have shown that the unprotectedfloodplain, togetherwith the

main channel of this portion of the River Po between the arti-

ficial levees, can be treated as a compound 1D channel for a

high-magnitude flood event (e.g. Castellarin et al. ; Di

Baldassarre et al. b; Brandimarte & Di Baldassarre

). Moreover, a 1D model is more efficient than a 2D

model in terms of computational time, especially for large

areas. It has been shown (Brandimarte & Di Baldassarre

) that for this test site, the computation of flood profiles

via steady-state simulations provided results as accurate as

the ones obtained via unsteady simulation because of the

broad and flat hydrographs of this alluvial river, which leads

to relatively little transient behaviour. Thus, a dynamic

model was not needed here, as the modelling purpose is to

derive the maximum water stage levels, i.e. flood profiles.

Moreover, it should be noted that Bates & De Roo ()

demonstrate that, for example, for a particular 1-in-63 year

flood event in RiverMeuse, the dynamic simulations aremar-

ginally less good predictors of inundation extent than the

steady-state models. In addition, steady-flow routines are

commonly adopted by regulatory agencies for floodplain

mapping studies (Di Baldassarre et al. ).

Model calibration

In October 2000, the River Po experienced a significant

flood event, with a peak discharge of about 11,850 m3 s�1.
om http://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
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The return period was estimated at ∼60 years (Maione

et al. ). The two hydraulic models were calibrated by

varying the Manning coefficients and comparing the

numerical results to the high-water marks recorded after

the October 2000 flood event (Coratza ). Given the

homogeneous characteristics of the river reach, the poten-

tially distributed Manning n value were limited to one

value for the channel and one for the floodplain (Di Baldas-

sarre et al. b). The high-water marks are appropriate to

calibrate the model for the purpose of reproducing the flood

profile. The sensitivity analysis is carried out by varying the

Manning channel coefficient from 0.01 to 0.06 m1/3 s and

the Manning floodplain coefficient from 0.03 to 0.13 m1/3 s,

for both the LiDAR-based model and the SRTM-based

model. The model performances are evaluated by using

the mean absolute error, ε.

There is a clear tendency that the Manning channel

coefficients are increasing, while the Manning floodplain

coefficients are decreasing within areas with similar mean

absolute errors for both LiDAR- and SRTM-based models

(Figure 3). This is because the increasing roughness on the

channel is compensated by the decreasing roughness on

the floodplain. The shapes of the hyperbolic that contain

the optimal values are similar between the two models. In

addition, both models clearly show more sensitivity on Man-

ning channel coefficients than Manning floodplain

coefficients. The model sensitivity of the LiDAR-based



Figure 3 | Model responses to changes in Manning coefficients: LiDAR-based model

(upper panel) and SRTM-based model (lower panel).
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model is higher than the SRTM-based model for small Man-

ning channel coefficients. Figure 4 represents flood profiles

of the best-fit model for both the LiDAR-based model and

the SRTM-based model, which were selected by minimizing

the mean absolute error and rejecting the simulations

where the Manning floodplain coefficients were smaller

than the Manning channel coefficients. The rejection cri-

terion was based on the fact that there is a consensus that

the channel roughness is typically smaller than that of the
://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
floodplain since water flows in the riverbed almost all the

time and makes it smoother (Chow ). The mean absol-

ute errors between the observed and simulated water

levels seem to indicate that both models can simulate the

October 2000 flood profile reasonably well (Table 1),

although the optimal Manning coefficients lie in different

locations of the parameter space (Figure 3).

Model evaluation

The River Po experienced a low-magnitude flood event

(return period around 3 years) in June 2008. For this event,

a coarse-resolution (∼100 m) SAR flood image was acquired

and processed by Schumann et al. (). This SAR flood

image was used in this study to evaluate the two models. In

particular, the inundation widths were derived to validate

the best-fit LiDAR- and SRTM-based models. The two

models were used to simulate the June 2008 flood, and the

simulated inundation widths were compared with the ones

derived by the SAR images. The validation of the two

models (Figure 5) shows that they provide similar results. In

particular, the mean absolute errors of the two models in

reproducing the SAR inundations were found equal to

945 m for the LiDAR-based model and 862 m for the

SRTM-based model. The difference between the two models

is within the accuracy of the inundation width derived from

the SAR image (around 150 m; e.g. Prestininzi et al. ).
DESIGN FLOOD PROFILE PREDICTION WITH
UNCERTAINTY

The traditional approach to estimate design flood profiles is

to feed the design flood into a calibrated model. In this case,

the 1-in-200 year design flood (Q200∼ 13,700 m3 s�1, esti-

mated using Gumbel distribution) is simulated using the

model calibrated against the October 2000 flood event

(11,850 m3 s�1). The similar flood peaks magnitudes of the

1-in-200 year flood and the October 2000 flood indicate

the profile predictions might be reliable, given that the

high-magnitude floods are restricted by the two lateral

banks of the River Po, which means the flood propagation

processes remain mainly 1D for this test site (e.g. Castellarin

et al. ; Di Baldassarre et al. b).



Table 1 | Mean absolute error for LiDAR-based model and SRTM-based model

Mean absolute error (m)

LiDAR-based model 0.27

SRTM-based model 0.56

Figure 4 | Model calibration: observed left and right bank high-water marks and results of the best-fit model: LiDAR-based model (upper panel) and SRTM-based model (lower panel).
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Recent literature has pointed out that single (determinis-

tic) predictions of flood profiles, which use the ‘best-fit’

model and a single design flood estimation, might misrepre-

sent the existence of uncertainties intrinsic to any hydraulic

modelling exercise (Beven & Freer ; Bates et al. ;

Beven ; Di Baldassarre et al. ). Therefore, the use

of the probabilistic approach is increasingly recommended.
om http://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
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A rigorous approach for the estimation of all sources of

uncertainty might be computationally heavy and requires

strong assumptions of the nature of the errors. Hence, a

simple pragmatic approach, based on generalized likelihood

uncertainty estimation (GLUE) (Beven & Binley ), is

used here to estimate the design flood profile uncertainty.

It is worth mentioning that GLUE is criticized by some

researchers as it requires a number of subjective decisions

and uses a non-standard notion of likelihood (Hunter

et al. ; Mantovan & Todini ; Montanari ; Ste-

dinger et al. ). At the same time, it is still a widely

used approach to estimate uncertainty in hydrological mod-

elling (e.g. Montanari ; Winsemius et al. ; Krueger



Figure 5 | Error of simulated and observed inundation widths of 2008 flood, LiDAR-based model (solid line) and SRTM-based model (dashed line).
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et al. ). One aspect that, as we discovered, has an influ-

ence on many Monte Carlo-related methods (such as

GLUE) is the sampling strategy used (Kayastha et al. ),

but such an analysis is left for future studies.

The sources of uncertainties estimated here are the

inflow (i.e. design flood) and the model parameters. Topogra-

phy uncertainty is also taken into account by simulating flood

profiles using two models based on two different topogra-

phies. As mentioned above, the quality of the LiDAR DEM

is high in terms of both resolution and accuracy. The useful-

ness of SRTM topography is estimated by comparing the

design flood profiles predicted by the SRTM-based model

with the design flood profiles predicted by the LiDAR-

based model, which is considered a reference model. These

profiles are compared by including an explicit representation

of inflow uncertainty and model parameter uncertainty. It is

assumed here that these sources of uncertainty prevail over

the uncertainty induced by imprecise model structure, and

this can be justified by the (aforementioned) satisfactory

results obtained by previous studies in simulating high-magni-

tude events in this test site via HEC-RAS modelling (e.g.

Castellarin et al. ; Di Baldassarre et al. b).

Experiment 1

The first modelling exercise is carried out by considering

parameter uncertainty only, varying the Manning channel
://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
coefficient in the range 0.01–0.06 m1/3 s�1 (with an interval

of 0.01) and the Manning floodplain coefficient in the range

0.03–0.13 m1/3 s�1 (with an interval of 0.01). A set of simu-

lations satisfying a threshold criteria is selected from the

sensitivity analysis (the same as the model calibration). In

this case, all the simulations (66 in total) associated with a

mean absolute error that is larger than 1 m are rejected.

This (subjective) assumption was by considering the fact

that the current policy in the Po River basin requires that

levees should have at least 1 m of freeboard above the 200

year flood profile elevations (see Brandimarte & Di Baldas-

sarre ). In addition, the simulations when the Manning

coefficients on the floodplain are smaller than those on

the channel are rejected (see above). The models passing

these filters are termed (following the GLUE method) ‘be-

havioural’, and are used to simulate the 1-in-200 flood event.

In GLUE, each behavioural simulation is associated

with a rescaled likelihood weight, Wi, ranging from 0 to 1

within the framework of GLUE (Beven & Binley ).

Many studies (e.g. Mantovan & Todini ; Beven et al.

, ; Stedinger et al. ) have pointed out that the

likelihood function used in GLUE should be able to cor-

rectly represent the statistical sampling distribution of the

data to make the prediction coherent and consistent. How-

ever, it should be noted that the choice of likelihood

measure might greatly influence the resulting uncertainty

intervals, and this choice must be made explicit so they
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can be the ‘subject of discussion and justification’ (Beven &

Freer ). Here, we followed previous studies in hydraulic

modelling of floods (Bates et al. ; Hunter et al. ;

Pappenberger et al. ). The likelihood weight, Li, is

expressed as a function of the measure of fit, εi, of the behav-

ioural models:

Li ¼ εmax � εi
εmax � εmin

(1)

where εmax and εmin are the maximum and minimum values

of the mean absolute error of the behavioural models. Then,

the likelihood weights are rescaled to a cumulative sum of

1. Rescaled likelihood weights were calculated using:

Wi ¼ Li

Pn

i¼1
Li

(2)

This uncertainty analysis was implemented for both the

LiDAR-based model and the SRTM-based model. Thus,

Figure 6(a) shows the 5, 50 and 95th weighted percentiles,

which represent the likelihood weighted uncertainty

bounds, for both the LiDAR-based model and the SRTM-

based model.
Experiment 2

The second modelling exercise also considers the important

source of uncertainty in hydraulic modelling, i.e. the esti-

mation of the design flood. To this end, the 1-in-200 year

flood was estimated by statistically inferring the time series

of 42 annual maximum flows, recorded at the Cremona

gauge station, which is the upstream end of the river reach

under study.

In particular, five distribution functions commonly used

in extreme value analysis in hydrology (i.e. lognormal (LN),

three-parameter lognormal (LN3), exponential (E), Gumbel

(EV1) and generalized Pareto (GP)) were fitted to the

annual maximum flows using the method of moments.

Five 1-in-200 year design floods were then obtained from

these fitted distributions (Table 2). The shapes of the

design hydrographs were not estimated because of

the steady-state assumption already discussed. Thus, the
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additional uncertainties that might have been caused by

the estimation of hydrograph shapes were avoided here.

Hence, five simulations of the best-fit models were run for

both the LiDAR- and the SRTM-based models. The 5, 50

and 95th percentiles were computed. Comparisons are

made between profiles for each percentile of the LiDAR-

based model and the SRTM-based model (Figure 6(b)).

Experiment 3

The third modelling practice is carried out by combining

model parameter and inflow uncertainties. Therefore, we

run a total of 115 simulations by feeding 23 behavioural

models using five design flood values generated from five

distribution functions for the LiDAR-based model. For the

SRTM-based model, we run a total of 120 simulations by

feeding 24 behavioural models using the same five design

flood values. The 5, 50 and 95th weighted percentiles of

the 1-in-200 year flood, which take into account the par-

ameter and inflow uncertainties, were calculated for both

the LiDAR-based model and the SRTM-based model. The

comparisons of profiles from two models (LiDAR and

SRTM) of the same percentile are also made (Figure 6(c)).

For the three experiments mentioned above, the chosen

Manning coefficient parameter space is sufficiently large to

cover the possible coefficient combinations for hydraulic

modelling (Chow ). The sampling interval of 0.01 is

reasonably small given by a sensitivity analysis, which

increases the sampling interval of floodplain Manning coef-

ficients to 0.02. The results show that the uncertainty

bounds for all three experiments have very minor variations.

This means the uncertain model performance will not be

affected much if the number of simulations is increased.
DISCUSSION

The bed elevations in the SRTM and LiDAR models were

significantly different to each other (Figure 4). We also con-

ducted a two-sample Kolmogorov–Smirnov test to

quantitatively evaluate these differences. We test the hypoth-

esis H0: P1¼ P2 that two samples come from the same

distribution. The results show that it rejects the null hypoth-

esis as the p-value 2.78 × 10�6 is much smaller than 0.05,



Figure 6 | Uncertainty design flood profiles by considering: (a) model parameter uncertainty only; (b) design flood uncertainty only; and (c) model parameter and design flood uncertainty.

LiDAR-based model uncertainty bounds are shown in the boxplots (lower and upper quantiles are 5th and 95th percentiles). SRTM-based model uncertainty bounds are shown

in the grey areas (dashed lines show 5th and 95th percentiles).

857 K. Yan et al. | Exploring the potential of SRTM for flood inundation modelling Journal of Hydroinformatics | 15.3 | 2013

Downloaded from http://iwaponline.com/jh/article-pdf/15/3/849/387079/849.pdf
by guest
on 21 August 2022



Table 2 | 1-in-200 year design flood estimation using five probabilistic models

Distribution LN LN3 E EV1 GP

Discharge (m3/s) 13,743 13,254 15,037 13,695 12,449

Table 3 | Comparison of flood profiles obtained from LiDAR-based model and SRTM-

based model by considering uncertainties

Source of uncertainty Percentile Mean absolute error (m)

Parameter uncertainty 5th percentile 0.46
50th percentile 0.47
95th percentile 0.32

Inflow uncertainty 5th percentile 0.41
50th percentile 0.40
95th percentile 0.39

Combined uncertainty 5th percentile 0.47
50th percentile 0.43
95th percentile 0.36

Mean 0.41
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which is the default value of the level of significance. There-

fore, the difference between two samples is significant

enough, as they have different distributions. Figure 2

shows that the bed elevations differ by around 4 m, which

definitely affects the main channel conveyance. Given that

the cross-sectional profile of the main channel is a very

important factor for 1D hydraulic modelling, the following

question may arise. Why were the modelling results very

close in terms of water level? In fact, the topography of

the floodplain areas (Figure 2) of the two models is not as

different as those in the main channel. Therefore, as the

main channel and floodplain within the lateral embank-

ments are treated as a whole cross-section in this 1D

HEC-RAS model, the total conveyance in flood conditions

is not significantly different. In addition, the topographic

uncertainties in the SRTM geometry are partly compensated

for by the Manning coefficient during model calibration. All

these factors result in similar simulated flood profiles for the

LiDAR- and SRTM-based models, despite the fact that the

‘conveyances’ in the main channel are different.

Figure 6 shows the uncertainty bounds vary according to

the source of uncertainty under consideration. For the

SRTM-based model, the difference between the 95% percen-

tile and the median is 0.4–0.5 m if only inflow uncertainty is

considered. This value increases to 0.6–1.0 m if only par-

ameter uncertainty is considered. It continues to rise to

0.9–1.2 m if both parameter and inflow uncertainty are

taken into account (Figure 6). Therefore, both sources of

uncertainty contribute to the overall uncertainty. Moreover,

the bounds of inflow uncertainties are relatively small. This

is due to the fact that the differences of design flood esti-

mations generated from five distributions are small (within

±10% of the 1-in-200 year flood estimated by the Gumbel

distribution (EV1)).

The hydraulic model performance based on SRTM topo-

graphy are evaluated when the LiDAR-based model results

are taken as the ‘truth’, by comparing the flood profiles

obtained from the LiDAR- and SRTM-based models for

the three experiments (Table 3). The mean absolute error
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of LiDAR- and SRTM-based model profiles, taking the

major sources of uncertainties into account, is around

0.41 m, which is the same order of magnitude as the accu-

racy of the high-water marks (around 0.5 m; e.g. Neal

et al. ; Horritt et al. ). In addition, the current

policy in the Po River basin requires that levees should

have at least 1 m of freeboard above the 200 year flood pro-

file elevations.

In this study, model performance evaluation was always

based on water levels, as the calibration data of the October

2000 flood event are high-water marks. In addition, the esti-

mation of the 1-in-200 flood profile is usually performed for

dyke or levee design, which requires estimation of the flood

water levels. In fact, the water depth differences for the

LiDAR-based model and the SRTM-based model have up

to 30% relative error for all the modelling practices because

the SRTM DEM overestimates the topography elevation,

particularly in parts of the main channel.
CONCLUSIONS

This paper described a first scientific study to quantitatively

evaluate the value of the SRTM topography to support

hydraulic modelling with the purpose of predicting design

flood profiles when taking into account the main sources

of uncertainty unavoidably associated with any modelling

exercise. The outcomes of this study show that the predic-

tion of 1-in-200 year flood profiles in the study area of

River Po, using the HEC-RAS model based on SRTM
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DEM topography data, are within the accuracy that is typi-

cally associated with large-scale flood studies, as long as

the other sources of uncertainty are explicitly considered,

despite the fact that some differences in water-level predic-

tions (compared with the LiDAR-based model) are not

negligible. Thus, the results indicate the added value of

SRTM topography in supporting the prediction of design

flood profiles in medium- to large-scale rivers, even though

detailed studies for the ultimate design of hydraulic struc-

tures (e.g. bridges) do require more accurate modelling

based on the best available topography. This study also

investigated the uncertainty in hydraulic modelling due to

model parameters and design flood estimation. It was

shown that both sources of uncertainty have a strong influ-

ence on the uncertainty of the model output.

The outcomes of this study are unavoidably associated

with the particular nature of the case study. 1D modelling

can, for example, be inappropriate in different instances,

especially when the floodplain is not confined by two lateral

artificial levees. Thus, future research will focus on the poten-

tial value of the SRTM-based hydraulic model tested on case

studies with significant 2D inundation patterns. This study is

also limited by the particular scale of the river. In smaller

rivers, SRTM-based models are not expected to have this per-

formance. Hence, the usefulness of the globally and freely

available SRTM topography data to support hydraulic model-

ling will be further tested by considering different scales and

flood scenarios. In addition, in order to have a comprehen-

sive evaluation of hydraulic models based on SRTM

topographic data, different model calibration and validation

approaches should be implemented according to the hydrau-

lic model used, the available data and the source of

uncertainty considered. Lastly, it should be noted that subjec-

tive assumptions were made in estimating uncertainty via the

GLUE framework. This is a common issue in estimating

uncertainty, which requires that all these (subjective)

decisions are made transparent to the end-users.
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