
Exploring the potential value of satellite remote sensing
to monitor chlorophyll-a for US lakes and reservoirs

Michael Papenfus & Blake Schaeffer & Amina I.

Pollard & Keith Loftin

Received: 15 October 2019 /Accepted: 24 September 2020 /Published online: 2 December 2020
# This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Environ Monit Assess (2020) 192: 808

https://doi.org/10.1007/s10661-020-08631-5

Abstract Assessment of chlorophyll-a, an algal pig-

ment, typically measured by field and laboratory in situ

analyses, is used to estimate algal abundance and trophic

status in lakes and reservoirs. In situ-based monitoring

programs can be expensive, may not be spatially, and

temporally comprehensive and results may not be avail-

able in the timeframe needed to make some manage-

ment decisions, but can be more accurate, precise, and

specific than remotely sensed measures. Satellite re-

motely sensed chlorophyll-a offers the potential for

more geographically and temporally dense data collec-

tion to support estimates when used to augment or

substitute for in situ measures. In this study, we compare

available chlorophyll-a data from in situ and satellite

imagery measures at the national scale and perform a

cost analysis of these different monitoring approaches.

The annual potential avoided costs associated with in-

creasing the availability of remotely sensed chlorophyll-

a values were estimated to range between $5.7 and $316

million depending upon the satellite program used and

the timeframe considered. We also compared

sociodemographic characteristics of the regions (both

public and private lands) covered by both remote sens-

ing and in situ data to check for any systematic differ-

ences across areas that have monitoring data. This anal-

ysis underscores the importance of continued support

for both field-based in situ monitoring and satellite

sensor programs that provide complementary informa-

tion to water quality managers, given increased chal-

lenges associated with eutrophication, nuisance, and

harmful algal bloom events.
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quality monitoring . Remote sensing . Lakes . Economic

value

Introduction

Chlorophyll-a as an indicator of eutrophication

and harmful algal blooms

Ecosystem stress in lakes and reservoirs has historically

been evaluated based on water quality condition and

biological integrity using a suite of laboratory and field
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(in situ) measures. Algae are a critical component of

lake food webs and support primary consumers. Owing

to its basal position in lake food webs, algae is respon-

sive both to changes among higher trophic levels, e.g.,

zooplankton and fish, and to lake chemical characteris-

tics. Eutrophication caused by excess nutrients is one

type of ecosystem stress that can lead to the formation of

an overabundance of algae and cyanobacteria, both of

which can have negative environmental or health con-

sequences and are collectively known as harmful algal

blooms (HABs) (Codd 2000; Smayda 1997). While

freshwater HAB events may be associated primarily

with cyanobacteria, these are only one HAB freshwater

taxa. Other taxa include Haptophytes, Euglenophytes,

Raphidophytes, and Dinoflagellates that all may pro-

duce ichthyotoxins. Chlorophyte, cryptophyte, and dia-

tom blooms cause hypoxia and other negative environ-

mental consequences. Chlorophyll is representative of

all these taxa, and therefore for the purpose of this study,

we do not limit the scope to only cyanobacterial HABs

(cyanoHAB) but include the broader HAB taxa.

A range of environmental conditions can render algal

blooms harmful (e.g., low dissolved oxygen, nuisance

taste-and-odor compounds, disinfection by-product for-

mation in drinking water treatment) leading to undesired

ecosystem and socioeconomic consequences.

CyanoHABs, one of many groups of freshwater algae

that may cause harm, are frequently encountered and

can sometimes produce cyanotoxins that present a for-

midable, ecological, and human health challenge that

may be the most difficult outcome to predict (Backer

et al. 2013; Graham et al. 2009; Loftin et al. 2016;

Stewart et al. 2006). Human health protection from

cyanobacteria exposure can require rapid risk manage-

ment decisions often with insufficient data while

attempting to minimize unnecessary socioeconomic

consequences. The drinking water advisory issued for

Salem, Oregon, in 2018, is a good example of such an

event (City of Salem 2018). Remote sensing may be

able to fill in data gaps left by in situ-dependent

approaches.

All phytoplankton, including cyanobacteria, are pho-

tosynthetic primary producers and therefore produce

chlorophyll-a (chl-a) as well as other accessory pig-

ments (Stumpf et al. 2016). As algal populations in-

crease, chl-a concentrations increase. Taking advantage

of this relation, chl-a concentration is frequently used as

a surrogate for phytoplankton bloom concentration and

may serve as an indicator for excess nutrients (Devlin

et al. 2011; Ferreira et al. 2011; Schaeffer et al. 2011).

Eutrophic and hyper-eutrophic lakes are more likely to

experienceHAB events and nuisance algae than nutrient

poor waterbodies, and there is growing concern about

these nutrient-driven events across the USA and else-

where (Heisler et al. 2008; Smith and Schindler 2009).

The 2012 National Lakes Assessment (NLA) estimated

that 55% of lakes in the continental USA (CONUS) are

either eutrophic or hyper-eutrophic based on chl-a mea-

sures (U.S. Environmental Protection Agency [USEPA]

2016). These events have the potential to cause econom-

ic damage through impacts to human, animal, and eco-

logical health (Ho and Michalak 2015). They also di-

minish a variety of socioeconomic benefits through

reduced recreational opportunities and reduced aes-

thetics, cause taste and odor problems in drinking water

supplies, and cause harm to aquatic ecosystems through

a variety of pathways (Brooks et al. 2016). There are

special circumstances where chl-a can be an indicator

for specific groups of algae such as with cyanobacteria

when they are the main population of algae present;

typically chl-a alone is not the best indicator for a

specific group of phytoplankton without further mea-

surements such as accessory pigments specific to the

groups of algae present (Loftin et al. 2016; Stumpf et al.

2003; Stumpf et al. 2016).

The contributions of this study include the following:

(a) a comparison of the spatial and temporal distribution

of available chl-a observations across different in situ

and satellite-based datasets on a national scale; (b) com-

putation of the avoided costs associated with making

remotely sensed data available nationally in lieu of in

situ sampling; and (c) characterization of land owner-

ship and select sociodemographic variables surrounding

waterbodies that are resolvable in both types of datasets.

In this application, avoided costs are a measure of what

it would cost to “replace” the satellite observations using

data obtained from in situ methods on the same spatial

and temporal scale as is available using either land or

ocean satellite datasets assuming that the information

and therefore the value of chl-a measured by both ap-

proaches is equivalent. There may be situations depend-

ing on how the data are used where this is not a valid

assumption due to differences in precision, accuracy, or

specificity (e.g., thresholds, mechanistic modeling,

characterization of chl-a degradation products called

pheopigments). This manuscript does not portend to

resolve all of these nuances, but rather puts forward an

economic method for evaluating these differences to
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better understand the value of remotely sensed measures

versus in situ measures of chl-a to help the end-user

better utilize both approaches as needed to meet

objectives. The avoided cost is the difference in

costs between in situ sampling costs and the costs

associated with providing the satellite observations

for use in applied settings.

In situ water quality monitoring and data availability

Despite widespread eutrophication and associated nui-

sance or HAB events, there remains limited, long-term,

coordinated, and consistent monitoring programs that

collect data to monitor trends in bloom events. This

monitoring data is also essential for evaluating the

causes, consequences, and management approaches re-

quired to reduce the occurrence of these events (Brooks

et al. 2016; Smith et al. 2014). Strategies to support the

attainment of safe and healthy water quality in freshwa-

ter bodies include in situ water quality management

programs. Most in situ water quality monitoring efforts

in the USA are focused on assessing and addressing

local and regional water quality issues where more than

90% of waterbodies contained less than 5 stations, and

more than 55% only had a single monitoring station

(Schaeffer et al. 2018a).

The Water Quality Portal (WQP) was developed as a

publicly accessible database to simplify dissemination

of water quality data (U.S. Geological Survey [USGS],

USEPA, and National Water Quality Monitoring Coun-

cil 2017). In addition to voluntary state data uploads, the

WQP contains data from the USEPA STOrage and

RETrieval Water Quality Exchange (STORET)

(USEPA 2017), the USGS National Water Information

System (NWIS) (USGS 2017a)(USGS 2017a), and the

U.S. Department of Agriculture (USDA) Sustaining the

Earth’s Watersheds Agricultural Research Data System,

or STEWARDS (2017). The resulting WQP database

contains data from both state and federal programs.

Although the WQP currently provides > 3 million water

quality records from all 50 states, the data in the WQP

do not conform to consistent sample collection, labora-

tory processing, analytical methods, or reporting proto-

cols (Read et al. 2017). The WQP includes a wide

variety of biophysical and chemical characteristics of

the monitored waterbodies, including typical water

quality measures such as nutrient concentrations, fecal

coliform bacteria abundance, total suspended solid con-

centration, and temperature, in addition to chl-a

concentrations. The data in the WQP may or may not

be associated with HAB-specific monitoring programs

and state contributions toWQP are more expansive than

states with current HAB programs (see Fig. 1). The

WQP data are included in this comparative analysis

because they represent a compiled, publicly accessible

set of in situ water quality measures across the USA at

the local and state level.

The NLA survey is a part of the USEPA effort to work

collaborativelywith states and tribes to assess the condition

of lakes, ponds, and reservoirs across the USA (USEPA

2016). The NLA collects coordinated, consistent field data

to develop broad-scale conclusions about the biological,

chemical, physical, and recreational condition of surface

waters across the USA. The sampled waterbodies are

selected from a probability-based sample design that al-

lows for population-level inferences to the larger set of

110,000 lakes included in the sampling frame (Pollard

et al. 2018). As a part of the assessment of recreational

lakes, NLA includes a measure of microcystins as well as

nuisance and HAB biomass indicators such as

cyanobacteria abundance and chl-a in lakes. While the

NLA includes these HAB indicators, it was not designed

as a comprehensive HAB monitoring program. It does

provide a unique perspective on observations from across

a wide range of lakes and reservoirs across the USA and is

readily available from public websites.

Satellite derived chlorophyll-a

Previous studies provide a comprehensive review of

past, present, and new satellite sensors available for

deriving water quality in lakes, reservoirs, and other

inland waters (Dörnhöfer and Oppelt 2016; Tyler et al.

2016). The advantages and disadvantages of different

sensors with varying spatial, spectral, and temporal res-

olutions, along with recent progress updates are

discussed in other studies (Mouw et al. 2015; Palmer

et al. 2015; Greb et al. 2018). Lake and reservoir chl-a is

detectable from satellite remote sensing (Gitelson 1992;

Wynne et al. 2008; Wynne et al. 2010). There are

numerous examples of the effectiveness of using satel-

lite remotely sensed data to detect HAB biomass

(Anderson 2009; Kutser et al. 2006; Dekker et al.

2018), but little information exists on the suitability of

these satellite sensors for state and national moni-

toring programs in terms of their spatial and tem-

poral coverage when compared with traditional

field-based programs (Clark et al. 2017).
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Satellite remote sensing as a complement to traditional

in situ monitoring

Different monitoring approaches provide unique scales of

information relevant to managing and understanding

HAB events because of the temporal, spatial, and compo-

sitional variability of HAB and nuisance algae. Traditional

field-based sampling is incorporated into most existing

water quality monitoring programs. This field sampling

provides measured information for numerous biological

and chemical water variables (e.g., nutrient concentra-

tions), and is currently the only approach that can confirm

the presence of toxic compounds in water. However,

traditional field-basedmonitoring programs can be expen-

sive in terms of labor, travel, and equipment. These pro-

grams may not be spatially and temporally representative

of ambient water quality conditions and results may not be

available in a timeframe that is relevant to protecting

human health and safety (Schaeffer et al. 2013). More

frequent sampling over time and space based on satellite

remote sensing has the potential to improve the represen-

tativeness of data that can be provided to water quality

managers. Remotely sensed data can also improve in situ

sampling efficiency through targeted allocation of re-

sources and subsequent cost savings. However, the ca-

veats to using satellites include a limited number of de-

rived water quality variables; issues with the accuracy and

precision of measurements; specificity (e.g.,

pheopigments, accessory pigments with overlapping sorp-

tion spectra) may be less than what is encountered in field

and laboratorymeasurements; and the inability tomeasure

the concentration of toxins caused by HABs. The spatial

resolution that generally excludes small waterbodies and

nearshore areas and cloud cover may limit the temporal

frequency of usable images throughout the year. Remote

sensing approaches also require a different set of technical

expertise to process and interpret the imagery, although

some steps can be automated. Perhaps most importantly,

algorithms to detect and measure water quality constitu-

ents from remote sensing data require in situ measures for

algorithm development, calibration, and validation.

All measurements are subject to error. It is a misnomer

to assume in situ measures contain no error, are a

“ground-truth,” or a better representation of the environ-

ment any more than satellite-derived water quality mea-

sures are devoid of error. Models, satellite algorithms, and

in situ measures are all approximate representations of the

environment (Wainwright and Mulligan 2013) where

fitness for purpose would need to be evaluated for the

selected approach. In situ measures may contain signifi-

cant error depending on the analysis method, where stan-

dard fluorometric methods generally underestimate chl-a

concentrations compared with high-performance liquid

chromatographic methods (Trees et al. 1985). The North

American Lake Management Society (NALMS n.d.;

https://www.nalms.org/secchidipin/monitoring-

methods/chlorophyll-analysis/) also clarifies that there is

little evidence that results derived by different methods

are similar. In addition to in situ measurement error, there

can be significant spatial difference between using single

point in situ samples versus depth-width integrated in situ

sampling approaches and an integrated detection of a

satellite pixel over a spatial area and depth of the water

column. However, single point in situ sampling is quite

common in lakes and reservoirs. Therefore, in situ and

satellite-derived chl-awould rarely fit a perfect one-to-one

regression line. There is still valuable information in the

satellite and in situ measures even if the chl-a are not
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Fig. 1 States with HAB
monitoring programs and
information. Source:
https://www.epa.
gov/cyanohabs/state-habs-
monitoring-programs-and-
resources

https://www.nalms.org/secchidipin/monitoring-methods/chlorophyll-analysis/
https://www.nalms.org/secchidipin/monitoring-methods/chlorophyll-analysis/
https://www.epa.gov/cyanohabs/state-habs-monitoring-programs-and-resources
https://www.epa.gov/cyanohabs/state-habs-monitoring-programs-and-resources
https://www.epa.gov/cyanohabs/state-habs-monitoring-programs-and-resources
https://www.epa.gov/cyanohabs/state-habs-monitoring-programs-and-resources
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exactly one-to-one. For example, from a HAB perspec-

tive, it has been confirmed that just presence and absence

information is useful in issuing recreational advisories

(Schaeffer et al. 2018b). The next level of quantification

would be categorical, where chl-a is classified into trophic

categories. The final level of quantification is concentra-

tion values, but in situ sampling could likely be improved

if depth-width integrated sampling would be utilized.

Seegers et al. (2018) clarified that when considering

satellite algorithm performance, decisions would benefit

from not being limited to just accuracy. Instead users

could consider the impact of the dynamic range of the

data, algorithm stability, spatial coverage, uncertainty,

and bias. For example, trend data may be better charac-

terized by bias and consistency over accuracy. Satellite

remote sensing of water quality methods will continue to

mature over the coming decade (Greb et al. 2018) as new

approaches continue to be developed such as demonstrat-

ed by Pahlevan et al. (2020).

Remote sensing and field-based in situ monitoring

approaches offer different, but complementary informa-

tion. Consequently, there is an opportunity and need to

explore the efficiencies and potential cost savings asso-

ciated with a combined approach.

Some US states have established programs for moni-

toring nuisance or HAB events (Fig. 1). These programs

vary across states with most efforts being focused on event

response, but some are more systematic and long-term in

nature. For instance, California has established a statewide,

long-term strategic plan to monitor and respond to HAB

events, assess risk for future HAB events, and provide

public education and outreach. One of the monitoring

options in this strategy is the adoption of satellite imagery

to identify and track HABs (Anderson-Abbs et al. 2016).

The California strategic plan uses satellite imagery to

conduct historical analysis of HABs to assess waterbodies

at risk and to prioritize field monitoring, remediation, and

future management. California also uses imagery to devel-

op protocols for alerting water quality managers and com-

munities as to when and where cyanobacteria blooms are

occurring. In addition to the use of satellite imagery,

California’s plan includes the integration of this data with

existing water quality, watershed, and volunteer field-

based assessment and ambient monitoring programs.

However, existing field-based monitoring programs in

California are limited by resource constraints and the fact

that very few freshwater lakes with substantial recreation

activity and drinking water use are monitored regularly

within the state (Anderson-Abbs et al. 2016).

Ohio uses a combination of methods to confirm that

cyanobacteria are present including satellite imagery,

microscopic examination, and additional screening tools

(State of Ohio 2016). Other states like New York also

have extensive monitoring and public information sys-

tems that provide weekly updates on monitored

waterbodies and current HAB conditions. Most states

currently rely on visual observations from field staff or

citizens. These reports result in field visits to collect

samples and laboratory analysis to determine whether

a waterbody contains cyanobacteria (as well as some-

times measuring the concentrations of toxins) or other

nuisance species (Graham et al. 2009).

Methods

This study was limited to free and publicly available data

including land and ocean satellite missions with spatial

resolutions most appropriate for lakes and reservoirs. The

satellite data examined in this study were derived from

the Landsat-8 Operational Land Imager (OLI) mission

(L8) and the European Space Agency (ESA) Copernicus

Sentinel-3 Ocean and Land Colour Imager (OLCI) sensor

(S3). Both L8 and S3 data provide new and improved

opportunities for monitoring inland water quality because

of their potential to detect chl-a. However, it is important

to note that operational delivery of chl-a data for US lake

and reservoir water quality management is mostly theo-

retical and has only recently been demonstrated in a

limited capacity, such as through the Cyanobacteria As-

sessment Network (CyAN) using S3 (Schaeffer et al.

2015). There has been limited demonstration of

satellite-derived products specific for aquatic environ-

ments at the US scale using L8 or other land imagers,

such as Secchi depth measures for the Upper Midwestern

USA (Chipman et al. 2004), surface temperatures

(Schaeffer et al. 2018a; https://www.usgs.gov/land-

resources/nli/landsat/landsat-surface-temperature), and

provisional aquatic reflectance (Franz et al. 2015;

Pahlevan et al. 2017; https://www.usgs.gov/land-

resources/nli/landsat/landsat-provisional-aquatic-

reflectance). S3 is well-suited for monitoring chl-a be-

cause of the required spectral bands and frequent 2- to 3-

day revisit times, where L8 has a 16-day revisit time,

higher spatial resolution, but limited spectral band op-

tions. The ESA Sentinel-2 Multispectral Imager (MSI)

may also provide measures on similar spatial and

https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-temperature
https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-temperature
https://www.usgs.gov/land-resources/nli/landsat/landsat-provisional-aquatic-reflectance
https://www.usgs.gov/land-resources/nli/landsat/landsat-provisional-aquatic-reflectance
https://www.usgs.gov/land-resources/nli/landsat/landsat-provisional-aquatic-reflectance
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temporal scales to that of L8 (Toming et al. 2016), so

results for L8 are assumed to be representative here.

Spatial and temporal sampling

In situ discrete measures of chl-a were accessed through

the WQP (USGS, USEPA, and National Water Quality

Monitoring Council 2017) and the 2012 NLA (USEPA

2016). The data selected from theWQP consisted of chl-

a surface water samples collected from lakes, res-

ervoirs, or impoundment sites from 1/1/1980

through 1/1/2016 within CONUS.

Inland lakes and reservoirs with discrete in situ chl-a

samples from both the 2012 NLA and the WQP were

compared against L8 and S3 resolvable waterbodies.

Landsat path/row World Reference System polygon

shapefiles were acquired through the USGS Landsat

acquisition tool (USGS 2017b), and S3 swath polygon

shapefiles were acquired through ESA Earth Observa-

tion Swath and Orbit Visualization software

(ESOV 2017). Resolvable waterbodies were previ-

ously calculated from Clark et al. (2017); those

that fit the NLA 2012 site evaluation criteria and

the method are briefly summarized here.

A waterbody mask was generated using the NHD

Plus version 2.0 (McKay et al. 2012) to identify

waterbodies resolved with 300-m or 30-m pixel resolu-

tion, assuming a minimum three-by-three-pixel array

requirement. The waterbody spatial coverage with re-

solvable satellite pixels was calculated based on the

minimum Euclidian distance from shore that will ac-

commodate the three-by-three-pixel or larger array. This

resulted in 1862 resolvable waterbodies by S3 and

170,240 resolvable waterbodies by L8. Cloud-free

views were calculated using the Terra MODIS 5-km

daytime cloud mask dataset covering the period 2001-

2010 (Mercury et al. 2012). The mean cloud-free per-

centage was calculated from all raster cell values

intersecting the waterbody polygon1.

A waterbody was considered viewed once by the

satellite platform if the entire waterbody polygon was

contained within the swath path. The number of satellite

swath path views was multiplied by mean cloud-free

percentage and number of revisits per year. For exam-

ple, the L8 satellite has a 16-day revisit time, where each

path and row are passed over 22–23 times in a year. A

lake completely contained within a single L8 swath with

35% cloud-free observations has the potential for 8

observations per year.

Avoided costs

In addition to identifying waterbodies across the USA that

include in situ chl-a observations or those resolvable by

satellite for chl-a estimation, we also provide a simplified

analysis of the avoided costs associated with adopting

satellite-derived estimates of chl-a. The avoided cost in

this analysis is narrowly defined as the difference between

the laboratory cost of analyzing in situ water samples for

chl-a and the costs associated with providing the satellite-

derived chl-a observations for use in applied settings. We

motivate the analysis of avoided costs by asking the fol-

lowing question: if satellite-derived chl-a observations

were not available, how much would it cost using in situ

methods to produce observations on the same spatial and

temporal scale as is potentially available from satellite

observations? This is particularly relevant for water quality

monitoring programs that are focused on HAB and nui-

sance algae events, which will require more frequently

collected spatial, and temporal data. For this analysis,

we only consider a portion of the costs associated

with obtaining chl-a observations using in situ

methods and compare these costs to the expenses

associated with making satellite-derived chl-a data

available to the public and other entities on a

cloud-based data platform.

The conceptual diagram in Fig. 2 illustrates the major

steps required to produce useful chl-a observations and

to highlight the specific costs considered for this com-

parison. The steps associated with making in situ chl-a

observations available for end user interpretation are

field sampling, development of standardized laboratory

procedures, and laboratory analysis. Because the cost of

field sampling and development of standardized labora-

tory procedures is highly variable depending on the

location and overall purpose of the collection, we do

not include these costs in our primary results. However,

we do include an example of including travel costs for a

1
It should be noted that the supplemental data files provided by the

Mercury et al. (2012) journal article have been compressed and altered

by the hosting journal service, so they were not usable as provided

through the publication. We had to obtain the original GeoTiFFS

directly from the authors. Here we use GeoTiFF values, where 0 is

equal to 100% cloud-free and 255 is equal to 0% views being cloud-

free on a linear scale as confirmed by the co-authors. The equation used

to convert from GeoTiFF digital number to cloud-free observations is

reversed from that suggested in the manuscript, because the files

provided for our analysis were percent cloudiness, not cloud-free

views.
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single state to illustrate how these costs could be includ-

ed in an analysis tailored to a specific region. Figure 2

also illustrates the parallel steps required to produce the

satellite-derived observations. This would entail

launching a satellite mission, development of algorithms

to convert satellite data into usable chl-a measures, and

then storing, managing, and making these large datasets

available to the public in a usable format. For compar-

ison with the benefits associated with adopting satellite

observations, we only compute the expenditures re-

quired to store, manage, and make publicly available

the satellite-derived data. We do not consider the costs

associated with launching a satellite mission or the costs

associated with developing algorithms to translate raw

satellite data into water quality metrics.2

To calculate an approximation of the avoided costs

associated with using satellite observations in lieu of in

situ sampling to produce data on the same spatial and

temporal scale as is available using satellite observations,

we use Monte-Carlo error propagation (or uncertainty

analysis) to compute a range of potential avoided costs

(Lee 2014; Morgan et al. 1990). Because there will be

variability in the cost parameters highlighted in Fig. 2, we

assign each of the parameters a distribution of possible

values and that variability is then propagated through the

avoided cost calculations. For this analysis, we assign each

variable to a triangular distribution that is defined by the

mode and an upper and lower bound. For example, while

we provide an annual estimate of the number of daily

cloud-free images available for each of the satellite-

resolvable lakes, this number will vary from year to year.

For our calculations, we set the upper bound of annual

observations to the number of cloud-free observations we

compute using the data from Mercury et al. (2012) and

then conservatively set the mode and lower bound to 85,

and 75% of the upper bound for this illustrative example.

The annual avoided cost of the use of satellite data as

opposed to in situ data is calculated as:

Annual Avoided Cost ¼ ∑
N

i¼1

Observationsi � Sample Costchl−a − Annual Satellite Cost

where the annual cloud-free observations from the

satellite are summed across all N resolvable

waterbodies. The sample laboratory analysis costs are

intended to be broadly representative of a mean cost per

chl-a sample and would likely vary across laboratories

and monitoring programs. We compute the present val-

ue (PV) of these avoided costs for a 10-year monitoring

project. A 10-year project’s stream of costs is converted

to present values such that:

PV ¼ AC0 þ d1 � AC1 þ d2 � AC2 þ…þ dn−1 � ACn−1 þ dn � ACn

where AC is the annual avoided cost and the discounting

factors are given by dt ¼
1

1þrð Þ
t. We illustrate the

present value of the avoided cost using a discount

rate, r, of 3 and 7%3.

Table 2 shows each of the variables included in

the avoided cost calculations and the parameters

used to describe their distributions. The primary

costs associated with making the satellite data

available to the public and other institutions for

monitoring and decision support are data storage/

hosting, maintaining and updating the data reposi-

tory, and making the data available via a cloud-

based service as shown in Fig. 2. Commercial

cloud service providers base their pricing on stor-

age, computation, and bandwidth (Rajakumari

et al. 2014; Yuan et al. 2016;). The S3 CONUS

data used to derive chl-a estimates consist of 7-day

composite images. For this analysis, we assume

that server storage for these images is about

200 Gb for staging the individual tiff files based

on CyAN data production. Schaeffer et al. (2018b)

provide an alternative example in which images

are made available for use in a mobile application.

The range of storage costs per GB data used in

this analysis is based on calculations obtained

from Amazon for their Amazon Web Service stor-

age and CloudFront content delivery4 and may

vary depending on how often the data are accessed

and transferred. These costs although relatively

inexpensive are likely to decrease even further in

2
We do not explicitly include the costs associated with launching a

satellite mission or the costs associated with developing the algorithms

required to translate the raw satellite sensor data into useable water

quality metrics. The information used from satellite missions is used in

many other applications, so it is not generally feasible to attribute a

portion of those costs to a task such as monitoring for chl-a or

temperature. Similarly, the costs of algorithm research and develop-

ment are difficult to measure. For these reasons, we also did not include

highly variable costs associated with the field work required to collect

the in situ water quality samples. That said, one could modify these

analyses to include some representative numbers for each of these

tasks.

3
USEPA 2014, recommends using a single central rate of 5% as

intermediate between 3 and 7% rates. We use these as our lower and

upper bounds.
4 https://calculator.s3.amazonnws.com/index.html. (Accessed 03

June 2020).

https://calculator.s3.amazonnws.com/index.html


the future (Krumm and Hoffman 2020. A relevant

example of declining hosting costs has already

been demonstrated with Google Earth Engine

hosting S3 and L8 data, where algorithms can be

implemented on a free platform, and users can

publicly publish their results (Ho and Michalak

2015; Gomarasca et al. 2019;). While we provide

cost estimates for satellite data hosting, these may

be substantially lower going into the future. In

addition to the annual costs associated with storing

and retrieving the satellite-derived data, we also

include the cost associated with providing two

federal GS-13 level scientists to provide technical

support. This support would include data quality

assurance tasks, algorithm updates, and technical

support associated with translating the scientific

data into meaningful metrics that can be under-

stood by the public and water quality managers.

The initial development and maintenance of a user

interface is generally leveraged against existing

infrastructure for a single product such as chloro-

phyll. The existing infrastructure is typically used

in many other applications such as demonstrated

by (1) the NASA Ocean Biology Processing

Group Dist r ibuted Act ive Archive Center

(OB.DAAC), which is responsible for data pro-

duced or collected under NASA’s Earth Observing

System Data and Information System but also

hosts ESA’s S-3 data, and (2) the USGS Earth

Resources Observation and Science (EROS) Center

Science Processing Architecture (ESPA), which

hosts land surface reflectance, surface temperature,

and now provisional aquatic reflectance. Therefore,

it is not generally feasible to attribute a portion of

the initial setup costs to a single satellite product.

Sociodemographic distribution

Metropolitan and rural spatial information was ob-

tained from the 2013 Rural-Urban Continuum

Codes (USDA 2013). Federal and Tribal lands

were identified in the Protected Areas Database

of the USA (USGS 2016). We first look at the

percentage of lakes with monitoring data within

each of the datasets that fall within counties des-

ignated as metropolitan or rural areas according to

the Bureau of Labor Statistics designations. Met-

ropolitan areas have at least one urban core of

10,000 people or more in population, plus adjacent

territory that has a high degree of social and

economic integration with the core as measured

by commuting ties.

To further characterize sociodemographic variation

across the different datasets, we use county level data

from the USDA Economic Research Service. These

data on population, unemployment, poverty, and

Fig. 2 Conceptual diagram of costs explicitly considered
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income are derived from the US Census Bureau and

Bureau of Labor Statistics data that are adjusted to

provide consistent and reliable single-year estimates in

both urban and rural areas (USDA 2017).

Results and discussion

Spatial and temporal coverage

The WQP returned a total of 36,165 in situ measures of

chl-a from 1980 to 2015 (3,042 NWIS, 33,123

STORET). After selecting sites in the lower 48 states

for which there were unique surface water chl-a sample

locations (excluding the Great Lakes), there were 6265

unique waterbodies across the country. The 2012 NLA

had 1269 sites with in situ measures of chl-a. Figure 3

shows the spatial coverage for each of these datasets.

Each point on the map represents the waterbody cen-

troid containing at least one in situ chl-a observation. As

seen in the maps of satellite spatial coverage, L8 had the

most coverage with over 170,000 waterbodies detect-

able relative to the 1857 waterbodies resolvable by S3.

This difference is due to the 30-m pixel resolution

available with L8 allowing it to resolve much smaller

lakes relative to the subset of lakes resolvable with the

300-m pixel resolution for S3 (Clark et al. 2017).

The waterbodies included in the NLA data were

selected to be sampled based on the probabilistic sam-

pling design of the National Aquatic Resource Surveys

(NARS) program under which the NLA is implemented.

The advantage of the NLA data is that the NARS

program’s probabilistic design allows one to make as-

sessments that are valid for reporting on nationwide and

Fig. 3 Comparison of the number of lakes monitored in (a) 2012
National Lakes Assessment, (b) lakes that have been monitored
for chl-a in situ with reporting in the National Water Quality Data

Portal, and those resolvable by satellite sensors: (c) Sentinel-3
(OLCI) and (d) Landsat-8 (OLI)
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regional trends and is designed to be representative of

waterbodies across the USA. One disadvantage of the

NLA data is that data are only collected once every 5

years which limits the types of analysis and conclusions

that it can support. How representative waterbodies

detected by remote sensing are compared with the pop-

ulation of waterbodies across the nation is an open

question for future research. The set of waterbodies that

can be resolved by satellite sensors is biased based on

waterbody size and shape, but this is dependent on the

individual satellite sensor resolution. Table 1 provides

summary statistics for the sampled lakes included in

each dataset.

In addition to examining the data on a national

scale, we also report the number of waterbodies

resolved by each satellite platform in each state.

Minnesota had the largest number of lakes (Fig.

4). In a little over half of the states, the number of

waterbodies that had in situ data was about equal

when comparing the S3 resolvable waterbodies and

the 2012 NLA waterbodies. In states with larger

numbers of waterbodies, the gap between S3 and

NLA increased. The L8 satellite resolved the larg-

est number of observable waterbodies (Fig. 3 and

Table 1). However, this does not mean that L8

provides more observations than S3 over time. The

S3 satellite has a shorter revisit time than L8 and

an order of magnitude more annual observations

per lake was available from the S3 OLCI satellite

sensor (see Fig. 5). This high temporal frequency

of observations is an advantage for monitoring

programs that have a need for monitoring related

to either posting or lifting HABs advisories. How-

ever, L8 does resolve smaller waterbodies which

may be an advantage for numerous monitoring

applications relevant to eutrophication, HABs, and

nuisance algae. One could derive a longer histori-

cal record back to 1980 if multiple Landsat mis-

sions were combined in sequence. It is important

to note that if multiple Landsat missions were used

for historical observations, validation across the

different sensors would be required, but that exer-

cise is beyond the scope of this study.

Figure 5 shows the distribution of annual obser-

vations per waterbody available from each satellite

platform including cloud cover (Mercury et al.

2012) to provide the number of available annual

observations. The number of observations per lake

resolvable by L8 has a bimodal distribution of an-

nual observations due to the widths of the satellite

swaths. Where sides of swaths overlapped, the

waterbodies within those overlapping swaths have

a higher frequency of observations. While the L8

sensor does provide observations for more

waterbodies and thus more total annual observations

nationwide, S3 provided more annual observations

per lake, with well over 150 observations available

for each individual lake through the course of a

year. The number of annual observations by S3 will

increase with the combined monitoring of S3A and

S3B recently launched in 2018. The high temporal

frequency of these data is well-suited to monitoring

programs focused on episodic events such as nui-

sance algae or HABs. For many states, S3 alone will

provide large amounts of useful data to monitoring

programs with > 1000 annual observations available

in over 10 states. In terms of monitoring and re-

search efforts focused on examining the causes or

consequences of HAB events, the panel data struc-

ture available from satellite data (i.e., repeated mea-

sures on the same units) will allow researchers to

exploit statistical methods that allow one to control

for unobservable but fixed (time-invariant) con-

founding factors through panel designs. This is a

significant advantage of this type of data relative to

infrequently collected cross-sections of data (Hsiao

2007; Donaldson and Storeygard 2016).

Figure 6a shows a time series plot of total annual

chl-a observations within the WQP between 1980

and 2015. There is a clear pattern with a steady

increase in monitoring from 1980 to 2008. After

2008, there is a 50% drop in the number of chl-a

observations relative to the number of chl-a observa-

tions available at the end of the evaluation period in

Table 1 Summary of waterbodies included in each dataset

Lake
observations

N Total
area

Median
area

Max
area

Min
area

2012 NLA 1269 9814 0.273 1675 0.010

Sentinel-3 (OLCI) 1857 68,215 10.65 4309 1.60

Landsat-8 (OLI) 170,235 101,823 0.059 57,517 0.174

WQP 6265 150,639 0.587 57,517 0.004

Note: Areal units are square kilometers. The lake area summary
statistics reflect the size of the sampled waterbodies but should not
be interpreted as the area represented by the water quality samples



Fig. 4 Comparison of lakes monitored in (a) 2012 National Lakes
Assessment, (b) lakes that have been monitored for chl-a with
reporting in the Water Quality Portal, and those resolvable by (c)
Sentinel-3 (OLCI) sensor, and (d) Landsat-8 (OLI) sensor by state.

Some states participating in the NLA (such as MN and WI) chose
to leverage NLA for state-scale survey by intensifying their sam-
pling effort
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2015. The decline in observations may be due to a

decline in voluntary reporting to online databases

such as STORET, a decline in actual monitoring

measurement efforts, or some combination of both.

Seasonal sampling (Fig. 6b) is heavily biased toward

warmer months with under-representation from No-

vember through March, typically the coldest months

of the year. Figure 6c shows that most of the loca-

tions reported 1–25 observations between 2008 and

2015. In comparison with the number of observations

available from the S3 satellite (over 341,000 annual

observations across the nation), the potential for

satellite data to complement gaps in water quality

monitoring efforts may prove valuable.

Satellite value-added information

The annual number of cloud-free observations for chl-a

derived from S3 is approximately 341,000 cloud-free

scenes (see Fig. 5). Using the assumed range of avail-

able scenes and cost parameters from Table 2, the dis-

tributions of estimated avoided costs in US dollars

($USD) are shown in Fig. 7. These distributions reflect

uncertainty in the parameters. The mean annual avoided



Fig. 5 Distribution of annual
cloud-free US lake and reservoir
observations across Sentinel-3
(OLCI) and Landsat-8 (OLI)
platforms
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costs for the S3 are approximately $5.7 million with a

standard deviation of $1.59 million. For L8, the mean

annual avoided cost is approximately $42 million with a

standard deviation of $9.5 million. The mean present

value of a 10-year project using the satellite observa-

tions is approximately $42 million (SD = $9 million) for

S3 (OLCI) and $316million (SD = $67 million) for L85.

Because the mean annual expenditures required to make

the data publicly available is largely driven by the cost

of supplying two United States federal General Sched-

ule (GS-13) scientists—the cost of storing and serving

the data using cloud services is less than 1% of these

labor costs—the scale of potential benefits of adopting

satellite-derived measurements is substantial in compar-

ison. These estimates are based on a hypothetical sce-

nario of comparing a monitoring approach based solely

on spatial and temporal scale of sampling that is avail-

able using the satellite data to one that is based on this

same scale but requiring in situ sampling. This would

arguably never be the case, but these estimates do illus-

trate the large potential value is using the satellite data.

To highlight this point, we also consider a more

realistic scenario under which a monitoring program

chooses to rely mostly on in situ data collection with

some augmentation with satellite data. For example, a

state might choose to focus its in situ sampling program

on waterbodies requiring less travel and time costs

which constitute a large portion of the overall in situ

sampling costs and only rely on the satellite data for

more distant and remote waterbodies. To illustrate this

idea, we compute the travel time and distance from each

of the S3 waterbodies in California to the nearest of 13

California Water Resources Drinking Water district

field offices. These are not necessarily the only field

offices from which a monitoring program would send

out field sampling teams, but we use these as an illus-

trative example. Figure 8 plots the empirical distribution

function of travel times from each lake to the nearest

field office. In an example scenario in which a monitor-

ing program in California was to institute a consistent

bi-weekly in situ sampling program of the 80% of the S3

lakes within a distance of roughly 150 mi from the

5 The present value of these 10-year projects using a lower discount

rate of 3% is $50 million (SD = $11million) for Sentinel-3 (OLCI) and

$370 million (SD = 79 million) for Landsat (OLI).



nearest field station and rely on the satellite information

to monitor the remaining 20% of lakes, this would

constitute a savings of about $34,000 annually in terms

of chl-a lab analysis costs at $20 per analysis. If we

additionally assume that the costs of sending out a field

team to sample 4 lakes per day is $200, then the annual

savings would be approximately $120,000. If one were

to extend this type of analysis and the underlying as-

sumptions to the entire set of 1862 S3 resolvable lakes

across the USA, the hypothetical cost savings would be

approximately $1,970,000 per year.

It is important to reiterate that using satellite data in

no way obviates the need for in situ monitoring pro-

grams, as both systems provide relevant information at

Fig. 6 WQP observations as (a)
the number of in situ observations
by year, (b) total in situ samples
by month, and (c) count of WQP
monitoring locations binned by
number of samples (2008-2015).
Most sites have 1–25 samples in
this timeframe
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Table 2 Summary of cost variables used in avoided cost Monte-Carlo analysis

Variables included in avoided cost Min Mode Max

Annual satellite observations (Sentinel-3 OLCI) 280,000 300,000 341,000

Annual satellite observations (Landsat-8 OLI) 1,833,000 1,956,000 2,445,000

Size of annual satellite data (GB) 4675 5500 6325

Annual cost per GB for cloud storage and bandwidth for input/output $3.8 $4.8 $5.75

Cost of single chl-a lab sample analysis $10 $20 $30

Annual labor cost for two GS-13 scientists $136,000 $170,000 $204,000

Fig. 7 Distribution of potential avoided cost estimates in millions
of $USD. The first row is the annual estimate of avoided costs for
the Sentinel-3 (OLCI) and Landsat-8 (OLI) platforms. The second

row is an estimate of the avoided costs estimated for a 10-year
project discounted at 7%
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different spatial and temporal scales, specificity, accu-

racy, and precision. However, the above examples illus-

trate that even when monitoring programs complement

a small portion of the in situ sampling potentially re-

quired for a continual HAB monitoring program, there

are large potential cost saving associated with using the

satellite data. That said, it is critical to keep in mind that

satellites are limited in the variety of chemical, biolog-

ical, and physical measures available, and systematic

error in those measures can be a concern. In situ data

can be used to resolve these issues and are required for

satellite algorithm validation (Greb et al. 2018). Al-

though the S3 data do offer significant advantages in

terms of temporal frequency, it is also important to

remember that the S3 sensor does not have the spatial

resolution to monitor smaller waterbodies, which con-

stitute many lakes that are important in terms of local

human activities and uses. Field monitoring also pro-

vides an opportunity to collect other environmental data

that are not detectable by satellite yet can be important in



terms of a more complete understanding of complex

aquatic processes. Both satellite and field sampling re-

quire analysis and interpretation. Despite these limita-

tions to using the satellite data, the benefits of using this

data over wide geographic regions in the USA and

across the globe may be important. More advanced

sensors and improved algorithms may serve to increase

these advantages in the coming decade (Dekker et al.

2018; Greb et al. 2018).

Sociodemographic attributes

In addition to the potential economic efficiencies asso-

ciated with satellite-derived monitoring, it is also impor-

tant to have some understanding of how the spatial

distribution of water quality monitoring efforts inter-

sects with socioeconomic characteristics of the commu-

nities surrounding those waterbodies. One of the prima-

ry purposes of water quality monitoring programs is to

ascertain whether water quality is suitable for the

intended use. For example, knowing how the temporal

and spatial distribution of HAB events is distributed

across jurisdictions and varying sociodemographic

groups can help managers with the design of monitoring

programs, identification of at-risk groups, and with the

communication and translation of monitoring informa-

tion to the public. In terms of HAB monitoring, identi-

fying social and demographic data differences in these

areas can be a useful step in developing management

plans to reduce risk and exposure to nuisance and HAB

events. It may also help to understand whether

monitoring programs are biased in ways that neglect

specific communities. This can also help to identify

different segments of the population that may benefit

from satellite-derived water quality information and un-

derstand overall perceptions towards local environmen-

tal protection and management (McConnell 1997; Lo

2014). The cost efficiencies of augmenting monitoring

programs with satellite-derived information is a consid-

eration that water quality managers may want to consid-

er in the context of their local needs. There are also

additional benefits associatedwith improvedmonitoring

in terms of providing information to the public that can

help communities make better decisions regarding how

they interact with potentially impaired waters, primarily

in terms of avoiding exposure to toxic blooms (see

Stroming et al. (2020) for a recent example of these

types of avoidance behaviors).

Between 35 and 45% of the observations found in

both the in situ and satellite datasets (Fig. 9) contain

observations that are located within counties designated

as metropolitan areas as defined by the United States

Office of Management and Budget (USDA 2013). Just

over 45% of monitored waterbodies in the WQP fall

within counties designated as metropolitan. On one

hand, enhancedmonitoring within more populated areas

could be important as these waterbodies may be more

heavily used for different human activities and thus

could be more of a risk for exposure to HAB events.

However, in order to evaluate human exposure more

accurately, one might utilize recreational time-use data

to identify how much time humans spend at different

Fig. 8 Empirical cumulative
distribution function (CDF) of
travel distances from each of the
Sentinel-3 waterbodies in Cali-
fornia to nearest field office. On
the y-axis, 0.2 can be interpreted
as 20%
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waterbodies. On the other hand, enhanced monitoring

could be targeted toward landscapes with more nutrient

run-off that might be more susceptible to HAB events.

This is one simple example of the types of consider-

ations that local managers might weigh as they deter-

mine which data resources are most relevant for their

situation and needs.

From a waterbody and watershed management per-

spective, it is also useful to know the land ownership

patterns surrounding monitored waterbodies. Figure 10

charts the percentage of waterbodies from each dataset

falling within federal, tribal, and “other” land ownership

jurisdictions across the country. The “other” category

includes waterbodies that were within a mixture of

public and private lands including state lands, county

lands, and other private ownership patterns. The 2012

NLA monitoring data and S3 satellite data were nearly

identical in terms of these percentages, while the L8 data

had a smaller percentage of waterbodies on federal

lands. This is largely because L8 resolves smaller

waterbodies and has much denser spatial coverage than

either the NLA or S3 data. The data from the WQP has

the smallest percentage of waterbodies within federal

lands, but this is consistent with the fact that data within

the WQP was collected and submitted by state agencies

and other non-federal organizations that monitor lakes

within their management areas of interest. It is also

consistent with the fact that more of the WQP

Fig. 10 Percentage of lakes
within each dataset across federal,
state, tribal, and other land
ownership jurisdictions

Fig. 9 Percentage of lakes
included in each dataset falling
within counties designated as
metropolitan areas (light blue)
and the percentage of all counties
nationwide with at least one
observation
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waterbodies were located within metropolitan areas

which are less likely to include federal lands. From a

management perspective, both satellite datasets and the

in situ datasets cover many areas that are not within

tribal or federal jurisdiction. Having good monitoring

data (including those from citizen science monitoring

initiatives) in these areas can be beneficial for groups

seeking to develop local management programs that

address water issues which cut across state, county,

and privately owned lands.

In Fig. 11, we examine the distribution of three

socioeconomic variables across all counties containing

monitoring data. Total population and median income

were summarized as a percentage of the statewide me-

dian and the percentage of the county population living

below the poverty line. For all these variables, there are

no large visual discrepancies between the monitoring

datasets in terms of how representative the locations

are6. There is a slight skew toward larger populations

in the WQP data, which is consistent with the slightly

wider coverage of metropolitan counties as seen in Fig.

9. The WQP data also shows a slight skew to the left in

the percentage of population living below the poverty

line. The mean level is close to the 2015 national mean

of 13%, but there are fewer counties with poverty rates

above the national mean relative to the other datasets.

In summary, when we examine a few select

sociodemographic characteristics of the counties that

encompass the water quality observations that are avail-

able across the satellite-based and in situ datasets, we

find that most lakes are surrounded by private land with

30–40% of the observations falling within metropolitan-

designated counties. Between 20 and 30% of counties

across the lower 48 states have at least one observation

from the different datasets apart from the L8 data which

provides the most extensive coverage across the country

due to its ability to resolve smaller waterbodies. There

are few discrepancies across datasets in terms of county-

level sociodemographic characterizing the counties with

observations.

Conclusions

Water quality monitoring is essential for maintain-

ing aquatic resources that are safe and healthy for

many uses such as drinking water, recreation, ag-

riculture, and for maintaining the integrity of eco-

logical resources that depend on healthy and well-

functioning aquatic systems. Water quality moni-

toring provides critical information for understand-

ing how well these goals are being met and to

identify emerging concerns. Here, the focus was

specifically on the availability of chl-a—one of the

6 Two-sample nonparametric Kolmogorov-Smirnov statistics for each

pairwise comparison of the socioeconomic variables across each

dataset were performed to test whether each pair comes from the same

distribution (Conover 1999). In all but two of the comparisons, the null

hypothesis of equality in distributions is rejected. Results are available

from the authors upon request.

Fig. 11 Comparing the
distributions of socioeconomic
outcomes in counties containing
lakes across the different datasets.
These kernel density plots are
estimates of the probability
density function and should be
interpreted as smoothed
histograms that are not as
sensitive to the choice of bin size.
The total area under the curve is 1
and the probability of any value
lying between two points on the
x-axis is given by the area under
the curve between those points
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primary indicators of phytoplankton biomass, eu-

trophication, nuisance algae, and HABs. We exam-

ined the potential availability and spatial coverage

of observations across two satellite sensors L8 and

S3, and across traditional field sampling datasets at

the state-level (WQP) and the national level (2012

NLA). Neither of the traditional field monitoring

datasets used in this comparison was intended or

designed to be comprehensive HAB monitoring

programs, but they represent the best data sources

publicly available for the scale of our desired

comparisons.

In addition to comparing the spatial and tempo-

ral coverage of these different data sources, we

computed the potential value of utilizing satellite

data (as an avoided cost) to complement existing

water quality monitoring efforts. While we are

aware of limited (Stroming et al. 2020) studies

examining the value of satellite data for water

quality monitoring, USGS did conduct a survey

of Landsat imagery users to examine their uses

of the data and to evaluate the mean economic

value to those users employing a contingent valu-

ation survey (USGS 2013). This study found that

the total annual economic benefits from the

Landsat imagery was over $1.7 billion for US

users alone, with a mean value of $900 per imag-

ery scene for a single user. Those reported values

only include registered users of the data and do

not include the additional benefits of products

based on the imagery, such as using it to develop

monitoring programs for chl-a as is examined in

this study which range from $5.7 to $316 million

depending on the satellite platform and timeframe.

Our results complement these numbers in that they

indicate the high value of information provided by

satellites and remote sensing technology. As satel-

lite data is incorporated into more water quality

monitoring and management programs, there will

be more opportunities to further examine and

quantify the value of this information by collecting

data on how the information is being used to

change management decisions, monitoring program

activities, and how the public responds to this

information in comparison to choices made in the

absence of this information.

Satellite-derived chl-a data complement tradition-

al in situ monitoring in terms of filling temporal and

spatial gaps. It is important to reiterate that in situ

monitoring programs provide important data that are

necessary to validate water quality measures based

on remote sensed imagery. In situ data are also

currently the only method for determining toxin

concentrations and provide other co-located data

(e.g., nutrient concentrations) that can be used to

refine ecological understanding and processes within

systems that inform management (Yuan et al. 2014;

Yuan and Pollard 2015). While the L8 data provide

the best geographic coverage for most US lakes and

reservoirs, the S3 data provide temporal coverage

not available from any other data source. Access to

these synoptic spatial and temporal data is particu-

larly useful for monitoring and studying water qual-

ity problems such as nuisance algae and HABs that

are more episodic in nature. Even without this high

temporal frequency, L8 data provide an opportunity

to access information difficult to obtain by tradition-

al field sampling due to the expansive geographic

coverage and extended time-series dating back to

1980. In both cases of the satellite data, the avail-

ability of repeated measures across a large spatial

scale is an enormous advantage for scientists and

researchers. The analysis of repeated measures or

panel data allows for a more robust set of empirical

methods to control for biases and unmeasured con-

founding that plague many studies using only a

single cross-section of data. The improved monitor-

ing capacity may also be utilized by states to mon-

itor water quality impairments and detection of pol-

lution events.

The automated nature of collecting satellite im-

ages, together with cloud-based computing plat-

forms for processing, communicating, and translat-

ing this data into useful information, has enormous

potential to improve water quality monitoring pro-

grams. Clearly, the cost of providing this satellite

data to the public is relatively small compared with

the cost that would be required to obtain the same

information and data from traditional in situ

methods. This is particularly relevant in areas that

cannot implement or develop monitoring programs

due to various constraints or during periods, such as

the Coronavirus pandemic, or other unforeseen

events that may inhibit traditional in situ data col-

lection. Additionally, this study demonstrated that

the satellite data provide good coverage in terms of

monitoring waterbodies that are not overly biased

toward a particular set of communities differentiated
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by the small set of socioeconomic characteristics

examined here. Future work could examine in more

detail how the economic benefits associated with

improved monitoring may vary across communities.

For example, rural communities may benefit rela-

tively more than urban communities since remote

sensing data might be the only information they

have if their community lacks a formal water in situ

monitoring program. On the other hand, more urban,

densely populated areas may require more frequent,

spatially comprehensive data because there are like-

ly to be more intensive interactions between humans

and lakes in these areas. These are important and

relevant questions that will require specific data on

how humans respond to and use monitoring infor-

mation. Only by pursuing these types of studies will

we be able to comprehensively measure and quanti-

fy the value of information derived from remote

sensing programs. These values which remain large-

ly unmeasured, in addition to the values computed

in this study, help to shape priorities and invest-

ments in remote sensing technology and begin to

illuminate the vast economic value that remote sens-

ing technology provides to society. While there may

be clear financial incentives to adopt usage of

satellite-derived data, one must also remember that

these are not the only benefits. As algorithms to

interpret satellite data improve, the representative-

ness, accuracy, and faster data generation periods

should improve scientific understanding and aware-

ness relevant to protecting the environment.
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