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ABSTRACT

We investigate the possibility approximating relativistic effects in hydrodynamical simulations of stellar core collapse and post-bounce evolution
by using a modified gravitational potential in an otherwise standard Newtonian hydrodynamic code. Different modifications of a previously
introduced effective relativistic potential are discussed. Corresponding hydrostatic solutions are compared with solutions of the TOV equa-
tions, and hydrodynamic simulations with two different codes are compared with fully relativistic results. One code is applied for one- and
two-dimensional calculations with a simple equation of state, and employs either the modified effective relativistic potential in a Newtonian
framework or solves the general relativistic field equations under the assumption of the conformal flatness condition (CFC) for the three-metric.
The second code allows for full-scale supernova runs including a microphysical equation of state and neutrino transport based on the solution
of the Boltzmann equation and its moments equations. We present prescriptions for the effective relativistic potential for self-gravitating fluids
to be used in Newtonian codes, which produce excellent agreement with fully relativistic solutions in spherical symmetry, leading to significant
improvements compared to previously published approximations. Moreover, they also approximate qualitatively well relativistic solutions for

models with rotation.
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1. Introduction

It is a well known fact that gravity plays an important role
during all stages of a core collapse supernova. Gravity is the
driving force that at the end of the life of massive stars over-
comes the pressure forces and causes the collapse of the stellar
core. Furthermore, the subsequent supernova explosion results
from the fact that various processes tap the enormous amount
of gravitational binding energy released during the formation of
the proto-neutron star. General relativistic effects are important
for this process and cannot be neglected in quantitative mod-
els because of the increasing compactness of the proto-neutron
star. Therefore, it is important to include a proper treatment of
general relativity or an appropriate approximation in the nu-
merical codes that one uses to study core collapse supernovae.

Recently Liebendorfer et al. (2005) performed a compar-
ison of the results obtained with the supernova simulation
codes VERTEX and AGILE-BOLTZTRAN which both solve the
Boltzmann transport equation for neutrinos. The VERTEX code
(see Rampp & Janka 2002) is based on the Newtonian hy-
drodynamics code PROMETHEUS (Fryxell et al. 1990) and

* Appendices A and B are only available in electronic form at
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utilizes a generalised potential to approximate relativistic grav-
ity. The AGILE-BOLTZTRAN code of the Oak Ridge-Basel
group (Liebendorfer et al. 2001, 2002, 2004, 2005) is a fully
relativistic (1D) hydrodynamics code. The comparison showed
that both codes produce qualitatively very similar results except
for some small (but growing) quantitative differences occurring
in the late post-bounce evolution. Inspired by this comparison
we explored improvements of the effective relativistic potential
used by Rampp & Janka (2002) in order to achieve an even bet-
ter agreement than that reported by Liebendorfer et al. (2005).
To this end we tested different variants of approximations to
relativistic gravity employing two simulation codes.

On the one hand purely hydrodynamic simulations were
performed with the code COCONUT of Dimmelmeier et al.
(2002a, 2005) assuming spherical or axial symmetry. This code
optionally either uses a Newtonian (or alternatively an effec-
tive relativistic) gravitational potential in a Newtonian treat-
ment of the hydrodynamic equations or solves the general rel-
ativistic equations of fluid dynamics and the relativistic field
equations. The latter are formulated under the assumption of
the conformal flatness condition (CFC) for the three-metric,
also known as the Isenberg—Wilson—-Mathews approximation
(Isenberg 1978; Wilson et al. 1996), which is identical to
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solving the exact general relativistic equations in spherical
symmetry. This allows for a direct comparison of different ef-
fective relativistic potentials with a fully relativistic treatment
in both spherically symmetric and axisymmetric simulations
using the same code.

On the other hand, we used the computationally expensive
VERTEX code (Rampp & Janka 2002) for spherically symmet-
ric supernova simulations including neutrino transport and a
microphysical equation of state (EoS). The results of these cal-
culations performed with different effective relativistic poten-
tials are compared with those obtained with the general rela-
tivistic AGILE-BOLTZTRAN code of the Oak Ridge-Basel group
(cf. Liebendorfer et al. 2005).

In this paper we discuss the results of our test calculations
and present improved effective relativistic potentials which are
simple to implement without modifying the Newtonian equa-
tions of hydrodynamics in an existing code, and which approx-
imate the results of general relativistic simulations very well.

The paper is organised as follows: in Sect. 2 we describe
the effective relativistic potentials used in this investigation. In
Sect. 3 we briefly discuss the most important features of the
numerical codes we used for our hydrodynamic simulations. In
Sect. 4 we present the results obtained by applying the effec-
tive relativistic potentials in spherically symmetric simulations
of supernova core collapse and to neutron star models, while
Sect. 5 is devoted to a discussion of the multi-dimensional
simulations of rotational supernova core collapse. Finally, in
Sect. 6 we summarise our findings and draw some conclusions.

Throughout the article, we use geometrised units with ¢ =
G=1.

2. Effective relativistic potential

Approximating the effects of general relativistic gravity in a
Newtonian hydrodynamics code may be attempted by using an
effective relativistic gravitational potential ®.¢ which mimics
the deeper gravitational well of the relativistic case. In the fol-
lowing Sects. 2.1 and 2.2, several of these effective relativistic
potentials will be discussed.

2.1. TOV potential for a self-gravitating fluid

For a self-gravitating fluid it is desirable that an effective rel-
ativistic potential reproduces the solution of hydrostatic equi-
librium according to the Tolman—Oppenheimer—Volkoff (TOV)
equation. With this requirement in mind and comparing the rel-
ativistic equation of motion (cf. van Riper 1979; Baron et al.
1989) with its Newtonian analogon, Rampp & Janka (2002) re-
arranged the relativistic terms into an effective relativistic po-
tential (see Kippenhahn & Weigert 1990, for the hydrostatic,
neutrino-less case).

Thus for spherically symmetric simulations using a
Newtonian hydrodynamics code the idea is to replace the
Newtonian gravitational potential

() = —4n f ar 2P 0
o [r— 7]
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by the TOV potential
d J
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to obtain the effective relativistic potential ®.¢ as
D = Drov. 3)

Here p is the rest-mass density, e = pe is the internal energy
density with € being the specific internal energy, and P is the
gas pressure. The TOV mass is given by

" F
mroy(r) = 4nf dr’ r? (p +e+E+ U?) 4)
0

where p,, E, and F are the neutrino pressure, the neutrino en-
ergy density, and the neutrino flux, respectively (Baron et al.
1989; Rampp & Janka 2002).

The fluid velocity v is identified with the local radial veloc-
ity calculated by the Newtonian code and the metric function I
is given by

2
F= \f1+0 - 2008 ®)

The velocity-dependent terms were added for a closer match
with the general relativistic form of the equation of motion
(van Riper 1979; Baron et al. 1989). In the treatment of neu-
trino transport general relativistic redshift and time dilation
effects are included, but for reasons of consistency with the
Newtonian hydrodynamics part of the code the distinction be-
tween coordinate and proper radius is ignored in the relativistic
transport equations (for details, see Sect. 3.7.2 of Rampp &
Janka 2002). The quality of this approach was ascertained by a
comparison with fully relativistic calculations (Rampp & Janka
2002; Liebendorfer et al. 2005).

In order to calculate the effective relativistic potential for
multi-dimensional flows we substitute the “spherical contribu-
tion” @ (r) to the multi-dimensional Newtonian gravitational
potential

O(r,6, ) = — f dr’ 4o’ dg’ 12 sin ' —2— 6)
1% [r—r'|

by the TOV potential ETOV:

O =D —D + Doy (7

Here 5(1’) and ® 1oy are calculated according to Egs. (1)
and (2), respectively, however with the hydrodynamic quanti-
ties p, e, P, v and the neutrino quantities E, F, p, being replaced
by their corresponding angularly averaged values. Note that v
here refers to the radial component of the velocity, only.

2.2. Modifications of the TOV potential

In a recent comparison Liebendorfer et al. (2005) found that
gravity as described by the TOV potential in Eq. (3) overrates
the relativistic effects, because in combination with Newtonian
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kinematics it tends to overestimate the infall velocities and to
underestimate the flow inertia in the pre-shock region. Thus,
supposedly via the nonlinear dependence of @, on ¢ and P
the compactness of the proto-neutron star is overestimated,
with this tendency increasing at later times after core bounce.
Consequently, the neutrino luminosities and the mean energies
of the emitted neutrinos are larger than in the corresponding
relativistic simulation.

In order to reduce these discrepancies — without sacrific-
ing the simplicity of Newtonian dynamics — we tested several
modifications of the TOV potential, Egs. (2), which all act to
weaken it. In particular, we studied the following variations:

Case A: In the integrand of Eq. (4) a factor I', Eq. (5) is added.
Since I' < 1 this reduces the gravitational TOV mass used
in the potential.

Case B: In Eq. (4) the internal gas energy density and the
neutrino terms are set to zero, e = E = F = 0, which again
decreases the gravitational TOV mass.

Case C: In Eq. (2) the internal gas energy is set to zero, e = 0,
which directly weakens the TOV potential.

Case D: In the equation for the TOV potential, Eq. (2),
mrov 1s replaced by %(mTov + mg). Here a Newtonian
gravitational mass is defined as mg = m; — my, with the rest
mass m; = 4w for dr’ ¥?p and the mass equivalent of the
binding energy my, = 2| ﬂ dr' r?p @|. As mg < mtov, the
strength of the potential is reduced.

Case E: Both in the equation for the TOV potential, Eq. (2),
and the equation for the TOV mass, Eq. (4), we set e = 0.

Case F: In the equation for the TOV potential, Eq. (2), we set
I'=1. As T < 1 otherwise, this weakens the potential.

Case G: In the expression for I, Eq. (5), the velocity is set to
zero, v = 0. Hence, "2 increases in Eq. (2). This modifi-
cation is used to also test a potential which is even stronger
than the unmodified TOV potential.

In addition to these cases with a modified version of the TOV
potential, we use the following notations:

Case N: This denotes the purely Newtonian runs with “regu-
lar” Newtonian potential.

Case R: This is the “reference” case with the TOV potential
as defined by Eq. (2).

Case GR: This case refers to fully relativistic simulations with
either the code COCONUT or the AGILE-BOLTZTRAN neu-
trino radiation-hydrodynamics code of the Oak Ridge-
Basel collaboration.

Note that setting the internal energy density e to zero in Case B
is unambiguous when a simple EoS is used and the particle
rest masses are conserved. In general, however, particles can be
created and destroyed, or bound states can be formed (e.g., in
pair annihilation processes or nuclear reactions, respectively).
Then only the sum of the rest mass energy and internal energy
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per nucleon — both appear in Egs. (2), (4) only combined in
form of the “relativistic energy” per unit of mass, (o +e)/p —is
well defined, but not the individual parts. Therefore there exists
ambiguity with respect to which contribution to the energy is
set to zero. In order to assess a possible sensitivity of the core
collapse results to this ambiguity, we tried two different vari-
ants of Case B in our VERTEX simulations with microphysical
EoS. On the one hand we used e = E = F = 0 in Eq. (4),
with ¢ being the internal energy density plus an energy nor-
malization given by the EoS of Lattimer & Swesty (1991), e =
(p+e)—p (my—A)/my (Where m, = 1.66x 107>* g is the atomic
mass unit, m, the neutron rest mass, and A = 8.8 MeV). On the
other hand we tested ¢* = E = F = 0 with ¢* being e without
this energy normalization, i.e. ¢* = (0 + ¢) — p m,/my. Nucleons
are then assumed to contribute to the TOV mass, Eq. (4), with
the vacuum rest mass of the neutron, increasing the mass in-
tegral and reducing I', Eq. (5), relative to the first case, thus
making the effective relativistic potential a bit stronger again.
In order to compensate for this we also set p, = 0 in the TOV
potential, Eq. (2). Both variants are found to yield extremely
similar results and we therefore will discuss only one of them
(the first variant) as Case B for the VERTEX simulations.

Ideally, a Newtonian simulation with an effective relativis-
tic potential not only yields a solution of the TOV structure
equations for an equilibrium state (as does Case R), but in ad-
dition closely reproduces the results from a relativistic simu-
lation (Case GR) during a dynamic evolution. Applying the
modifications of the TOV potential listed above, we find that
Cases A to D yield improved results as compared to Case R,
while Cases E to G either weaken the potential too much or are
very close to Case R. These findings are detailed in Sects. 4
and 5.

2.3. Theoretical motivation

There are (at least) two basic requirements which appear de-
sirable for an effective relativistic potential in a Newtonian
simulation. Firstly, the far field limit of the fully relativistic
treatment should be approximated reasonably well in order to
follow the long-term accretion of the neutron star and the as-
sociated growth of its baryonic mass. Secondly, the hydrostatic
structure of the neutron star should well fit the solution of the
TOV equations.

The second point will be discussed in detail in Sect. 4.1.
A closer consideration of the first point suggests the modified
effective relativistic potential of Case A as promising, and in
fact it turns out to be the most preferable choice concerning
consistency and quality of the results. The other cases listed
in Sect. 2.2 are mostly ad hoc modifications of the original ef-
fective relativistic potential of Eqgs. (2)—(4) (Case R) with the
aim to reduce its strength, which was found to overestimate the
effects of gravity compared to fully relativistic simulations in
previous work (Liebendorfer et al. 2005). These cases are also
discussed here for reasons of comparison and completeness.

In Eq. (4) the hydrodynamic quantities (like rest-mass
density p plus extra terms) are integrated over volume. In
the Newtonian treatment there is no distinction between
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coordinate volume and local proper volume. Performing the in-
tegral of Eq. (4) therefore leads to a mass — used as the mass
which produces the gravitational potential in Egs. (2) and (3) —
which is larger than the baryonic mass, m, = 4r f dr’ r?p. In
particular, it is also larger than the gravitational mass in a con-
sistent relativistic treatment, which is the volume integral of
the total energy density and includes the negative gravitational
potential energy of the compact object. The latter reduces the
gravitational mass relative to the baryonic mass by the gravita-
tional binding energy of the star (see, e.g., Shapiro & Teukolsky
1983, p. 125 for a corresponding discussion). Therefore, the
effective relativistic potential introduced by Rampp & Janka
(2002) (our Case R, Egs. (2)—(4)) cannot properly reproduce
the far field limit of the relativistic case and thus overestimates
the effects of gravity. This particularly applies to the infall ve-
locities of the stellar gas ahead of the supernova shock, as
shown in Liebendorfer et al. (2005).

Introducing an extra factor I' in the integral of Eq. (4) for
the TOV mass is motivated by the following considerations
(where for reasons of simplicity contributions from neutrinos,
though important, are neglected and spherical symmetry is as-
sumed): In the relativistic treatment the total (gravitating) mass
of the star is given as

mg = 47rf dr' r*(p + e), ®)
0

where dV’ = 4ndr’ r? is the coordinate volume element,
whereas the baryonic mass is

my = 471'[ dr' 1 'p, 9)
0

with dV’ = 4ndr'r’I~! being the local proper volume ele-
ment. The factor I'"! > 1 in the integrand of my, thus ensures
that my, > myg. The integral for m, can also be written as

mg=47rf dr’r’zg(p+e)=f dV'T(p +e). (10)
0 0

Since in Newtonian hydrodynamics no distinction is made be-
tween coordinate and proper volumes, one may identify dV’ =
dV’, consistent with the rest of our Newtonian code. This leaves
the additional factor I in the integrand of Eq. (10), leading to a
redefined TOV mass used for computing the effective relativis-
tic potential in Case A,

irov(r) =4nf dr’r’zl“(p+e+E+g)- (11)
0

The fact that a factor I'"! in the volume integral establishes the
relation between gravitating mass, Eq. (8), and baryonic mass,
Eq. (9), in the relativistic case suggests that the factor I' < 1 in
Eq. (11) might lead to a suitable reduction of the overestimated
effective potential that results when the original TOV mass of
Eq. (4) is used in Egs. (2) and (5). Indeed, a comparison of the
integral of Eq. (11) for large r with the rest-mass energy of a
neutron star reduced by its binding energy at time ¢ (computed
from the emitted neutrino energy, fot d¢ L,(¢") with L, being the
neutrino luminosity) reveals very good agreement.
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The arguments given above only provide a heuristic justi-
fication for the manipulation of the TOV potential proposed in
Case A. A deeper theoretical understanding and more rigorous
analytical analysis of its consequences and implications is cer-
tainly desirable, but beyond the scope of the present paper. We
plan to return to this question in future work.

3. Numerical methods

In the following we briefly introduce the two numerical codes
used for the simulations presented in this work. The codes are
based on state-of-the-art numerical methods for hydrodynam-
ics and neutrino transport coupled to gravity, and were used to
simulate stellar core collapse and supernova explosions.

3.1. Hydrodynamic code without transport

The purely hydrodynamic simulations are performed with the
code COCONUT developed by Dimmelmeier et al. (2002a,b)
with a metric solver based on spectral methods as described
in Dimmelmeier et al. (2005). The code optionally uses ei-
ther a Newtonian gravitational potential (or an effective rela-
tivistic potential, see Sect. 2), or the general relativistic field
equations for a curved spacetime in the ADM 3 + 1-split un-
der the assumption of the conformal flatness condition (CFC)
for the three-metric. The (Newtonian or general relativistic) hy-
drodynamic equations are consistently formulated in conserva-
tion form, and are solved by high-resolution shock-capturing
schemes based upon state-of-the-art Riemann solvers and third-
order cell-reconstruction procedures. Neutrino transport is not
included in the code. A simple hybrid ideal gas EoS is used
that consists of a polytropic contribution describing the degen-
erate electron pressure and (at supranuclear densities) the pres-
sure due to repulsive nuclear forces, and a thermal contribution
which accounts for the heating of the matter by shocks:

P=P,+ Py, (12)
where
Pp = pr, Py = pen(ym — 1), (13)

and €, = € — €. The polytropic specific internal energy ¢, is
determined from P, by the ideal gas relation in combination
with continuity conditions in the case of a discontinuous y. In
that case, the polytropic constant K also has to be adjusted (for
more details, see Dimmelmeier et al. 2002a; Janka et al. 1993).

The COCONUT code utilizes Eulerian spherical coordi-
nates {r, 0, ¢}, and thus axially or spherically symmetric con-
figurations can be easily simulated. For the core collapse sim-
ulations discussed in Sects. 4.1 and 5, the finite difference grid
consists of 200 logarithmically spaced radial grid points with a
central resolution of 500 m. A small part of the grid covers an
artificial low-density atmosphere extending beyond the core’s
outer boundary. The spectral grid of the metric solver is split
into 6 radial domains with 33 collocation points each. In or-
der to be able to accurately follow the dynamics, the domain
boundaries adaptively contract towards the centre during the
collapse, as described in Dimmelmeier et al. (2005). For the
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migration test (Sect. 4.3) the finite difference grid consists of
250 logarithmically spaced radial grid points, of which 60 and
190 cover the neutron star and the atmosphere, respectively.
For the two-dimensional simulations of rotational core collapse
(Sect. 5) the finite difference and spectral grids are extended by
30 and 17 equidistant angular grid points, respectively.

Even when using spectral methods the calculation of the
spacetime metric is computationally expensive. Hence, in
the relativistic spherical (rotational) core collapse simulations
the metric is updated only once every 10/1/50 (100/10/50) hy-
drodynamic time steps before/during/after core bounce, and
extrapolated in between. In the migration test the update is
performed every 10th step during the entire evolution. The nu-
merical adequacy of this procedure is tested and discussed in
detail in Dimmelmeier et al. (2002a).

The quality of the CFC approximation has been tested com-
prehensively in the context of supernova core collapse and for
neutron star models (Cook et al. 1996; Dimmelmeier et al.
2002a; Shibata & Sekiguchi 2004; Dimmelmeier et al. 2005;
Cerda-Duran et al. 2005). For single stellar configurations the
CFC approximation is very accurate as long as neither the com-
pactness of the star is extremely relativistic nor its rotation is
too fast and differential. Both criteria are well fulfilled during
supernova core collapse. Concerning core collapse simulations
of rapidly and strongly differentially rotating configurations at
very high densities, we recently found that the CFC approx-
imation yields excellent agreement with formulations solving
the exact spacetime metric even in this extreme regime (Ott
et al. 2005).

As the three-metric of any spherically symmetric spacetime
can be written in a conformally flat way, the spherical CFC
simulations presented in Sects. 4.1 and 4.3 involve no approx-
imation, i.e., the exact Einstein equations are solved in these
cases.

3.2. Hydrodynamic code with neutrino transport

The VERTEX neutrino-hydrodynamics code solves the conser-
vation equations of Newtonian hydrodynamics in their Eulerian
and conservative form using the PPM-based PROMETHEUS
code (Fryxell et al. 1990). The neutrino transport is treated
by determining iteratively a solution of the coupled set of mo-
ments equations and Boltzmann equation, achieving closure by
a variable Eddington factor method (Rampp & Janka 2002).
See the latter reference also for details about the coupling be-
tween the hydrodynamics and neutrino transport parts of the
VERTEX code. The models presented in this paper are com-
puted with the equation of state of Lattimer & Swesty (1991),
in agreement with the choice of input physics in the work
of Liebendorfer et al. (2005), where results obtained with the
VERTEX code were compared with those from the Newtonian
and fully relativistic calculations with the AGILE-BOLTZTRAN
code of the Oak Ridge-Basel collaboration.

In order to compare the results presented here with those
of the calculations of Liebendorfer et al. (2005) we used the
same set of neutrino interaction rates as picked for Model G15
in Liebendorfer et al. (2005), and exactly the same parameters
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for the numerical setup (e.g., the grids for hydrodynamics and
neutrino transport). Information about this setup can be found
in Liebendorfer et al. (2005). The initial model for our calcula-
tions is the 15 M, progenitor model “s15s7b2” from Woosley
& Weaver (1995).

Since solving the neutrino transport problem is computa-
tionally quite expensive we performed calculations only for
Cases A, B, and F (as defined in Sect. 2.2) with the VERTEX
code. The quality of these results is then compared to the fully
relativistic treatment of the AGILE-BOLTZTRAN code.

3.3. Hydrodynamics and implementation
of the effective relativistic potential

The implementation of an effective relativistic gravitational
potential or of an effective relativistic gravitational force as
its derivative into existing Newtonian hydrodynamics codes
is straightforward and does not differ from the use of the
Newtonian potential or force.

The equations solved by the two codes used for our sim-
ulations are described in much detail in previous publications
(see, e.g., Rampp & Janka 2002; Miiller & Steinmetz 1995;
Dimmelmeier et al. 2002a, 2005, and references therein). The
implementation of the source terms of the gravitational poten-
tial as discussed in Miiller & Steinmetz (1995) is also applied
for the handling of the effective relativistic potentials investi-
gated in this work. The only specific feature here is the mutual
dependence of I' and mroy, which is either accounted for by a
rapidly converging iteration or by taking I from the old time
step in the update of myoy, when the changes during the time
steps are sufficiently small.

Since the actual form of the gravitational source term is
unspecified in the conservation laws of fluid dynamics, the
Newtonian potential can be replaced by the effective relativis-
tic potentials investigated in the current work in a technically
straightforward way. Solving an equation for the internal plus
kinetic energy (as in our codes) requires a treatment of the grav-
ity source term in this equation that is consistent with its imple-
mentation in the equation of momentum.

Of course, the effective potential must be investigated
concerning its consequences for the conservation of momen-
tum and energy. Since a potential constructed according to
Egs. (2), (4) does not satisfy the Poisson equation, the momen-
tum equation cannot be cast into a conservation form (cf. Shu
1992, Part I, Chapter 4). As a consequence, the total linear mo-
mentum is strictly conserved only when certain assumptions
about the symmetry of the matter distribution are made, for ex-
ample in the case of spherical symmetry or axially symmetric
configurations with equatorial symmetry, or when only one oc-
tant is modeled in the three-dimensional case. In axisymmetric
simulations the conservation of specific angular momentum is
fulfilled as well, when using the effective relativistic potential.
In general, however, a sufficient quality of momentum (and an-
gular momentum) conservation has to be verified by inspecting
the numerical results.

The long-range nature of gravity prohibits to have an equa-
tion in pure conservation form for the total energy, i.e., for the
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sum of internal, kinetic, and gravitational energy (Shu 1992,
Part I, Chapter 4). In contrast to the Newtonian case, however,
our effective relativistic potential does also not allow one to de-
rive a conservation equation for the total energy integrated over
all space. Monitoring global energy conservation in a simula-
tion with effective relativistic potential therefore requires inte-
gration of the gravitational source terms over all cells in time. If
the local effects of relativistic gravity are convincingly approx-
imated — as measured by good agreement with static solutions
of the TOV equation and with fully relativistic, dynamical sim-
ulations — there is confidence that the integrated action of the
employed gravitational source term approximates well also the
global conversion between total kinetic, internal, and gravita-
tional energies found in a relativistic simulation.

The recipes for approximating general relativity should be
applicable equally well in hydrodynamic codes different from
our (Eulerian) PPM schemes, provided the effects of gravity are
consistently treated in the momentum and energy equations.
The proposed eftective potentials are intended to yield a good
representation of the effects of relativistic gravity in particular
in the context of stellar core collapse and neutron star forma-
tion. For our approximation to work well, the fluid flow should
be subrelativistic. The numerical tests described in the follow-
ing sections show that velocities up to about 20% of the speed
of light are unproblematic.

4. Simulations in spherical symmetry

4.1. Supernova core collapse with simplified equation
of state

We first test the quality of the TOV potential and its various
modifications as an effective relativistic potential in the moder-
ately relativistic regime by evolving models of supernova core
collapse with the simple EoS described in Sect. 3.1. Using the
COCONUT code we are able to perform a direct comparison
with a Newtonian version of the code (employing either the
Newtonian, TOV, or modified TOV potential) against the rela-
tivistic version in a curved spacetime.

The initial models are polytropes, which mimic an iron
core supported by electron degeneracy pressure, with a cen-
tral density p.; = 10'° g cm™ and EoS parameters y; = 4/3
and K = 4.897 x 10" (in cgs units). To initiate the collapse,
the initial adiabatic index is reduced to y; < v;. At densi-
ties p > puue = 2.0 X 10" g cm™ the adiabatic index is in-
creased to y, * 2.5 to approximate the stiffening of the EoS.
This leads to a rebound of the core (“core bounce”). The inner
part of the core comes to a halt, while a prompt hydrodynamic
shock starts to propagate outward. Since the matter model of
the COCONUT code does not account for neutrino cooling,
the compact collapse remnant (corresponding to the hot proto-
neutron star) cannot cool and shrink, but for some models only
slightly grows in mass due to accretion. These stages of the
evolution can be seen in the top panel of Fig. 1, where the time
evolution of the central density p. is plotted for a typical core
collapse model.

As it is known from numerical models with sophisticated
microphysics that the prompt hydrodynamic shock turns into
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Fig. 1. Time evolution of the central density p. (fop panel) and radial
profiles of the velocity v (bottom panel) for the accretion shock model
AS in relativistic gravity (Case GR). The velocity profiles are snap-
shots long before bounce, during bounce shortly before and after max-
imum density, and long after bounce, respectively. At¢ = 140.0 ms the
prompt shock has turned into an accretion shock.

an accretion shock shortly after core bounce, we choose the
EoS parameters y; = 1.325, y, = 3.0, and yy, = 1.2 in our ac-
cretion shock model AS (Fig. 1) to reproduce such a behaviour.
The conversion of the prompt shock into an accretion shock at
late times is reflected by the radial velocity profiles plotted in
the bottom panel of Fig. 1.

When recalculating Model AS with regular Newtonian
gravity (Case N), the central density remains below the one for
relativistic gravity (Case GR) during the entire evolution (see
top panel of Fig. 2). This behaviour was already observed in
the rotational core collapse simulations of Dimmelmeier et al.
(2002a). Replacing the regular Newtonian potential (Case N)
by the TOV potential (Case R) yields the opposite effect,
i.e., the central density is too high throughout the evolution.
However, when using modifications A or B of the TOV poten-
tial, the behaviour of p. agrees very well with that observed
in the relativistic simulation (Case GR), indicating that the dy-
namics of the core collapse with this effective relativistic po-
tential is similar to that of the relativistic case.

When applying the same methods to a model with a prompt
shock which continues to propagate, we observe the same
qualitative behaviour (see bottom panel of Fig. 2). For this
Model PS the EoS parameters are set to y; = 1.300, v, = 2.0,
and yy = 1.5, respectively. Both during core bounce and at
late times (see magnifying inset) the Newtonian simulations
with modifications A and B of the TOV potential also yield
results which agree noticeably better with the relativistic one
(Case GR) than with the TOV potential (Case R), and obviously
also much better than with the regular potential (Case N).
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Fig. 2. Time evolution of the central density p. for the accretion shock
model AS (fop panel) and prompt shock model PS (bottom panel).
The regular Newtonian simulation (Case N; dashed line) yields a
smaller p. compared to the relativistic one (Case GR; solid line). If
a TOV potential is used (Case R; dashed-dotted line), p. is too high,
while modifications A (dotted line) and B (long-dashed line) of the
TOV potential give results close to the relativistic one.

The time plotted in Fig. 2 is ¢ — #,, where #, is the time of
bounce for each simulation. We point out that the time coor-
dinate 7 in the relativistic spacetime is the time of an observer
being at rest at infinity, and thus we can directly relate it to
the time used in the Newtonian simulation (with regular or
effective relativistic potential). Moreover, at core bounce the
differences between the relativistic coordinate time ¢ and the
relativistic proper time #,. = f a. dr of the fluid element at
the center, where @ is the ADM lapse function, are negligi-
ble for the gravitational fields encountered in our core collapse
models. In addition, shortly after core bounce the compact col-
lapse remnant reaches an approximate hydrostatic equilibrium
with nearly constant p.. Therefore, for the models considered
here the time evolution of the central density in proper time #, .
would look similar to the one in coordinate time .

The discussion up to now has only been concerned with the
local quantity p.. While this is a good measure for the global
collapse dynamics, a direct comparison of, e.g., radial profiles
at certain evolution times is more powerful.

In Fig. 3 radial profiles of the density p for the core collapse
model AS are compared at “late” times (¢ = 150 ms, corre-
sponding to about 60 ms after core bounce). As this model ex-
hibits no post-bounce mass accretion, shortly after core bounce
the compact remnant has acquired a new equilibrium state
with essentially vanishing radial velocity. Its density profile can
thus be very well described by that of a TOV solution con-
structed with equal central density p. and an “effective” one-
parameter EoS, P = P(p), extracted from the two-parameter
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Fig. 3. Comparison of radial profiles of the density p from the hydro-
dynamic evolution of Model AS at late times (solid line) and from a
solution of the TOV structure equations with identical central density
(dashed line). In both the relativistic simulation (Case GR; top panel)
and the Newtonian simulation with TOV potential (Case R; bottom
panel) the two curves are almost indistinguishable, while the regular
Newtonian simulation (Case N; centre panel) yields a large mismatch.
For comparison, the relativistic profile (solid line in the top panel) is
also plotted in dashed-dotted line style in the lower two panels.

EoS, P = P(p, €), defined by Egs. (12), (13). Details of this
procedure are given in Appendix A. The top panel of Fig. 3
shows that this behaviour is indeed confirmed by our simula-
tions. The density profile obtained from a dynamic simulation
with relativistic gravity (Case GR) and the one obtained from
solving the TOV structure equations agree extremely well both
at supranuclear and subnuclear densities. Only ahead of the
outward propagating shock (off scale in Fig. 3) where matter
is still falling inward, i.e., where the radial velocity is not neg-
ligible, a disagreement can be observed.

When using regular Newtonian gravity (Case N; see centre
panel of Fig. 3) the situation is different in two aspects. First,
due to the shallower Newtonian gravitational potential, the den-
sity is significantly smaller in the central parts of the compact
remnant compared to relativistic gravity (Case GR). However,
beyond r ~ 10 km the density in the Newtonian model exceeds
that of the relativistic simulation, which is the density crossing
effect observed and discussed in detail by Dimmelmeier et al.
(2002b). The weaker regular Newtonian potential thus yields
a remnant which is less compact and dense in the centre, but
relatively denser in the outer parts.
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Fig. 4. Same as Fig. 3, but for radial profiles of the specific internal
energy €. The step-like shape of the profile arises from contributions
of the thermal energy ¢, in various strengths.

Second, when comparing the density profile resulting from
the hydrodynamic evolution with that obtained by solving the
TOV structure equations (for the same p.), a clear disagree-
ment can be noticed. As the core reaches a final compact-
ness 2Mcore/Reore ~ 0.2 as measured by the ratio of core
mass to core radius, a hydrodynamic simulation with regular
Newtonian potential cannot be expected to yield an equilibrium
result which is identical to a solution of the (relativistic) TOV
structure equations.

If on the other hand the Newtonian hydrodynamic simula-
tion is performed with the TOV potential (Case R; see bottom
panel of Fig. 3), the final equilibrium state is (as in Case GR)
a solution of the TOV structure equations. However, after core
bounce the density profile of Case R lies well above that ob-
tained in the relativistic simulation (Case GR). Thus Case GR
and Case R both exhibit post-bounce density stratifications
which are consistent with a relativistic equilibrium state but
otherwise differ noticeably from each other.

Radial profiles of the specific internal energy (see Fig. 4)
exhibit a similar behaviour as the density profiles presented in
Fig. 3. As expected, both the relativistic simulation (Case GR)
and the Newtonian simulation with TOV potential (Case R)
yield final equilibrium profiles which closely coincide with the
corresponding solution of the TOV structure equations (see top
and bottom panel, respectively). Again, analogous to the den-
sity, in Case R the internal energy in the compact remnant is
significantly higher as compared to Case GR. In the Newtonian
simulation with regular potential (Case N; centre panel) the
profile deviates clearly from both the corresponding solution of
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the TOV equation with equal central value and the profile com-
puted with relativistic gravity (Case GR), and does not even
show the distinctive steps of that profile.

The above findings imply that the final equilibrium state of
a Newtonian core collapse simulation performed with the TOV
potential (Case R) is consistent with a TOV solution of identi-
cal central density and specific internal energy. However, if rel-
ativistic effects are important, the density stratification and en-
ergy distribution (which in turn determines the “effective” EoS
as described in Appendix A) will differ from that of a consis-
tently relativistic simulation (Case GR). Presumably the com-
bination of the relativistic TOV potential (which depends non-
linearly on the pressure and the internal energy density) with
Newtonian kinematics in Case R is responsible for this differ-
ence in the stratification of density and specific internal energy
in the compact remnant compared to Case GR (as seen in the
bottom panels of Figs. 3 and 4). Currently we cannot provide
a more detailed analysis for understanding the mechanism by
which these discrepancies are caused. We plan to conduct fur-
ther research on this issue.

As discussed in Sect. 2.2, a modification of a Newtonian
simulation incorporating the effects of relativistic gravity must
not only yield equilibrium states which (approximately) repro-
duce a solution of the TOV equations, particularly for compact
matter configurations. More importantly, the density and en-
ergy profiles must also agree as closely as possible with the
profiles obtained from the evolution with a relativistic code
(which implies the previous requirement). Both these require-
ments are fulfilled for Newtonian simulations utilizing modifi-
cation A and B of the TOV potential, as shown for profiles of
the density and specific internal energy in the final equilibrium
state of the core collapse model AS in Figs. 5 and 6, respec-
tively. In these cases the profiles agree well with the relativistic
result (Case GR) not only near the centre (as already observed
in the time evolution of p.; see top panel of Fig. 2) but also
throughout the entire core, with the agreement being much bet-
ter compared to the TOV potential (Case R). Accordingly, the
solution of the TOV structure equations for identical central
values yields similar profiles as well.

We conclude that the modifications A and B of the TOV
potential combined with Newtonian kinematics provide a very
good approximation of the results obtained with relativistic
gravity (Case GR) in the strongly dynamic phases during core
bounce as well as at post-bounce times when the compact rem-
nant acquires equilibrium. The same findings hold for the mod-
ifications C and D of the TOV potential, although we do not
present results for these cases here. On the other hand, com-
pared to Cases A to D, the modifications E to G produce less
accurate results. Thus, we consider them inappropriate for an
effective relativistic potential.

In passing we note that gauge dependences may play an
important role when non-invariant quantities (like, e.g., density
profiles) from simulations with a relativistic code are compared
against results from either a relativistic code using a different
formulation of the spacetime metric or from a Newtonian code.
For instance, the radial coordinate r used in the profile plots in
Figs. 3 to 6 is the isotropic coordinate radius of the ADM-CFC
metric used in the relativistic version of the COCONUT code
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Fig. 6. Same as Fig. 5, but for radial profiles of the specific internal
energy €. The step-like shape of the profile arises from contributions
of the thermal energy ¢, in various strengths.

(for details, see Dimmelmeier et al. 2002a). In contrast to this,
the TOV Egs. (A.1), (A.2) use the standard Schwarzschild-like
coordinate radius, which is equivalent to the circumferential
radius. Thus, a coordinate transformation from the standard
Schwarzschild-like radial coordinate to the isotropic radial co-
ordinate (as specified in Appendix B) is applied to all profiles of
quantities obtained with the TOV solution or Newtonian sim-
ulations in those figures. Otherwise, the difference in the two
radial coordinates of up to ~20% would lead to a noticeable
distortion of the radial profiles. We also point out that we ne-
glect any influence of the difference between Newtonian and
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Fig.7. Time evolution of the central density p. for Model AB-GR
(bold solid line), V-A (solid line), V-B (dashed-dotted line),
V-F (dashed line), and V-R (dotted line). The left panel shows the col-
lapse phase (note that here all models with the VERTEX code lie on top
of each other), while the right panel shows the post-bounce evolution.
Note the different axis scales in both panels.

relativistic coordinate time (or proper time) when comparing
the profiles at the same coordinate times, as the compact rem-
nants are in equilibrium at “late” times (about 60 ms after core
bounce).

4.2. Supernova core collapse with microphysical
equation of state and neutrino transport

Next we explore the moderately relativistic regime of stellar
core collapse with the microphysical EoS of Lattimer & Swesty
(1991) and neutrino transport. We simulated the collapse and
the post-bounce evolution of the progenitor model s15s7b2
with the VERTEX code as detailed in Sect. 3.2. The calcula-
tions were performed using the TOV potential given in Eq. (2)
(Model V-R, which is identical with the VERTEX calculation
of Model G15 in Liebendorfer et al. 2005), and we also tested
the modifications A, B, and F of the TOV potential (Models
V-A, V-B, and V-F, respectively). For comparison, we refer in
the following discussion also to the calculation of Liebendorfer
et al. (2005) with the fully relativistic AGILE-BOLTZTRAN code
(Case GR, Model AB-GR).

Figure 7 shows the central density as a function of time
for the collapse (left panel) and for the subsequent post-bounce
phase (right panel). The “central” density is the density value at
the centre of the innermost grid zone of the AB-GR simulation.
Because of a different numerical resolution it was necessary to
interpolate the VERTEX results to this radial position. During
the collapse only minor differences between the relativistic cal-
culation (bold solid line) and the calculations with the VERTEX
code are visible. Note that the trajectories from the VERTEX
code, with the modifications A, B, and F of the TOV potential
as well as with the TOV potential (case R), lie on top of each
other.

We can thus infer that the differences between the modifi-
cations A, B, and F of the TOV potential are unimportant dur-
ing the collapse phase. Furthermore, we can conclude from the
good agreement of the general relativistic calculation and the
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Fig. 8. Time evolution of the shock position r¢ for simulations with the
VERTEX code using various modifications of the TOV potential com-
pared to the general relativistic result from the AGILE-BOLTZTRAN
code (Model AB-GR, thick solid line).

VERTEX calculations that the TOV potential works well dur-
ing the collapse phase. However, after core bounce this poten-
tial overestimates the compactness of the forming neutron star
(just as in the purely hydrodynamic simulations in Sect. 4.1),
and therefore the density trajectories of Model AB-GR and
Model V-R diverge (see Fig. 7). At 250 ms after the shock for-
mation the central density in Model V-R is about 20% higher
than the one in the relativistic calculation. At this time the mod-
ifications A and B of the TOV potential give a central density
only about 2% higher than Model AB-GR, and the absolute dif-
ference stays practically constant during the entire post-bounce
evolution. This implies that both modifications yield very good
quantitative agreement with the general relativistic treatment.
In contrast, in Model V-F the central density after bounce is
lower than the relativistic result of Model AB-GR. This indi-
cates a strong underestimation of the depth of the gravitational
potential in Case F, where I' = 1 in the integrand of Eq. (2).

Since the central densities suggest that differences between
a fully relativistic calculation and Newtonian simulations with
effective relativistic potential become significant only after
shock formation (see also Liebendorfer et al. 2005), we discuss
the implications of our potential modifications in the following
only during the post-bounce evolution.

Figure 8 shows the shock positions as functions of time.
Both Case A (thin solid line) and Case B (dashed-dotted line)
reveal the desirable trend of a closer match with the general rel-
ativistic calculation (thick solid line) than seen for Model V-R,
which gives a shock radius that is too small, and Model V-F,
where the shock is too far out at all times. In particular,
Model V-A reveals excellent agreement with Model AB-GR.
The only major difference is visible between 170 ms and about
230 ms after shock formation when the shock transiently ex-
pands in the VERTEX calculation. This behaviour is generic for
the VERTEX results and independent of the choice of the grav-
itational potential. In the AGILE-BOLTZTRAN run the transient
shock expansion is much less pronounced and also a bit de-
layed relative to the VERTEX feature (it is visible as a decelera-
tion of the shock retraction between about 200 ms and 250 ms).
This difference, however, is not caused by general relativistic
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effects but is a consequence of a different numerical tracking
of the time evolution of interfaces between composition layers
in the collapsing stellar core (for more details about the numer-
ics and a discussion of the involved physics, see Liebendorfer
et al. 2005). It is therefore irrelevant for our present compari-
son of approximations to general relativity. A good choice for
the effective relativistic potential (like Case A) should just en-
sure that the corresponding shock trajectory converges again
with the relativistic result (Case GR) after the transient period
of shock expansion.

The time evolution of the central density or the shock po-
sition, however, is not the only relevant criterion for assessing
the quality of approximations to general relativity, as already
discussed in Sect. 4.1. A good approximation does not only re-
quire good agreement for particular time-dependent quantities
(like, e.g., the central density), but also requires that the radial
structure of the models reproduces the relativistic case as well
as possible at any time.

In the left panels of Fig. 9 we show such profiles of the den-
sity and velocity (top panel) and of the entropy and electron
fraction Y, i.e., the electron-to-baryon ratio (bottom panel),
for Models AB-GR and V-A at a time of 250 ms after bounce,
when the discrepancy between relativistic and approximative
treatment was found to be largest in Liebendorfer et al. (2005).
Fig. 9 can be directly compared with Fig. 12 in the latter ref-
erence. Obviously Model V-A fits the density profile of the
general relativistic calculation (Model AB-GR) extremely well
at all radii. Furthermore, both the velocity ahead of the shock
front and behind it are in extremely good agreement between
the two models (the differences at the shock jump have prob-
ably a numerical reason associated with the different handling
of shock discontinuities in both codes). It is an important re-
sult that with this modification A of the TOV potential one is
able to approximate the kinematics of the relativistic run with
astonishingly good quality in a Newtonian calculation (at least
in supernova simulations when the velocities do not become
highly relativistic). In contrast, in VERTEX runs with the origi-
nal TOV potential (Case R) the pre-shock velocities were found
to be significantly too large (Liebendorfer et al. 2005), which is
due to the overestimated strength of gravity in the far field limit
as compared to the relativistic calculations (see the discussion
in Sect. 2.3).

Also the entropy and Y. profiles (bottom left panel of Fig. 9)
reveal a similarly excellent agreement between Models V-A
and AB-GR. The minor entropy differences ahead of the shock
are associated with a slightly different description of the mi-
crophysics (nuclear burning and equation of state) in the infall
region (for details we refer to Liebendorfer et al. 2005).

Not only the radial structure of the forming neutron star in
all relevant quantities is well reproduced, but also the neutrino
transport results of the relativistic calculation and of the ap-
proximative description of Case A are in nearly perfect agree-
ment. Corresponding radial profiles of the luminosities and
root mean square energies — both as defined in Sect. 4 of
Liebendorfer et al. (2005) — for electron neutrinos, v, electron
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Fig. 9. Left: radial profiles of the velocity v (dashed lines) and density p (solid lines) for Model V-A (thin) and the relativistic Model AB-GR
(bold) at a time of 250 ms after shock formation (top panel), as well as radial profiles of the entropy s (dashed lines) and of the electron
fraction Y. (solid lines) for the same models and the same time (bottom panel). As in Liebendorfer et al. (2005), r is the circumferential radius
in case of the relativistic results. Note the different vertical axes on both sides of the two panels. Right: radial profiles of the luminosities L
of electron neutrinos (solid lines), electron anti-neutrinos (dotted lines), and heavy-lepton neutrinos (dashed lines) for Models V-A (thin) and
AB-GR (bold) at a time of 250 ms after shock formation (fop panel), as well as radial profiles of the root mean square energies (€, )mms for the
number densities of v, V., and heavy-lepton neutrinos for Models V-A and AB-GR (bottom panel). The labeling is the same as in the panel

above, and all neutrino quantities are given for a comoving observer.

antineutrinos, ¥., and heavy-lepton neutrinos!, v,, are dis-
played in the right panels of Fig. 9. The results for Models V-A
and AB-GR for all neutrino flavours share their characteristic
features, and in particular agree in the radial positions where
the different luminosities start to rise. While the v, luminosi-
ties are nearly indistinguishable below the shock, the jump at
the shock is slightly higher for the VERTEX run and reflects the
larger effects due to observer motion, e.g., Doppler blueshift
and angular aberration, for an observer comoving with the
rapidly infalling stellar fluid ahead of the shock. The offset be-
tween results of Models V-A and AB-GR decreases at larger
radii where the infall velocities are lower. This discrepancy was
not discovered by Liebendorfer et al. (2005), because there the
agreement of the radial structure for both investigated models
was generally found to be poorer than in the present work.
General relativistic effects are unlikely as an explanation,
because they are very small around the shock (see Fig. 13 in

! Since the transport of muon and tau neutrinos and antineutrinos
differs only in minor details we treat all heavy-lepton neutrinos iden-
tically in the VERTEX simulations.

Liebendorfer et al. 2005). A detailed analysis reveals that both
codes produce internally consistent results, conserving to good
precision the luminosity through the shock for an observer at
rest and showing the expected and physically correct behav-
ior in the limit of large radii. Most of the observed difference
(which has no mentionable significance for supernova mod-
eling) could be traced back to the fact that VERTEX achieves
only order (v/c) accuracy, whereas AGILE-BOLTZTRAN pro-
duces the full relativistic result including higher orders in (v/c).
Corresponding effects become noticeable when v/c 2 0.1. The
mean neutrino energies are hardly affected by this difference
(Fig. 9, bottom right panel). In case of the v. and V. lumi-
nosities the VERTEX run yields roughly 10% lower values out-
side of the corresponding neutrino spheres (i.e., between about
50 km and 90 km), but values much closer to those from the
AGILE-BOLTZTRAN calculation ahead of the shock. Since the
neutrinospheric emission of v, and V. is strongly affected by
the mass accretion rate of the nascent neutron star and the cor-
responding accretion luminosity (which both seem to have the
tendency of being slightly higher in Model AB-GR), we refrain
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Fig. 10. Luminosities as functions of post-bounce time for different
cases computed with the VERTEX code and for Model AB-GR. The
top panel shows the results for heavy-lepton neutrinos, the centre
panel those for the electron antineutrinos, and the bottom panel the
results for electron neutrinos. The panels on the left magnify the early
post-bounce phase. All luminosities are given for an observer comov-
ing with the stellar fluid at a radius of 500 km. Note the different scales
of the vertical axes.

from ascribing the different magnitude of the v, and ¥, lumi-
nosities only to the treatment of relativistic effects. Although
such a connection cannot be excluded, the luminosity differ-
ences might (partly) also be a consequence of the different ac-
cretion histories in Models AB-GR and V-A, which manifest
themselves in the shock trajectories (Fig. 8) and are attributable
to the different handling of the microphysics and computational
grid in the infall layer (see above and Liebendorfer et al. 2005).
This interpretation seems to be supported by the time evolu-
tion of the neutrino luminosities plotted in Fig. 10. The accre-
tion bump in the v, and ¥, luminosities which follows after the
prompt v, burst is stretched in time in case of Model AB-GR,
indicating the delay of mass infall at higher rates relative to
all VERTEX simulations. Note that the neutrino emission reacts
with a time lag of some 10 ms (corresponding to the cooling
timescale of the accretion layer on the neutron star) to varia-
tions of the mass accretion rate.

Moreover, Fig. 10 shows that our variations of the effective
relativistic potential in the VERTEX models have little influence
on the prompt burst of v, at shock breakout. But subsequently
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Fig.11. Radial profiles of the velocity v (dashed lines) and den-
sity p (solid lines) for Models V-A (bold lines), V-B (thin), and V-R
(medium) at a time of 250 ms after shock formation (top panel).
Radial profiles of the entropy s (dashed lines) and of the electron neu-
trino luminosity L,, (solid lines) for the same models and the same
time (bottom panel). The luminosity is given for an observer comov-
ing with the stellar fluid.

the overestimated compactness of the proto-neutron star in
Model V-R, which causes the faster contraction of the stalled
shock after maximal expansion (Fig. 8), also leads to higher
neutrino luminosities during the accretion phase. Consistent
with the shock trajectories, Model V-A yields the closest match
with the general relativistic run of Model AB-GR also for the
neutrino luminosities. It is very satisfactory that the results
(shock radius rg as well as the neutrino luminosities L) from
both simulations reveal convergence at later times when the pe-
riod of massive post-bounce accretion comes to an end.

In Fig. 11 we present the radial structure at 250 ms af-
ter bounce for the VERTEX simulations with the modifica-
tions A and B of the TOV potential, compared to the results
with the TOV potential (Case R) which was already discussed
in Liebendorfer et al. (2005). Note that because of the excel-
lent agreement seen in Fig. 9, Model V-A (Case A) can also
be considered as a representation of the fully relativistic run
of Model AB-GR. Models V-A and V-B show results of sim-
ilar quality. The little offset of the shock position (which is
causally linked to the differences in all profiles) might sug-
gest that Model V-B is slightly inferior to Model V-A in
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approximating relativity. This conclusion could also be drawn
from the post-bounce luminosities in Fig. 10. However, cau-
tion seems to be advisable with such an interpretation, being
aware of the uncertainties in the accretion phase and infall
layer discussed above, and in view of the fact that the cen-
tral densities (Fig. 7) and radial density profiles (Fig. 11) agree
well. Moreover, the quality of the agreement at “very late”
times cannot be judged, because no information is available
for the behaviour of Model AB-GR after 250 ms post bounce,
a time when the settling of the shock radius and luminosities
to their post-accretion levels seems not yet over in this model
(Figs. 8, 10). The TOV potential of Case R clearly produces too
large infall velocities ahead of the shock (and therefore does
not agree well with the kinematics of the relativistic calcula-
tion), overestimates the compactness of the forming neutron
star, and thus produces too high neutrino luminosities during
the simulated period of evolution (for a detailed discussion, see
Liebendorfer et al. 2005). Cases A and B clearly perform bet-
ter and must be considered as significant improvements for use
in Newtonian simulations with an effective relativistic potential
as approximations to fully relativistic calculations.

4.3. Neutron stars in equilibrium — Migration test

The supernova core collapse simulations presented in Sect. 4.1
and 4.2 are limited to a maximum core compactness
2More/Reore ~ 0.2. In order to extend the assessment of the
quality of a Newtonian simulation with an effective relativistic
potential to a more strongly relativistic regime, we construct
spherical equilibrium models of neutron stars using a simple
polytropic EoS, P = Kp?, with y = 2 and K = 1.455 x 10°
(in cgs units). The TOV equations are solved on a very fine grid
with 10° equidistantly spaced radial grid points using a second-
order accurate Runge—Kutta integration scheme. By varying
the value of the central density from p. = 1.0 x 10'* g cm™
to 100.0 x 10'* g cm™3, we cover the entire range from weak to
strong relativistic gravity. The density variation corresponds to
compactness parameters ranging from 2M,/R ~ 0.02 to 0.5,
where M, is the total gravitational mass of the neutron star and
R its radius. We again point out that in spherical symmetry the
assumption of CFC constitutes no approximation.

The mass-density curve of the corresponding TOV neutron
star models (Fig. 12, top panel) exhibits the well-known form
consisting of a stable branch at low densities and an unstable
branch at high densities, where the gravitational mass M, in-
creases or decreases with p., respectively. The two branches
meet at the maximum mass. Configurations on the unstable
branch are unstable to small perturbations and either collapse to
a black hole or migrate to a configuration on the stable branch
with the same gravitational mass but a lower central density
Pet < Pei (as indicated by the arrow for an exemplary configu-
ration in the top panel of Fig. 12).

While the gravitational mass M, and the rest mass M, are
limited in relativistic gravity (Case GR), My =~ M; =~ 1.6 Mo,
regular Newtonian gravity (Case N) allows for solutions with
arbitrarily high rest mass M;, which are all stable against
(small) perturbations. If an (unphysical) equivalent to the
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Fig. 12. Mass-density diagram for spherical equilibrium neutron star
models (fop panel) and time evolution of the central density for the
migration test from the unstable to the stable branch (bottom panel).
In both graphs the behaviour of the Newtonian models computed with
the modification A (dotted line) and B (long-dashed line) of the TOV
potential is close to that in the relativistic case (Case GR; solid line).
The Newtonian equivalent of the gravitational mass M, (dashed line)
as well as the rest mass M, (dashed-dotted line) calculated using a
regular Newtonian potential (Case N) deviate strongly from the rela-
tivistic solution (fop panel). While p.. oscillates around its initial value
pei for Case N (dashed line), in Case R (dashed-dotted line) the neu-
tron star disperses to a state with p. < p.¢ (bottom panel).

relativistic gravitational mass is introduced in Newtonian grav-
ity, My = M; — M, where M, = |Ey| is the mass associated
with the binding energy of the self-gravitating object, we find
negative values at large densities, where the binding energy be-
comes so large that My, > M,.

On the other hand, when using the modifications A and B
of the TOV potential in the TOV equation for the neutron star
model sequence, the corresponding curves for the TOV gravi-
tational mass M, in Fig. 12 agree very well with the relativis-
tic curve (Case GR) even in the high density regime, and they
show the same qualitative behaviour with an increasing and
a decreasing branch. The respective mass maxima are located
close to the relativistic one for both modifications of the TOV
potential.
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Note that for constructing equilibrium configurations us-
ing the TOV potential (Case R) is identical to solving the fully
relativistic TOV equations (Case GR), and thus the results are
identical. Therefore, this test is useless for predicting the qual-
ity of the TOV potential in the context of a dynamic evolution.
This is different when a neutron star model from the unsta-
ble branch is allowed to evolve in time using a dynamic code.
Then the (small but nonzero) finite difference discretisation er-
rors of the numerical scheme act as perturbations of the un-
stable equilibrium and excite small oscillations. Depending on
the numerical algorithms used in the code and the resolution
of the grid, the neutron star either contracts to higher densities
(and ultimately to a black hole for a simple polytropic EoS)
or approaches a new equilibrium state on the stable branch af-
ter a strongly dynamical, nonlinear evolution phase. This neu-
tron star migration scenario is a standard test of the relativistic
regime with strongly dynamical evolution for numerical hydro-
dynamic codes with relativistic gravity (see, e.g., Font et al.
2002; Baiotti et al. 2005).

The time evolution of the central density is depicted in
the bottom panel of Fig. 12 for such a migration to the sta-
ble branch, where the central density p. drops from p.; =
493 x 10" gecm™ to per = 8.8 x 10'* g cm™3. Shown is the
evolution for a relativistic simulation (Case GR) as well as for
Newtonian simulations utilizing a regular Newtonian potential
(Case N), the TOV potential (Case R), and its modifications A
and B. For these simulations we again use the COCONUT
code, whose implementation of the hybrid EoS, Egs. (12), (13)
allows one to suppress the contribution of the thermal pres-
sure Py, in which case the hybrid EoS reduces to a polytropic
one.

As expected and as observed in simulations with similar
relativistic codes, in relativistic gravity (Case GR) the neutron
star initially expands rapidly and its central density decreases
strongly. It undershoots the stable equilibrium at p.; and expe-
riences several ring-down oscillations of decreasing amplitude
until p. approaches p. s at late times. The modifications A and B
of the TOV potential both have initial (final) states on the un-
stable (stable) branch of the mass-density curve which are very
close to the relativistic one (Case GR). Therefore the evolution
of p. (starting again with the same central density p.;) is similar
to the relativistic case, as shown in Fig. 12. The disagreement
in oscillation amplitudes and periods can be attributed to the
differences in the Newtonian and relativistic kinematics. When
comparing the results of migration tests using various relativis-
tic hydrodynamic codes (Stergioulas et al. 2003), we observe
that even small variations in the numerical approach, e.g., a
different coordinate choice or grid setup, or differences in the
treatment of the artificial atmosphere, can have a strong impact
on the detailed evolution of p. from the initial to the final equi-
librium state. Consequently, we consider the results obtained
with the modifications A or B of the TOV potential in an other-
wise Newtonian formulation to be a very good approximation
of the relativistic one (Case GR).

Using regular Newtonian gravity (Case N), however, yields
a totally different behaviour, because there exist no unstable
configurations in that case. Thus, discretisation errors cannot
trigger a migration, and the star simply oscillates around its
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initial equilibrium state with p.(f) ~ p.i. On the other hand,
using the TOV potential (Case R) leads to a rapid dispersion
(without ring-down oscillations) of the neutron star with a final
central density p. < p.r, which is in strong qualitative dis-
agreement with the behaviour in relativistic gravity (Case GR).
We thus conclude that in the demanding test case of a migrat-
ing spherical neutron star model, both the regular Newtonian
potential (Case N) and the TOV potential (Case R) fail, while
the modifications A and B of the TOV potential reproduce
the relativistic result very well, both qualitatively and also
quantitatively.

5. Multi-dimensional simulations with rotation

For the multi-dimensional calculations we only use the
COCONUT code, since parameter studies with MUDBATH (the
two-dimensional version of VERTEX) are computationally too
expensive when neutrino transport is included. Moreover, cur-
rently there exists no other fully relativistic two-dimensional
code including neutrino transport to compare our results with.
The following discussion hence focuses on purely hydrody-
namic simulations using the simple matter model described in
Sect. 3.1.

Motivated by the promising results in spherical symmetry,
we now apply the modified effective relativistic potentials ac-
cording to Eq. (7) to simulations of rotational core collapse in
axisymmetry. The initial models of the pre-collapse core are
described by the same EoS parameters as the ones in Sect. 4.1
with pe; = 10 g cm~3, but now rotate at various rotation
rates with different degrees of differential rotation. To construct
these rotating equilibrium configurations, we use Hachisu’s
self-consistent field method (see Komatsu et al. 1989). The ini-
tial pressure reduction to trigger the collapse and the stiffening
of the EoS follows the prescription given in Sect. 4.1.

For these multi-dimensional tests we choose three rota-
tional core collapse models as representative cases. Their evo-
lution is influenced by the effects of rotation at various de-
grees (for details about the specifications of these models, see
Dimmelmeier et al. 2002a). The core of Model A1B3Gl1 is an
almost uniform rotator with a moderate rotation rate and col-
lapses nearly spherically, forming a compact remnant imme-
diately after core bounce. Model A4B1G2 is a very differen-
tially rotating model, which develops considerable deviations
from spherical symmetry during its evolution, but otherwise
shares the qualitative bounce behavior of the previous model
A1B3Gl. Finally, in the multiple bounce model A2B4G1 the
increase of the centrifugal forces during the contraction phase
causes a series of subsequent multiple bounces at subnuclear
densities. The time evolution of the central density for these
three models computed relativistically (Case GR) is shown
with solid lines in the top, centre, and bottom panels of Fig. 13,
respectively.

In a Newtonian simulation with regular Newtonian gravity
(Case N) all three models exhibit several consecutive bounces
(at subnuclear densities for Models A1B3G1 and A2B4Gl,
and just above nuclear matter densities for Model A4B1G2),
with the central density being considerably lower during the
entire evolution (Fig. 13). Such a qualitative change of the col-
lapse dynamics between a Newtonian and a general relativistic
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Fig. 13. Time evolution of the central density p. for the rotating core
collapse models A1B3G1 (top panel), A4B1G2 (centre panel), and
A2BA4G1 (bottom panel), respectively. With increasing influence of
rotation on the collapse dynamics, the results of the Newtonian sim-
ulations with the modifications A (dotted line) and B (long-dashed
line) of the TOV potential and eventually also with the TOV poten-
tial (Case R; dashed-dotted line) move away from the relativistic re-
sult (Case GR; solid line). The central density obtained with regular
Newtonian gravity (Case N; dashed line) is lowest for all three models.

simulation of the same model was also observed in the compre-
hensive parameter study of rotational core collapse performed
by Dimmelmeier et al. (2002b).

When applying the TOV potential (Case R) or its modifi-
cations A and B to Model A1B3Gl (top panel of Fig. 13) the
outcome is similar to the situation in spherical symmetry shown
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in Fig. 2. Case R yields a central density noticeably higher than
the one in the relativistic simulation (Case GR). For Case A
the result agrees very well with the relativistic one, while for
Case B the central density is too small.

As the influence of rotation increases, the ordering of the
curves for Cases R, A, and B (from higher to lower p.) remains
unaltered. However, all curves are shifted to lower densities
(Fig. 13). For Model A4B1G2 the result from the Newtonian
simulation with the TOV potential (Case R) matches the rel-
ativistic result (Case GR) best, which is a coincidence asso-
ciated with the particular rotational state of this model. For
Model A2B4G1, where the influence of rotation is stronger,
the results obtained for Cases A, B, and R differ considerably
from the relativistic results.

A behaviour consistent with that of these three representa-
tive models is observed for other rotational core collapse mod-
els as well. Thus, in rotational core collapse, even a Newtonian
simulation with the TOV potential (Case R) yields lower cen-
tral densities than the corresponding relativistic simulation
(Case GR) beyond a certain rotation rate (which depends both
on the initial model and on the EoS parameters).

We therefore conclude that for rotational core collapse the
use of neither the modifications A and B of the TOV potential
nor the (stronger) TOV potential itself (Case R) can closely re-
produce the collapse behaviour of a relativistic code for all de-
grees of rotation. Hence, in a Newtonian code either the effec-
tive relativistic potential has to include the effect of rotation, or
the collapse kinematics (and thus the hydrodynamic equations)
have to be modified. However, in the latter case the advantage
of a Newtonian approach over a fully relativistic formulation in
terms of simplicity and computational speed may be lost.

On the other hand, we find that the qualitative dynami-
cal behaviour of relativistic rotational core collapse models
(Case GR), particularly their collapse type (regular collapse,
multiple bounce collapse, or rapid collapse as introduced by
Zwerger & Miiller 1997) is correctly captured in a Newtonian
simulation for a wide range of parameter space, if the TOV po-
tential (Case R) or its modified versions (Cases A to D) are
used. Moreover, the corresponding results agree much better
with the relativistic result than that obtained from a Newtonian
simulation with regular Newtonian potential (Case N). Hence,
the usage of the effective relativistic potentials is an improve-
ment of Newtonian simulations also in the case of rotational
core collapse.

6. Summary and conclusions

We investigated different modifications of the TOV potential
used as effective relativistic potentials in Newtonian hydro-
dynamics with the aim to test their quality of approximat-
ing relativistic effects in stellar core collapse and supernova
simulations. This work was motivated by a recent compar-
ison of the neutrino radiation-hydrodynamics codes AGILE-
BOLTZTRAN and VERTEX used by the Oak Ridge-Basel collab-
oration and by the Garching group, respectively (Liebendorfer
et al. 2005). While the former code is a fully relativistic
implementation of neutrino transport and hydrodynamics in
spherical symmetry, the latter code employs an approximative
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relativistic description by treating the self-gravity of the stel-
lar fluid with an effective relativistic potential tailored from a
comparison of the Newtonian and relativistic equations of mo-
tion. Otherwise VERTEX solves the Newtonian equations of hy-
drodynamics, ignoring the effects of relativistic kinematics and
space-time curvature (Rampp & Janka 2002). The comparison
by Liebendorfer et al. (2005) shows very good agreement of
the results from both codes for the phases of stellar core col-
lapse, bounce and prompt shock propagation. However, it also
revealed a moderate but gradually increasing overestimation of
the compactness of the nascent neutron star during the subse-
quent accretion phase, accompanied by an overestimation of
the luminosities and mean energies of the emitted neutrinos.

These systematic differences suggested that an improve-
ment might be possible by changing the effective relativistic
potential such that the strength of the gravitational field is re-
duced relative to the TOV potential. To this end we consid-
ered a variety of modifications (Cases A-F; see Sect. 2.2) of
the TOV potential (which defines our reference Case R), and
compared corresponding hydrodynamic as well as hydrostatic
solutions with regular Newtonian (Case N) and fully relativis-
tic calculations (Case GR). While some modifications did not
provide any significant advantage over the TOV potential, sev-
eral options for the potential were identified which allow for a
much better reproduction of relativistic results with Newtonian
hydrodynamics. In particular, reducing the TOV mass, Eq. (4),
that appears in the expression of the TOV potential, turned out
to be very successful in this respect.

For example, in Case A we introduced an additional met-
ric factor ' < 1, Eq. (5), in the integrand of the TOV mass,
and in Case B we ignored the internal energy (and all terms
depending on neutrinos) in the TOV mass. In both cases not
only characteristic model parameters like the central density
and shock radius were in excellent agreement with relativis-
tic simulations during all stages of the evolution including the
long-term accretion phase of the collapsing core after bounce.
Also the radial profiles of the hydrostatic central core as ob-
tained in the hydrodynamic simulations were found to be very
good approximations of the profiles from the fully relativistic
treatment. Consequently, they are nearly consistent with solu-
tions of the TOV equations for equal central density. Migration
tests of extremely relativistic, ultradense, hydrostatic config-
urations from the unstable to the stable branch of the mass-
density relation confirmed the good qualitative and quantitative
performance of the approximation even for such a demanding
test problem with a strongly dynamic transition from the initial
to the final state. This suggests that the use of a modified TOV
potential in an otherwise Newtonian hydrodynamics code also
ensures a good reproduction of relativistic kinematics.

In addition to these purely hydrodynamic simulations with
the COCONUT code, we performed runs including neutrino
transport and compared them to relativistic calculations with
the AGILE-BOLTZTRAN code of the Oak Ridge-Basel collab-
oration (cf. the simulations for Model G15 in Liebendorfer
et al. 2005). Also in this application, the modifications A and B
of the TOV potential produced a major improvement relative
to the original TOV potential (Case R), for which results with
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the VERTEX code were already presented in Liebendorfer et al.
(2005). Good agreement between the relativistic and approxi-
mative treatments was seen in the transport quantities as well.
The VERTEX code performs well despite the fact that the ap-
proximative description takes into account only relativistic red-
shift in the transport but — for reasons of consistency with the
Newtonian hydrodynamics code — ignores the difference be-
tween proper radius and coordinate radius. Remaining (minor)
quantitative differences (below about 10% for neutrino data
and even smaller for hydrodynamic quantities) are probably
only partly associated with relativistic effects. We suspect that
a significant contribution to these differences originates from
small (but unavoidable because linked to the specifics of the
employed numerical methods) discrepancies in the infall layer
ahead of the shock as described by the VERTEX and AGILE-
BOLTZTRAN codes.

The results discussed in this paper therefore demonstrate
that a very good, simple, and computationally efficient approx-
imation to a relativistic treatment of stellar core collapse and
neutron star formation in spherical symmetry can be achieved
by modeling the self-gravity of the stellar plasma with an ef-
fective relativistic potential based on the TOV potential as sug-
gested in this work. Two-dimensional axisymmetric collapse
calculations (using a simple equation of state and ignoring neu-
trino transport) for rotating stellar cores with a wide range of
conditions showed that even in this case the TOV potential and
its modifications reproduce the characteristics of the relativistic
collapse dynamics quantitatively well for not too rapid rotation.
There is still good qualitative agreement when the rotation be-
comes fast, in contrast to Newtonian simulations with regular
Newtonian potential (Case N), which mostly fail even quali-
tatively. Multi-dimensional simulations with an effective rela-
tivistic potential (which in general does not satisfy the Poisson
equation), however, fulfill strict momentum conservation only
for special cases of symmetry (for details, see Sect. 3.3).

Although our Cases A and B yield results of similar quality
for all the test problems considered here and neither is pre-
ferred when a simple equation of state is used, the situation is
more in favour of Case A when microphysics is taken into ac-
count in the equation of state. When particles can annihilate or
nuclear interactions take place, rest mass energy is converted
into internal energy and vice versa. In such a situation baryon
number and lepton number are conserved, but not the total rest
mass of the particles, and only the total (“relativistic”’) energy
density, p + e, is a well defined quantity, but not the individual
energies. Case B therefore becomes ambiguous (see Sect. 2.2)
while Case A does not suffer from such problems. We there-
fore are tempted to recommend using Case A as an effective
relativistic potential in Newtonian hydrodynamics codes. The
extra factor I' < 1 in the integrand of the TOV mass, Eq. (4),
reduces the mass integral below the mass equivalent of the to-
tal (rest mass plus internal) energy. Its introduction may be
justified by heuristic arguments and consistency considerations
when the relativistic concept of the gravitating mass is applied
in a Newtonian description of the dynamics, which does not
distinguish between proper volumes and coordinate volumes
(see Sect. 2.3).
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Appendix A: Construction of an “effective”
one-parameter equation of state

The relativistic TOV solution for a spherical, self-gravitating
matter distribution in equilibrium can be found by solving the
following two coupled ordinary differential equations for the
pressure P and the mass m:

-1
b _ PO amip)(1-2) (A1)
or r2 r

66—'1’ = 4np(l + €)r’. (A.2)

with appropriate boundary conditions at the inner and outer
boundary at r = 0 and r = R, respectively. Note that for a TOV
solution the mass m(R) is equivalent to the total gravitational
mass M, of the matter configuration.

The above system is closed by choosing a two-parameter
EoS P(p, €) and assuming a distribution profile for the specific
internal energy €, which effectively transforms the EoS into a
one-parameter relation, P = P(p) [or alternatively p = p(P)],
from which the specific internal energy can be determined as
€ = €(P, p). A typical example for this is to demand a polytropic
relation for P and to specify the internal energy € by the ideal

gas EoS:
PA\/Y
F=ke p=(x) -
p (A.3)
P =pe(y - 1), €= .
ey PO -1

For a two-parameter EoS of the form of Egs. (12), (13), where
a priori no profile for the specific internal energy is known,
the following procedure can be applied to construct an “effec-
tive” one-parameter EoS. For matter in equilibrium, e.g., at late
times long after the core bounce phase, both the radial profiles
of the pressure P(r) and the density p(r), as well as the spe-
cific internal energy €(r) can be assumed to be stationary. If the
pressure profile is monotonic, then for each value of P there
exists a unique location r. By inverting the pressure profile,
P(r) — r(P), we can thus relate a specific value p(r) and €(r)
to each value of P. This way a one-parameter EoS p = p(r(P))
[and € = e(r(P))] can be constructed.

The excellent matching of the density profiles in the central
part of a collapsed core in equilibrium obtained from a dynamic
evolution with profiles from a TOV solution using equal cen-
tral density and the EoS transformed as described above (see
Figs. 3 to 5) demonstrates the applicability of this method.

Appendix B: Radial coordinate transformation

To compare a solution of the TOV Egs. (A.1), (A.2), which are
formulated in standard Schwarzschild-like coordinates, to re-
sults from our evolution code using relativistic gravity, which
is based on radial isotropic coordinates, we must perform a co-
ordinate transformation of the radial coordinate.

In standard Schwarzschild-like coordinates, the line ele-
ment ds? reads
ds? = —Adt? + BdrZ + % dQ?

st>

(B.1)

while the line element dsizS , in radial isotropic coordinates is
given by
ds?

o (B.2)

180 180 180

= —a?dil, + ¢* (drd, + 1, AL, ).

In vacuum outside the matter distribution, the metric compo-
nents become

2M, M\
A=1- , B=(1- =A (B.3)
Tst Tst
and
M,
1- zrifo M,
a = T ¢ =1+ . (B4)
1+ 2rvg 2riso
respectively.

As with both metrics one can describe a spherical matter
distribution in equilibrium, equating the line elements, ds? =
dsl.zso, yields conditions for each of the coordinates and metric
components in such a case.

Setting the two coordinate times equal, we obtain a condi-
tion for A and a:

Adf
dtst =

a?de?

} — VA=
dtiso’

(B.5)

A similar condition can be obtained for the angle element:

2 2 _ 4.2 2
st dQst =¢ risoniso’ P = ¢2r_ (B 6)
dQy = dQs, R '

From the radial elements, we get a relation for the radial differ-
entials:

\/Edrst = ¢2 driso- B.7)

Knowing the solution in the isotropic radial coordinate, it is
straightforward to derive a simple expression for ry(ris) from
Eq. (B.6).

On the other hand, obtaining the inverse relation riso(s) is
more complicated. For this, we insert Eq. (B.6) into Eq. (B.7)
and arrive at
VB

dri%o Tiso

0 - 17 = B39yB
dr, ¢2 T

st st

(B.8)

This differential equation can be solved by numerical integra-
tion using, e.g., a Runge-Kutta integration scheme with the fol-
lowing boundary conditions:

rost = 0, (B.9)

R_{l
2

An alternative method is to rewrite Eq. (B.8) in terms of In s,

_ VB (B.11)

s
drg Tst

Nyiso =

Riso =

(B.10)

M 2M
_g + 1 - g .
Rst Rsl

dIn Fiso

which can be directly integrated numerically.



