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Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2

virus. Various studies exist about the molecular mechanisms of viral infection. However, such

information is spread across many publications and it is very time-consuming to integrate,

and exploit. We develop CoVex, an interactive online platform for SARS-CoV-2 host inter-

actome exploration and drug (target) identification. CoVex integrates virus-human protein

interactions, human protein-protein interactions, and drug-target interactions. It allows visual

exploration of the virus-host interactome and implements systems medicine algorithms for

network-based prediction of drug candidates. Thus, CoVex is a resource to understand

molecular mechanisms of pathogenicity and to prioritize candidate therapeutics. We inves-

tigate recent hypotheses on a systems biology level to explore mechanistic virus life cycle

drivers, and to extract drug repurposing candidates. CoVex renders COVID-19 drug research

systems-medicine-ready by giving the scientific community direct access to network medi-

cine algorithms. It is available at https://exbio.wzw.tum.de/covex/.
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C
oronavirus Disease-2019 (COVID-19) is an infectious
disease caused by SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2). It was first identified in Wuhan,

China and has spread causing an ongoing pandemic1 with
globally 2.4 million confirmed cases and 167 thousand deaths as
of April 20, 2020.

Our insights into SARS-CoV-2 infection mechanisms are
limited and clinical therapy has largely focused on treating critical
symptoms. Therefore, the current pandemic requires fast and
freely accessible knowledge to accelerate the development of
vaccines, treatments, and diagnostic tests. Research data have
been collected in several online platforms, such as the COVID-19
Open Research Dataset and the Dimensions COVID-19
collection2,3. In addition, existing databases that collect virus
information have responded by integrating new SARS-CoV-2
research4,5.

As vaccine and drug development may take years, drug
repurposing is a potent approach that offers new therapeutic
options through the identification of alternative uses of already
approved drugs6. These drugs have previously undergone clinical
and safety trials and, hence, accelerate drug development time-
lines from a decade to a few years or months. Due to the COVID-
19 pandemic, numerous research groups around the world have
been joining their efforts to identify drugs that can be repurposed
to effectively treat COVID-19. Numerous drugs are already part
of clinical trials, including Remdesivir (a less effective ebola drug),
Chloroquine, Hydroxychloroquine (antimalarial drugs), Tocili-
zumab (rheumatoid arthritis drug), Favipiravir (influenza drug),
and Kaletra (a combination of Lopinavir and Ritonavir for
treating human immunodeficiency virus HIV-1)7.

Computational systems and network medicine approaches
offer a methodological toolbox required to understand molecular
virus–host–drug mechanisms and to predict novel drug targets to
attack them8,9. Few studies on these mechanisms in SARS-CoV-2
exist. Gordon et al.10 applied affinity purification-mass spectro-
metry (AP-MS) to reconstruct the SARS-CoV-2-human
protein–protein interaction (PPI) network and subsequently
employed a chemoinformatics approach to identify potential
drugs for repurposing. The data generated from that study is a
major advancement in understanding SARS-CoV-2 infection.
However, to identify drug candidates, the study mainly con-
sidered the direct interactors of the human proteins as putative
targets and thus did not take into account the network context of
the human interactome. However, viral interactions with human
proteins have cascading effects in the human interactome, where
key proteins necessary for the viral replication cycle are only
indirectly affected. Therefore, downstream host proteins may be
additional promising targets for therapeutic intervention, but
require thorough data integration and mining to be identified (see
Supplementary Methods for details). Figure 1 illustrates the
concept of systems medicine-based drug repurposing specifically
for SARS-CoV-2.

Gysi et al.11 integrated the experimentally validated SARS-
CoV-2 virus–host interactions with the human interactome and
investigated comorbidity and differences of virus–host interac-
tions across 56 tissues. Furthermore, network medicine analysis
was applied to compile a list of drug repurposing candidates that
target also indirectly affected proteins in the human interactome.
However, the combined number of virus–host, host–host, and
drug–target interactions goes into the millions such that purely
algorithmic approaches to discovering new drug targets and drug
repurposing candidates produces a large number of results, many
of which lack mechanistic specificity and, hence, are not useful.
Thus, to make their results accessible, Gysi et al.11 worked closely
together with clinical experts to narrow down the number of
predicted repurposable drugs.

In order to allow for the interactive integration of expert
knowledge about virus replication, immune-related biological
processes, or drug mechanisms, we developed the interactive
systems and network medicine platform CoVex (CoronaVirus
Explorer). It integrates experimental virus–human interaction
data for SARS-CoV-2 and SARS-CoV-1 with the human inter-
actome as well as drug information to predict novel drug (target)
candidates, and it offers biomedical and clinical researchers’
interactive and user-friendly access to network medicine algo-
rithms for advanced data mining and hypothesis testing. CoVex
follows a human-in-the-loop paradigm and provides an intuitive
visualization of virus–host interactions, drug targets, and drugs to
enable researchers to examine molecular mechanisms that can be
targeted using repurposed drugs. CoVex offers two main actions
for which several network medicine algorithms are available:
Given a list of user-selected human host proteins, viral proteins,
or drugs (referred to as seeds), users can (1) search the human
interactome for viable drug targets and (2) identify repurposable
drug candidates. In a typical workflow, these two actions are
combined, that is, starting from a selection of virus or virus-
interacting proteins, users mine the interactome for suitable drug
targets for which, in turn, suitable drugs are identified. Addi-
tionally, users can leverage expert knowledge by uploading a list
of proteins or drugs of interest as seeds to guide the analysis. Such
seeds could, for instance, be a list of differentially expressed genes
(DEGs), a list of proteins related to a molecular mechanism of
interest, or a set of drugs known to be effective.

The remainder of this paper is structured as follows: In the
“Methods” section, we first describe the datasets and integration
strategy used in CoVex. Next, we introduce the rationales of the
systems and network medicine algorithms implemented in
CoVex, and briefly describe the overall architecture of the plat-
form. In the “Results” section, we show several application
examples to illustrate the flexibility and typical use cases of
CoVex. Finally, we will discuss opportunities and limitations in
using CoVex for COVID-19 research.

CoVex opens up the systems medicine toolbox for the entire
infectious disease research community by providing an easy-to-
use web tool enriched with data mining algorithms for drug
repurposing. This allows specialists from different fields to bring
in expert knowledge to identify the most promising drug targets
and drug repurposing candidates for developing effective thera-
pies. We would like to stress that the CoVex platform can
and will be adopted and extended to allow exploring other
viral–host–drug interactomes, for example, with MERS (Middle
East respiratory syndrome), Zika, dengue, and influenza viruses,
thereby increasing preparedness for similar future events.

Results
The CoVex platform. The main result is the CoVex platform
itself, which renders drug repurposing research systems-
medicine-ready. In the following, we first describe how the
platform’s user interface (Fig. 2) provides the full feature spec-
trum of CoVex to clinicians and scientists. Afterwards, we
demonstrate the use of CoVex in four different application sce-
narios starting with four hypotheses and ending with different
drug repurposing candidates, as well as a short discussion on how
to prioritize them (Fig. 3).

Figure 2 shows the CoVex web interface. To find potential
drugs, the “Quick Start” analysis will produce a multi-Steiner tree,
which considers all viral proteins as seeds and adds a small
number of host proteins to connect them. Subsequently, drugs
directly targeting these proteins are selected via closeness
centrality. After the computation has finished, a click on the
corresponding task opens the analysis results, consisting of a table
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view of drugs and proteins, a visualization of the protein–protein
and drug–protein interactions, and a list of parameters used for
the analysis. In the “Simple Analysis” panel, users can select seed
proteins manually and search for drugs targeting them. In the
“Advanced Analysis” panel, users can choose from a list of
network medicine algorithms (see “Methods” and Supplementary
Methods for details) to discover drug targets or drug repurposing
candidates. Users can either select proteins from the view, upload
a custom list of proteins or drugbank ids, or select proteins
expressed in a given tissue. An enrichment analysis of the
identified drug target proteins may be performed with g:
Profiler12.

Application scenarios. The utility of CoVex and its integrated
systems medicine approaches is outlined in the following four
scenarios. More details on each can be found in the Supplemen-
tary Notes.

Scenario a: Starting from a selection of viral proteins, we use
the PPI network to identify the biological mechanism or pathway
utilized by the virus. As an example, we consider the viral

proteins E, M, and Spike, which constitute the external structure
of the virus and thus mediate entry into the host cells during the
infection process13,14. We select the interactors of these viral
proteins reported for SARS-CoV-2 and use the multi-Steiner tree
algorithm to uncover the biological pathway involved. The
resulting network (Fig. 4) yields 26 new potential drug targets,
including the bradykinin receptor B1 (BDKRB1). Subsequently,
we use closeness centrality to find drugs affecting this pathway.
Notably, we identify six relevant drugs that target BDKRB1:
Ramipril, Captopril, Perindopril, and Enalaprilat (approved),
which belong to the angiotensin-converting enzyme (ACE)
inhibitor class15; Icatibant, an antagonist of the bradykinin
receptor B216; and bradykinin, a non-approved drug that is
degraded by the ACE17. Furthermore, to understand the
relationship between BDKRB1 and two proteins known to
participate in the entry of the virus (angiotensin-converting
enzyme 2 (ACE2) and transmembrane protease serine 2)18, we
use the “custom proteins” option available in CoVex. We found
that kininogen 1 and angiotensin proteins connect BDKRB1 with
ACE2. These four proteins are functionally related through the

1. Binding &
entry

3. Replication &
translation

2. RNA release

5. Release

4. Assembly

Host proteins

Viral proteins

Virus–host protein
interactions

Host protein
interactions

Drug–protein
interactions

Host-targeting drugs

Virus-targeting drugs

Fig. 1 The SARS-CoV-2 life cycle and the CoVex systems medicine approach of drug repurposing. Most antiviral drugs (gray drugs) target the virus

proteins or their direct host interactor proteins to inhibit different stages of the viral life cycle. Our rationale, however, is that viral interactions with human

host proteins have a cascading effect to hijack and control key proteins necessary for the virus’ life cycle. We aim to identify repurposable drug candidates

(green drugs) targeting these key host modulators to interfere with virus replication and disease progression following infection. Besides an increased

antiviral drug repertoire, targeting host proteins would make it more difficult for the virus (population) to develop resistance mutations.
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renin–angiotensin system, which is targeted by ACE inhibitors
(www.wikipathways.org/instance/WP554). In summary, CoVex
identifies the protein BDKRB1, which appears to play a role in
SARS-CoV-2 host cell entry and can be targeted by several ACE
inhibitors widely used in clinical trials to treat COVID-19. It
should be noted that the ACE2 protein is not present in the set of
seeds used to start the analysis. Nevertheless, CoVex is capable of
identifying the pathway and new protein targets functionally
related to ACE2 (Fig. 4).

Scenario b: Starting from both viral proteins and a list of
proteins of interest, we can use CoVex to identify a connecting
pathway or biological mechanisms that can be targeted by drugs.
In this scenario, we are specifically interested in viral proteins that
suppress host immunity and the corresponding host immune
response pathways. First, we select the viral proteins ORF7a and
ORF3a, which are potentially involved in innate immune
response and apoptosis as discussed by Gordon et al.10. Next,
we compile a list of proteins of interest based on the DEGs from
the study by Blanco-Melo et al.19 lung epithelial cells were
infected with the SARS-CoV-2 virus, leading to altered expression
of immunity-related genes to combat the viral infection. We
consider DEGs known to be associated with the host pathway
involving infection with the herpes simplex virus, another viral
pathogen. These genes include IFIH1, OAS1, STAT1, DDX58,
OAS2, OAS3, IRF7, EIF2AK2, IFIT1, and IRF9. The selected viral
proteins and DEGs (converted to Uniprot ids) were used as seeds
for the multi-Steiner tree algorithm to extract a potential
immune-related mechanism. As expected, the resulting

subnetwork reveals that the viral proteins are close to the DEGs
in the host PPI network. Closeness centrality analysis assigned a
high rank to Tofacitinib and Ruxolitinib, which are currently
being assessed in clinical trials. Tofacitinib and Ruxolitinib exert
immunomodulatory effects as Janus kinase inhibitors20,21. Thus,
administration with these drugs may mitigate immune-mediated
lung injury and reduce functional deterioration caused by an
overamplified host inflammatory response. This could be
especially important in later stages of the disease to prevent an
overreaction of the body’s immune system and, hence, may
further prevent the need for mechanical ventilation in patients
suffering from severe COVID-19. Other drugs that target this
subnetwork include Masitinib, Erlotinib, and Sorafenib, which
could be further examined in downstream analyses. In a similar
manner, users may provide a custom list of proteins as seeds to
hunt for drugs that can target a putative mechanism of interest.

Scenario c: Starting with a set of drugs of interest, we can follow
a top-down approach to extract potential host mechanisms and
additional drugs targeting the proteins participating in these
mechanisms. As an example, we identify 69 drugs currently in
clinical trials for COVID-19 and group them based on their
Anatomical Therapeutic Chemical classification (Supplementary
Table 5)22. We focus on drugs from the immunostimulants class
(L03) and their target proteins as starting seeds. We further select
the interactors of the immune-related viral proteins ORF9B,
ORF6, ORF3B, and ORF3A10 as end-point seeds. By applying the
multi-Steiner tree algorithm, we discover pathways of interacting
proteins that connect the selected drugs (and their target

Selected

dataset

Information

about the data

Search for

proteins/genes

Select viral

proteins

Information about a

selected protein

Simple analysis: Directly search

for potential drugs using must

and closeness centrality

Advanced analysis: Utilize all

implemented algorithms and

parameters

Information about running

task and access to results

List of selected proteins.

The selection will be used

for finding drugs and drug

targets

Fig. 2 The CoVex online platform. The network view (middle) shows drug candidates (green nodes) that were found using closeness centrality on a set of

proteins (blue nodes), which resulted from a multi-Steiner tree computation with all viral proteins as seeds (not shown here). Therefore, drugs targeting

these seeds might be able to interrupt the viral life cycle progression. Here we colored nodes based on lung-tissue-specific median gene expression

according to GTEx.
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proteins) with the selected viral proteins. Among these connector
proteins, we find five genes associated with cytokine signaling in
the immune system according to Reactome Pathways (CSF2,
NRG1, NUP188, PTPN18, SOCS1)23. Notably, CSF2 is enriched in
lung, pancreas, and immune cells (www.proteinatlas.org/
ENSG00000164400-CSF2)24 and can be inhibited by KB002
(DB05194), which is an investigational drug and an engineered
human monoclonal antibody treatment for inflammatory and
autoimmune processes25. In summary, with CoVex, we found a
new drug target that may play a key role in the host immune
response during viral infection. We also identified a new drug
candidate for COVID-19, as it targets the proteins involved in the
pathogenic mechanisms triggered by ORF3A, ORF3B, ORF6, and
ORF9B viral proteins.

Scenario d: Starting from a hypothesis-driven mixed selection of
viral and host proteins, as well as drugs, we seek to utilize PPIs to
identify a full mechanism or pathway and to suggest additional drug
candidates. As an application case, we follow-up on a recently
published hypothesis by Liu and Abrahams concerning the putative
interference of SARS-CoV-2 with the formation of hemoglobin in
erythrocytes26,27. Essentially, the virus is believed to interfere with
heme formation causing symptoms of hypoxia. Liu and Abrahams
hypothesize that this would also explain why Chloroquine and
Favipiravir are effective drugs, as they may prevent the viral
proteins from competing with iron for the porphyrin in hemoglobin
(NSP1-16, ORF3a, ORF10, and ORF8 targeted by Chloroquine as
well as ORF7a targeted by Favipiravir)26,27. Based on this
hypothesis (discussed in more detail in the Supplementary Notes),

Virus–host protein
interactions

Host protein
interactions

Drug–protein
interactions

a

b

c

d

Fig. 3 CoVex application scenarios. Depending on the starting hypothesis, dedicated systems medicine algorithms will propagate from selected seeds to

connect drugs with viral proteins using host proteins as proxies. Essentially, four different strategies apply: a Starting with viral proteins, one can identify

drugs targeting host proteins that connect the viral seeds. b Starting with a set of proteins of interest as proxies, we identify pathways connecting them to

(selected or all) viral proteins. Subsequently, we identify drugs targeting this mechanism. c Starting with a set of drugs of interest, one may find pathways

to (selected or all) viral proteins extracting a potentially druggable host mechanism. d Hypothesis-driven, hybrid approach with seeds in different levels to

be connected for druggable mechanism extraction. Boxes with light blue background indicate the typical starting points in the respective application

scenario.

Fig. 4 CoVex result network for application scenario a. Drug–protein–protein interaction network obtained using the viral proteins E, M, and Spike with

multi-Steiner tree followed by closeness centrality. Blue nodes are protein targets. Green nodes are approved drugs and orange nodes are non-approved

drugs. Lines represent the interactions between proteins and drugs. Note that some ACE inhibitor drugs have been identified, such as Ramipril, Captopril,

Perindopril, and Enalaprilat targeting the BDKRB1 protein, which are currently being evaluated in clinical trials.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17189-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3518 | https://doi.org/10.1038/s41467-020-17189-2 | www.nature.com/naturecommunications 5

https://www.proteinatlas.org/ENSG00000164400-CSF2
https://www.proteinatlas.org/ENSG00000164400-CSF2
www.nature.com/naturecommunications
www.nature.com/naturecommunications


we investigate the pathways connecting these viral proteins with
the two effective drugs Chloroquine and Favipiravir. To this end, we
select two known heme binding host proteins as seeds: cytochrome
b5 reductase, which interacts with the viral protein NSP7, and
the viral ORF3a, which binds to heme oxygenase 1. Using
KeyPathwayMiner for drug target discovery followed by closeness
centrality for drug discovery, we identify methylene blue in addition
to Chloroquine and Deferoxamine, which are both in COVID-19
clinical trials28,29. Notably, methylene blue is approved by the Food
and Drug Administration for the treatment of methemoglobinemia,
which fits the investigated hypothesis (reduced oxygen-carrying
capacity). Also, Deferoxamine is widely used therapeutically as a
chelator of ferric ions in disorders of iron overload30. However, note
that the available scientific evidence for a methemoglobinemia or
ferric ion imbalance caused by SARS-CoV-2 is very limited
(see Supplementary Notes) and that we use this hypothesis solely
to illustrate the potential of CoVex’ network medicine investigation
and hypothesis testing capabilities.

Discussion
COVID-19 is a threat to our health and our social life, as well as
to our healthcare and economic systems around the globe. Since
the development of safe and effective vaccines is a time-
consuming process, the only alternative to mitigate the damage
by the SARS-CoV-2 pandemic is to quickly identify agents for the
treatment and control of COVID-19 symptoms. Much attention
in biomedical and clinical research is, thus, given to the task of
identifying therapeutically exploitable drugs. A particular interest
lies in drug repurposing, since already approved drugs can go
through shortened clinical trials within months rather than years.
While a number of promising drug repurposing candidates are
currently being tested, the discovery of such candidates is still
unstandardized and mostly unstructured. Systems and network
medicine offer alternative approaches, where the process of drug
target discovery is driven by computational data mining methods
utilizing molecular interaction networks. As recently demon-
strated by Gysi et al.11 for SARS-CoV-2, this data-driven process
can produce a list of promising drug candidates targeting host
proteins in close proximity and mechanistically related to virus-
interacting proteins11. Here, we seek to make this network
medicine approach widely available to the community.

With CoVex, we present an interactive and user-friendly web
platform that integrates published data of SARS-CoV-1 as well as
recent data about virus–host interactions in SARS-CoV-210 with
the human interactome and several drug–target interaction
databases. CoVex allows users to mine the integrated
virus–host–drug interactome for putative drug targets and drug
repurposing candidates with only a few mouse clicks. Through
features such as interactive seed protein selection, filtering, and
upload of own lists of proteins or drugs of interest, CoVex covers
diverse application scenarios ranging from data-driven,
hypothesis-free drug target discovery to expert-guided analyses
with a clear underlying hypothesis about virus biology. To
address the diversity of research questions adequately, CoVex
implements several state-of-the-art graph analysis methods.
These were specifically tailored to be employed in a network
medicine context and include a weighted version of TrustRank as
well as a multi-Steiner tree method (Supplementary Material).

While CoVex is a powerful tool for SARS-CoV-1 and -2
research, results uncovered with our platform have to be con-
sidered with caution. We stress that CoVex can only suggest
putative drug candidates for further investigation and that those
candidates are not guaranteed to have an antiviral effect. While
the suggested drugs target proteins involved in a putatively
important mechanism for the virus, the actual effect of the drug

has to be verified through follow-up investigations. The inhibition
of a cofactor that prevents the virus from manipulating host
proteins, for example, could even have a proviral effect. After
validating the target for the suggested drug through appropriate
genetic or chemical approaches, the drug candidate, hence, still
needs to be properly vetted by clinical experts and tested fol-
lowing established procedures and clinical trials. Current data
about virus–host interactions in SARS-CoV-2 is still preliminary
and incomplete. For instance, important proteins such as the
ACE2 receptor, a known entrypoint for the virus18, is missing in
the SARS-CoV-2 dataset by Gordon et al.10. Moreover, we
included only drugs that are reported in databases about clinical
trials or in the literature if they have a valid entry in DrugBank,
possibly excluding some of the drugs currently being investigated.
Further, we do not differentiate between different sources of
drug–target interactions. The strength of experimental evidence
may vary depending on the experimental assay that was used or
the type of annotation from the source database, for example,
clinical and variant annotations from PharmGKB, which can be
interpreted as indirect drug–protein associations. It should also be
noted that we do not list drugs that target viral proteins directly,
as the goal of CoVex is to unravel novel drug targets further
downstream in the human interactome.

We acknowledge that the choice of algorithm and its associated
parameters is nontrivial, forcing users to engage in time-
consuming explorative analysis. To make this easier, we allow
users to queue multiple tasks, which are executed in parallel. As
our experience with this platform grows, we also plan to develop
guidelines that allow users to choose an appropriate method for a
particular research question. We further plan to integrate new
data about virus–host interactions and ongoing clinical trials in
corona viruses as it becomes available.

In summary, we have presented CoVex, a web-based platform
for the interactive exploration and network-based analysis of
virus–host interactions, aimed towards drug repurposing for the
treatment of COVID-19. CoVex can be easily updated to
accommodate the fast-paced data generation in the battle against
the global pandemic. CoVex is expected to speed up the discovery
of potential therapeutics for COVID-19. For the future, we also
plan to extend the CoVex network medicine platform to other
viruses in which new drug targets and drug repurposing candi-
dates are urgently sought, including MERS, Zika, influenza, and
dengue. We will also add features for the integration of additional
molecular data, such as gene expression. Until then users can
work with the “add custom protein” functionality of CoVex,
allowing them to utilize and filter by any set of genes, including
those derived by gene expression pattern analyses.

Methods
Data integration. We integrated virus–host interaction data from several sources.
We obtained SARS-CoV-2 AP-MS data reported by Gordon et al.10, containing
332 high-confidence virus–host interactions for 27 SARS-CoV-2 proteins10, as well
as SARS-CoV-1 interactions from VirHostNet4 (24 interactions), and Pfefferle
et al.31 (113 interactions existing in our interactome). Human PPIs were obtained
from the integrated interactions database32 filtered based on experimental valida-
tion. The resulting interactome consists of 17,666 proteins connected via 329,215
interactions. Drug–target associations were obtained from ChEMBL (2020-03)33,
DrugBank (v. 5.1.5)25, DrugCentral (2018-08-26)34, Target Therapeutic Database
(2019-07-14)35, Guide To Pharmacology (2020-01; only approved drugs)36,
PharmGKB (downloaded 2020-04)37, and BindingDB (2019-08-12)38. Where
applicable, we considered drugs that have binding affinity values (EC50, IC50, Kd,
and Ki) <10 μM39,40. Only drugs that were mappable to DrugBank IDs and tar-
geting host proteins were included in the network. Drugs currently undergoing
clinical trials and mappable to DrugBank IDs (as of April 4, 2020) for the treatment
of COVID-19 were collected from ClinicalTrials.gov (www.ClinicalTrials.gov)41,
the EU Clinical Trials Register (www.clinicaltrialsregister.eu), and the International
Clinical Trials Registry Platform (www.who.int/ictrp/). In total, we have 6861 drugs
(67 in clinical trials) and 52,860 drug–target associations integrated in our network.
We further downloaded per-tissue median gene expression levels from the GTEx
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data portal (Release V8, dbGaP Accession phs000424.v8.p2, downloaded 2020-05-
30) to allow for tissue-specific filtering and visualization of gene expression values.
Note that we rely on integrating published data and, thus, on their corresponding
quality.

Systems medicine algorithms for drug repurposing prediction. The general
idea of CoVex is to provide researchers and clinicians with a tool to visually explore
druggable molecular mechanisms that drive the interactions between virus and
host. To this end, the integrated virus–human–drug interactions form molecular
networks that are modeled as graphs with nodes as proteins or drugs, and edges
referring to interactions between them. The goal of CoVex is to explore this net-
work while allowing for the exploitation of expert knowledge. Starting with a
selected set of (usually) hypothesis-driven seeds (virus proteins, human proteins, or
drugs), the goal is to first identify subnetworks connecting these seeds and, sub-
sequently, to identify drug repurposing candidates associated with these mechan-
isms. A vast number of methods have been reported in the literature for identifying
subnetworks42. In CoVex, we have integrated several algorithms (including a
dedicated multi-Steiner tree algorithm) with different underlying paradigms to
provide specific exploration options to various particular medical, therapeutic, and
research questions and hypotheses. CoVex, thus, allows users to choose among the
following approaches in the “advanced analysis” procedures.

Degree centrality is the simplest conceivable centrality measure and ranks
proteins or drugs interacting with the seeds by their node degree, that is, the
number of interactions. Thus, this algorithm yields subnetworks in which seed-
connected proteins and/or drugs are preferentially selected if they interact with
many other proteins in the network. The only user-selected parameter is the result
size, that is, how many of the top-ranked proteins or drugs are included. Notably,
centrality measures in CoVex can be used for detecting drug targets and for
identifying promising drugs.

Closeness centrality is a node centrality measure that ranks the nodes in a
network based on the lengths of their shortest paths to all other nodes in the
network. The rationale behind this algorithm is to preferentially select proteins
and/or drugs that are a short distance from all other proteins in the network and
are thus of central importance. In CoVex, we use a modified version suggested by
Kacprowski et al.43, where only the shortest paths to a set of selected seed nodes are
considered. The only algorithm-specific, user-selected parameter is the result size.

Betweenness centrality is another node centrality measure that ranks the nodes
in a network based on how many shortest paths pass through them. In CoVex, we
use a modified version suggested by Kacprowski et al.43, which only considers
shortest paths between pairs of seed nodes. Hence, nodes receive a high score if
they are on many shortest paths between the seeds. Since drugs are not contained
in any shortest paths in our integrated interactome (see Fig. 1), betweenness
centrality can be used only to find drug targets. The only algorithm-specific, user-
selected parameter is the result size.

Guney et al.44 introduced the network proximity between a drug and a set of
seed nodes as the average minimum distance from the drug’s targets to all of the
seeds. The algorithm computes empirical z-scores by comparing the obtained
proximity score to a background distribution obtained by randomly sampling sets
of seed nodes and drug targets. In CoVex, network proximity can be employed to
find drugs, given a set of host proteins of interest. The user can specify the result
size, as well as the number of randomly sampled instances used for computing the
background distribution.

TrustRank is conceptually similar to closeness centrality but additionally
considers the importance of the seed nodes themselves. In other words, TrustRank
ranks nodes in a network based on how well they are connected to a (trusted) set of
seed nodes45. It is a variant of Google’s PageRank algorithm, where “trust” is
iteratively propagated from seed nodes to neighboring nodes using the network
structure. The node centralities are initialized by assigning uniform probabilities to
all seeds and zero probabilities to all non-seed nodes. In CoVex, the TrustRank
algorithm can be run starting from a user-defined set of (trusted) seed proteins to
obtain a ranked list of proteins in the PPI network that could be prioritized as
putative drug targets. Similarly, TrustRank can be executed on the joint
protein–drug interactome to identify drug repurposing candidates. User-selected
parameters include the result size and the damping factor (range 0–1), which
controls how fast “trust” is propagated through the network. A small damping
factor results in a conservative behavior of the algorithm (nodes close to the seeds
receive much higher scores than distant ones), while a large damping factor makes
its behavior more explorative.

The Steiner tree problem is a classical combinatorial optimization problem. It
aims at finding a subgraph of minimum cost connecting a given set of seed nodes.
For CoVex, we have developed a weighted multi-Steiner tree method that
computes approximate weighted multiple Steiner trees and connects them to one
subnetwork. The user can select the set of proteins of interest and extract
subnetwork(s) that connect the selected seed proteins as candidate mechanism(s)
involved in COVID-19 progression. In this mechanistic subnetwork(s), we can
then extract essential proteins and, thus, the most promising drug targets and
repurposable drugs for COVID-19. User-selected parameters include the number
of Steiner trees to be merged as well as the tolerance towards accepting more
expensive subnetworks (for speeding up the approximation algorithm; for details
see Supplementary Methods).

KeyPathwayMiner is a network enrichment tool that identifies condition-
specific subnetworks (key pathways)46. In CoVex, we utilize the KeyPathwayMiner
web service to extract a maximally connected subnetwork starting from a user-
defined set of proteins of interest (seeds). The only user-selected parameter is K,
which represents the number of permitted exception nodes, that is, proteins that
were not part of the seed proteins but serve to connect them. Since these proteins
act as bridges, these may represent key proteins participating in the dysregulated
subnetwork even though they are not directly targeted by the virus and are
therefore promising candidates for intervention. In its current implementation,
exception nodes will only be added if they indeed possess a bridging characteristic
and will not be shown otherwise.

Irrespective of the network analysis method used, the extracted solutions
have a higher intrinsic probability to contain high-degree nodes (hubs), that is,
proteins that have a large number of interactions. While these proteins are key
players in the human interactome, they are not necessarily suitable drug targets
as perturbing them might lead to severe unintended side effects. Since it is more
likely that hub proteins are involved in several mechanisms and are not specific
to the mechanism of the disease under study, users can also perform the analysis
with the hub penalty, which can potentially favor more specific mechanisms
related to COVID-19. To mitigate this bias, users can either select an upper
bound to filter out high-degree nodes or, alternatively, penalize high-degree
nodes by incorporating the degree of neighboring nodes as edge weights in the
optimization. For the latter, values between 0 and 1 can be selected, where higher
values correspond to a higher penalty. Both options are available in advanced
analyses for all methods except for degree centrality, because its rationale is to
identify hubs, and KeyPathwayMiner, which conceptually does not allow for
weighted subnetwork extraction.

All network algorithms except multi-Steiner tree and KeyPathwayMiner yield
scores for the nodes contained in the returned subnetwork. In the case of degree
centrality, closeness centrality, betweenness centrality, and TrustRank, these scores
correspond to, respectively, the number of direct interactions with the seeds, the
inverse of the mean distance to the seeds, the fraction of shortest paths between the
seeds passing through the node, and the “trust” on the node at termination. In all
four cases, high scores indicate that the nodes are central with respect to the seeds,
but the scores do not carry any intrinsic statistical semantics. In CoVex, we hence
display normalized scores for degree centrality, closeness centrality, betweenness
centrality, and TrustRank, which we compute by dividing by the obtained
maximum. In contrast to that, network proximity yields empirical z-scores, which
are smaller the more promising the drugs are for the selected set of seed proteins.
Since these z-scores directly translate into empirical p values, we do not
normalize them.

Implementation. CoVex consists of five components: (i) Data are stored in a
PostgreSQL database (v. 12.2). (ii) The backend is implemented using the
Django web framework (v. 3.0.5) with Python (v. 3.6) and the Django REST
framework (v. 3.11.0) to build the web API. (iii) The network algorithms (except
KeyPathwayMiner) are implemented with graph-tool (v. 2.3.1)47. (iv) Back-
ground task processing is implemented using Redis Queue (RQ, v. 1.3.0) and the
in-memory database Redis (v. 3.4.1). Django enqueues the jobs and RQ pro-
cesses them in the background while Redis functions as a broker between Django
and RQ. (v) The frontend is implemented in Angular (v. 9.0.2) and utilizes the
JavaScript libraries vis-data (v. 6.5.1) and vis-network (v. 7.4.2) for network
visualization.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available

publicly and their integration is described accordingly within the paper and its

supplementary information files. Human protein–protein interactions were obtained

from the Integrated Interactions Database (http://iid.ophid.utoronto.ca/). Virus–host

interactions were downloaded from VirHostNet (http://virhostnet.prabi.fr/). Drug–target

associations were integrated from the following databases: ChEMBL (https://www.ebi.ac.

uk/chembl/), DrugBank (https://www.drugbank.ca/), DrugCentral (http://drugcentral.

org/), Target Therapeutic Database (http://bidd.nus.edu.sg/group/cjttd/), Guide To

Pharmacology (https://www.guidetopharmacology.org/), PharmGKB (https://www.

pharmgkb.org/), and BindingDB (https://www.bindingdb.org/bind/index.jsp). Drugs

undergoing clinical trials for COVID-19 were collected from ClinicalTrials.gov (https://

clinicaltrials.gov/), the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/),

and the International Clinical Trials Registry Platform (https://www.who.int/ictrp/en/).

Tissue-specific gene expression levels were obtained from the GTEx data portal (https://

www.gtexportal.org/home/, dbGaP Accession phs000424.v8.p2).

Code availability
CoVex is a public online platform software running on a web server. The CoVex code is

available from the corresponding author upon reasonable request. The online tool is

available at https://exbio.wzw.tum.de/covex/.
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