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Abstract

One of the fundamental challenges of recognizing actions is ac-

counting for the variability that arises when arbitrary cameras

capture humans performing actions. In this paper, we explicitly

identify three important sources of variability: (1) viewpoint, (2)

execution rate, and (3) anthropometry of actors, and propose a

model of human actions that allows us to investigate all three. Our

hypothesis is that the variability associated with the execution of

an action can be closely approximated by a linear combination

of action bases in joint spatio-temporal space. We demonstrate

that such a model bounds the rank of a matrix of image measure-

ments and that this bound can be used to achieve recognition of

actions based only on imaged data. A test employing principal

angles between subspaces that is robust to statistical fluctuations

in measurement data is presented to find the membership of an in-

stance of an action. The algorithm is applied to recognize several

actions, and promising results have been obtained.

1. Introduction

Developing algorithms to recognize humans actions has proven to

be an immense challenge since it is a problem that combines the

uncertainty associated with computational vision with the added

whimsy of human behavior. Even without these two sources of

variability, the human body has no less than 244 degrees of free-

dom ([19]) and modeling the dynamics of an object with such non-

rigidity is no mean feat. Further compounding the problem, recent

research into anthropology has revealed that body dynamics are

far more complicated than was earlier thought, affected by age,

ethnicity, class, family tradition, gender, sexual orientation, skill,

circumstance and choice, [4]. Human actions are not merely func-

tions of joint angles and anatomical landmark positions, but bring

with them traces of the psychology, the society and culture of the

actor. Thus, the sheer range and complexity of human actions

makes developing action recognition algorithms a daunting task.

So how does one appropriately model the non-rigidity of human

motion? How do we account for the personal styles (or motion

signatures, [17]) while recognizing actions? How do we account

for the diverse shapes and sizes of different people? In this paper,

we consider some of these questions while developing a model

of human actions that approaches these issues. To begin with, it is

important to identify properties that are expected to vary with each

observation of an action, but which should not affect recognition:

Viewpoint The relationship of action recognition to object recog-

nition was observed by Rao and Shah in [13], and developed fur-

ther by Parameswaran and Chellappa in [9], [10] and Gritai et al in

[6]. In these papers, the importance of view invariant recognition

has been stressed, highlighting the fact that, as in object recogni-

tion, the vantage point of the camera should not affect recogni-

tion. The projective and affine geometry of multiple views is well-

understood, see [7], and various invariants have been proposed.

Anthropometry In general, an action can be executed, irrespec-

tive of the size or gender of the actor. It is therefore important

that action recognition be unaffected by so-called “anthropomet-

ric transformations”. Unfortunately, since anthropometric trans-

formations do not obey any known laws, formally characterizing

invariants is impossible. However, empirical studies have shown

that these transformations are not arbitrary (see [3]). This issue

has previously been addressed by Gritai et al. in [6].

Execution Rate With rare exceptions such as synchronized danc-

ing or army drills, actions are rarely executed at a precise rate. It

is desirable, therefore, that action recognition algorithms remain

unaffected by some set of temporal transformations. The cause

of temporal variability can be two fold, caused by the actor or by

differing camera frame-rates. Dynamic time warping has been a

popular approach to account for highly non-linear transformations,

[13].

Recognition presumes some manner of grouping and the ques-

tion of what constitutes an action is a matter of perceptual group-

ing. It is difficult to quantify exactly, for instance, whether “walk-

ing quickly” should be grouped together with “walking” or with

“running”, or for that matter whether walking and running should

be defined as a single action or not. Thus grouping can be done

at different levels of abstraction and, more often than not, depends

on circumstance and context. In this paper, rather than arbitrar-

ily defining some measure of similarity between actions, we al-

low membership to be defined through exemplars of a group. Our

hypothesis is that the variability associated with the execution of

an action can be closely approximated by a linear combination

of action bases in joint spatio-temporal space. We demonstrate

that such a model bounds the rank of a matrix of image measure-

ments and that this bound can be used to achieve recognition of

actions based only on imaged data. A test employing principal

angles between subspaces that is robust to statistical fluctuations

in measurement data is presented to find the membership of an

instance of an action. The algorithm is applied to recognize sev-
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eral actions, and promising results have been obtained. As in [9]

and [6], we do not address lower-level processing tasks such as

shot segmentation, object detection, and body-joint detection. In-

stead, we assume the image-positions of anatomical landmarks on

the body are provided, and concentrate on how best to model and

use this data to recognize actions. Johansson demonstrated that

point-based representations of human actions were sufficient for

the recognition of actions, [8]. In our work, the input is the 2D

motion of a set of 13 anatomical landmarks, L = {1, 2, · · · 13},

as viewed from a camera.

The rest of the paper is organized as follows. We situate our

work in context of previous research in Section 2. In Section 3,

we present our model of human actions and discuss some proper-

ties of the proposed framework, followed by the development of a

matching algorithm in Section 4. Results are presented in Section

5, followed by conclusions in Section 6.

2 Previous Work

Action recognition has been an active area of research in the vi-

sion community since the early 90s. A survey of action recog-

nition research by Gavrila, in [5], classifies different approaches

into three categories: (1) 2D approaches without shape models,

(2) 2D approach with shape models and (3) 3D approaches. Since

the publication of this survey, a newer approach to action recogni-

tion has emerged: 2D approaches based on 3D constraints, which

maintain invariance to viewpoint, while avoiding difficulties of 3D

reconstruction of non-rigid motion. The first approach to use 3D

constraints on 2D measurements was proposed by Seitz and Dyer

in [14], where sufficient conditions for determining whether mea-

surements were 2D affine projections of 3D cyclic motion were

presented. Rao and Shah extended this idea in [13], to recognize

non-cyclic actions as well, proposing a representation of action us-

ing dynamic instances and intevals and proposing a view invariant

measure of similarity. Syeda-Mahmood and Vasilescu proposed a

view invariant method of concurrently estimating the fundamental

matrix and recognizing actions in [15]. In [9], Parameswaran and

Chellappa use 2D measurements to match against candidate action

volumes, utilizing 3-D model based invariants. In addition to view

invariance, Gritai et al. proposed a method that was invariant to

changes in the anthropometric proportions of actors. As in [13]

and [9], they ignored time and treated each action as an object in

3D.

3 The Space of an Action

By marginalizing time, several papers have represented actions es-

sentially as objects in 3D ([13], [6] and [9]). While some suc-

cess has been achieved, ignoring temporal information in this

way and focussing only on order, makes modeling of temporal

transformations impossible. Instead, since an action is a func-

tion of time, in this work an instance of an action is modeled as a

spatio-temporal construct, a set of points, A = [X1,X2, . . .Xp],
where Xi = (Xj

Ti
, Y j

Ti
, Zj

Ti
, Ti)

⊺ and j ∈ L (see Figure 1) and

p = 13n, for n recorded postures of that action1. An instance of

an action is defined as a linear combination of a set of action-basis

1The construction of A must respect the ordering of L.
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Figure 1: Representation of an action in 4-space. (a) Action in

XY Z space, (b) Action in XY T space. The actor is shown at

frame 1, 50 and 126.

A1,A2, . . .Ak. Consequently, any instance of an action can be

expressed as,

A
′ =

k∑

i=1

aiAi, (1)

where ai ∈ R is the coefficient associated with the action-basis

Ai ∈ R
4×p. The space of an action, A is the span of all its ac-

tion bases. By allowing actions to be defined in this way by action

bases we do not impose arbitrary definitions on what an actions

is. The action is defined entirely by the constituents of its action

bases. The variance captured by the action bases can include dif-

ferent (possibly non-linearly transformed) execution rates of the

same action, different individual styles of performance as well as

the anthropometric transformations of different actors (see Figure

2). In general, the number of samples per execution of an action

will not necessarily be the same. In order to construct the bases,

the entire duration of each action is sampled the same number of

times.

3.1 Action Projection

When change in depth of a scene is small compared to the dis-

tance between the camera and the scene, affine projection models

can be used to approximate the process of imaging. In this paper,

we assume a special case of affine projection - weak-perspective

projection. Weak-perspective projection is effectively composed

of two steps. The world point is first projected under orthogra-

phy, followed by a scaling of the image coordinates. This can be

written as,

�
x
y

�
=

�
αxr

1 ⊺

αyr
2 ⊺

�


X
Y
Z


+ D (2)

where r
i⊺ is the i-th row of the rotation matrix R, αi is a constant

scaling factor and D is the displacement vector. Here, a fixed cam-

era is observing the execution of an action across time. For our

purposes we find it convenient to define a canonical world time

coordinate T , where the imaged time coordinate is related to the

world time coordinate t by a linear relationship, t = αtT + dt

where αt is temporal scaling factor and dt is a temporal displace-

ment. This transformation in time can occur because of varying

frame rates, because the world action and the imaged action are
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separated in time or because of linear changes in the speed of ex-

ecution of an action. If two actions differ only by a linear trans-

formation in execution rate, we consider them equivalent. We can

define a space-time projection matrix R̂3×4 that projects a point

(X, Y, Z, T )⊺ to it’s image (x, y, t),




x
y
t


 =




αxr
1 ⊺ 0

αyr
1 ⊺ 0

0
⊺ αt







X
Y
Z
T


+

�
D

dt

�

or

x = R̂X + D̂.

As in [2] and [16], we can eliminate D̂ by subtracting the mean

of all imaged points. Thus, in our setup, where each instance of

an action, Ai, is being observed by a stationary camera, we have

ai = R̂Ai. Available data is usually in terms of these imaged

position of the landmarks across time. A matrix W can be con-

structed from these measurements as,

W =




x1,1 x1,2 · · · x1,n

y1,1 y1,2 · · · y1,n

t1,1 t1,2 · · · t1,n


 . (3)

We now show that simply given sufficient imaged exemplars

of an action in the form of W, a new action, W can be recognized.

Proposition 1 If W is constructed of images of several instances

of an action that span the space of that action, and W
′ is another

instance of that action, then

rank(W) = rank([W W
′]).

Under projection, we have,

W = RA = R

k∑

i=1

aiAi = [a1R · · · akR]︸ ︷︷ ︸
4k




A1

A2

...

Ak


 (4)

When several observations are available,

W =




W1

W2

...

Wn


 =




a1,1R1 · · · ak,1R1

...
...

a1,nRn · · · ak,nRn







A1

A2

...

Ak




(5)

Since the columns of W are spanned by A, the rank of W is at

most 4k. Now if an observed action A
′ is an instance of the same

action, then it too should be expressible as a linear combination

(Equation 1) of Ai, and therefore the the rank of [W W
′] should

remain 4k. If it is not the same action, i.e. that is not expressible

as a linear combination, then the rank should increase.

An important consequence of Proposition 1 is that we do not

need to explicitly compute either the action bases or the space-time

projection matrix. In the next section, we show how membership

can be tested using only imaged measurements.

Figure 2: Different postures associated with sitting. Our hypoth-

esis is that there exists a set of action-basis that can compactly

describe different styles and rates of execution of an action.

4 Recognizing an Action Using the

Angle between Subspaces

Given a matrix W
′ containing measurements of the imaged po-

sition of the anatomical landmarks of an actor e, we wish to find

which of c possible actions was performed. The measured image

positions are described in terms of the true positions, W̄ with in-

dependent normally distributed measurement noise, µ = 0 and

variance σ2, that is

W
′ = W̄

′ + ǫ, ǫ ∼ N (0, σ). (6)

Our objective is to find the Maximum Likelihood estimate of j∗

such that,

j∗ = arg max
j∈c

p(Aj |W′). (7)

Because of Proposition 1, we do not need to have the actual

action bases to evaluate p(Aj |W′). Instead, each action is defined

by a set of imaged exemplars, that describe the possible variation

in the execution of that action. This variation may arise from any

one of the many reasons discussed in the introduction. Thus for

each action Aj we have a set of exemplars of that action, Wj =
[Wj,1,Wj,2 · · ·Wj,n], where n ≥ k and dim(Aj) = k.

Now, W and W
′ are matrices defining two subspaces, and

without loss of generality assume that, dim(W) ≥ dim(W′) ≥
1. The smallest angle θ1 ∈ [0, π/2] between W and W

′ is,

cos θ1 = max
u∈W

max
v∈W′

u⊺v, (8)

where ‖u‖2 = 1, ‖v‖2 = 1. It was shown by Wedin in [11] that

the angle between W and W
′ gives an estimate of the amount

of new information afforded by the second matrix not associated

with measurement noise. They show that for two matrices A and

B, where B is a perturbation of A, i.e. if A = B + ǫ, the subspace

angle between range(B) and range(A) is bounded as,

sin(θ) ≤ ‖ǫ‖2

σr(A)
,

where σr(A) is the r-th eigenvalue of A. The stability to mea-

surement error makes the angle between subspaces an attractive

alternative to standard re-projection errors. Thus,

p(Aj |W) = L(W|Wj) ∝ cos θ1. (9)

where L is the likelihood function. The recognition algorithm,

along with the algorithm described by Björk and Golub in [1] for

the numerically stable computation of the angle between the sub-

spaces, is given in Figure .
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Figure 3: Change in Subspace angles as number of action exemplars are increased. We incrementally added positive examples to the

training set and as the span of the action bases increased the angle associated with the positive examples decreased much more than that of

the negative examples.
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Figure 4: ROC Curves for four actions. The dotted diagonal line shows the random prediction. (a) ROC Curve for Standing. The area

under the ROC curve is 0.9842. (b) ROC Curve for Running. The area under the ROC Curve is 0.9231. (c) ROC Curve for Walking. The

area under the ROC Curve is 0.9573. (d) ROC Curve for Sitting. The area under the ROC Curve is 0.9660.

Objective

Given a matrix W
′ corresponding to the projection of an action instance, and matrices W1,W2, · · ·WN each modeling the N different

actions, find which action was mostly likely executed.

Algorithm

For each action Ai, i ∈ 1, 2, · · ·N do,

1. Normalization: Compute a similarity transform, transforming the mean of the points to the origin and making the average distance

of the points from the origin equal to
√

2. This should be done separately for each action instance.

2. Compute Subspace Angle between W and Wi:

• Compute Orthogonal Bases: Use SVD to reliably compute orthonormal bases of W
′ and Wi, W̃

′ and W̃i.

• Compute Projection: Using the iterative procedure described in [1], for j ∈ 1, · · · p

W
′
i+1 = W

′
i −WW⊺

W
′
i

• Find Angle: Compute θ = arcsin
�
min(1, ‖W′

p‖2)
�
.

Select i∗ = arg maxi∈{1,··· ,N} cos(θ1).

Figure 5: Algorithm for Action Recognition

5 Results

During experimentation our goal was to verify the claims in this

paper, namely that the proposed algorithm can recognize actions

despite changes in viewpoint, anthropometry and execution rate.

Furthermore, through experimentation, we validate our conjecture

that an action can be described by a set of exemplars of that ac-

tions. In our experiments, we used a number of complex sequences

which were a mix of real motion capture data2 and also direct

video measurements, performed by different actors in many dif-

ferent ways. The test data included the following actions: Sitting,

Standing, Falling, Walking, Dancing and Running. In addition

to differences in anthropometry and the execution rates, we also

2We did not use any Z information while testing the recognition.
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Figure 6: Reconstructing an action in XYZT. We do not require

such reconstruction in our recognition algorithm. In this figure,

we are simply demonstrating the validity of our hypothesis. (a)

Accurate reconstruction. The last frame of an instance of “Sit-

ting” is shown. The blue-markered skeleton represents the orig-

inal measurements, the red-markered skeleton represents the re-

construction after projection on the “Sitting” action basis. (b)

The 32th frame of an instance of “Running” is shown. The blue-

markered skeleton represents the original measurements and the

red-markered skeleton represents the reconstruction after projec-

tion onto the “Walking” action basis.

generated different views by changing projection matrices for the

motion-captured data. For the imaged data, too, we captured the

sequences from several different views. Figure 5(a) shows some

examples of “Sitting” while Figure 5(b) shows some examples of

“Walking”.

5.1 Action Recognition Results

The set of action exemplars for each action is composed by adding

exemplars iteratively until these sufficiently span the action space.

To achieve this using the minimum number of training samples,

we iteratively picked the action sequence from the corpus of that

action which has the maximum angle between it and the action

subspace (at that point) and continue until the rank of the action

subspace is unaffected by additions of further exemplars from the

corpus. This greedy method allows us to minimize the number

of training samples required to span the action space instead of

just selecting an arbitrary number of exemplars. The effect of in-

creasing the number of exemplars in this way is shown in Figure

3. Clearly, the angles of the positive exemplars are ultimately sig-

nificantly lower than those of the negative exemplars. To test our

approach, for each action, we take all the instances of that action

in the corpus as positive sequences and the sequences for all the

other actions as negative sequences. Table 1 shows the number of

training and testing sequences that were eventually used to obtain

the final results. For each action in our testing set, we computed

the angle between the action space and the subspace spanned by

that action instance. This result is thresholded to give the final bi-

nary classification. The ROC curves based on this classification

for “Walking”, “Sitting”, “Standing” and “Running” are shown in

Figure 4. As can be seen from the area under these ROC curves,

using our approach we have been able to correctly classify most of
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Figure 8: Action reprojection of “Sitting” in xyt space. The red

points show the original action in xyt and the blue points show

close reconstruction after projection onto the action bases of sit-

ting. Note this is based on imaged exemplars only.

Action Exemplars # of Positive # of Negative

Sitting 11 230 127

Standing 12 120 138

Running 17 290 121

Walking 11 450 105

Table 1: Number of training and testing samples for each of the

four actions recognized during the experiments.

the actions. These figures also show that ”Standing” and ”Sitting”

are better classified than ”Walking” and ”Running”. As discussed

earlier in Section 1, this is because ”Walking” and ”Running” are

similar actions and it is comparatively difficult to distinguish be-

tween them, although our method is still able to distinguish be-

tween these to a large extent. Reconstruction of an imaged action

after projection onto the action basis for “Sitting” is shown, along

with its coefficients for each of its 11 basis is shown in Figure 8.

6 Summary and Conclusions

In this paper we have developed a framework for learning the vari-

ability in the execution of human actions that is unaffected by the

changes. Our hypothesis is that any instance of an action can be

expressed as a linear combination of spatio-temporal action basis,

capturing different personal styles of execution of an action, dif-

ferent sizes and shapes of people, and different rates of execution.

We demonstrate that using sufficient imaged exemplars of actions,

an action as view from a camera can be recognized using the an-

gle between the subspace of the exemplars and the subspace of the

inspection instance. This concept is related to earlier factoriza-

tion approaches proposed by (among others) Tomasi and Kanade
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Figure 7: Video sequences used in the experiments. Actors of both genders, and of different body proportions were observed performing

actions in different styles. (a) Sitting sequences. Clearly, each actor sits in a unique way, with legs apart, or one leg crossed over the other.

(b) Walking sequences. Sources of variability include arm swing, speed, and stride length.

in [16], and Bregler et al. in [2]. In particular in [2], non-rigid

motion viewed by a single camera over time was modeled as a

linear combination 3D shape basis. However, rather than factor-

izing measurement matrices constructed from a single camera, in

the case of objects, we factorize measurement matrices captured

across multiple cameras. In this work, we are not interested in ex-

plicitly recovering the actual three (or four) dimensional actions

or action bases, but instead to use the constraints they provide to

perform recognition. Future directions could involve recovering

the 4D structure of an action explicitly, aided by action bases.
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