
Exploring the Spinal-Tig Model for Parsing French

Djamé Seddah

Equipe Projet Alpage (Inria) & Université Paris-Sorbonne
28 rue Serpente

F-75006 Paris — France
djame.seddah@paris-sorbonne.fr

Abstract
We evaluate statistical parsing of French using two probabilistic models derived from the Tree Adjoining Grammar frame-
work: a Stochastic Tree Insertion Grammar model (STIG) and aspecific instance of this formalism, called Spinal Tree
Insertion Grammar model which exhibits interesting properties with regard to data sparseness issues common to small
treebanks such as the Paris 7 French Treebank. Using David Chiang’s STIG parser (Chiang, 2003), we present results of
various experiments we conducted to explore those models for French parsing. The grammar induction makes use of a
head percolation table suitable for the French Treebank andwhich is provided in this paper. Using two evaluation metrics,
we found that the parsing performance of a STIG model is tied to the size of the underlying Tree Insertion Grammar, with
a more compact grammar, a spinal STIG, outperforming a genuine STIG. We finally note that a spinal framework seems to
emerge in the literature. Indeed, the use of vertical grammars such as Spinal STIG instead of horizontal grammars such as
PCFGs, afflicted with well known data sparseness issues, seems to be a promising path toward better parsing performance.

1. Introduction

The use of Tree Adjoining Grammar-based for-
malisms (Joshi, 1987), henceforth TAG, for proba-
bilistic parsing is not a new idea. While the initial
intuition of adding probabilities to TAGs was men-
tioned by Joshi et al. (1975) in their seminal paper,
formulations of a TAG probabilistic model were inde-
pendently proposed in (Schabes, 1992) and (Resnik,
1992). Schabes (1992) proposed a version of the
Inside-Outside algorithm for reestimating a Stochas-
tic Lexicalized TAG (LTAG). This algorithm was later
used by Hwa (1998) for the unsupervised learning,
from partially bracketed data, of a context free vari-
ant of TAGs, namely Lexicalized Tree Insertion Gram-
mars (LTIG, (Schabes and Waters, 1995)). Using
LTIG allows for the same parsing complexity as pure
context-free grammars, while permitting the genera-
tion of richer derivational structures.
However, none of these works presented the extrac-
tion of linguistically motivated TAGs. Indeed, such
grammars can be induced from a set of parses using
hand written heuristics, such as head percolation and
argument adjunct distinction tables, for reconstruct-
ing the derivations. This approach was, for instance,
followed by (Neumann, 1998; Xia, 1999; Chen and
Vijay-Shanker, 2000; Chiang, 2000) to extract various
kinds of lexicalized tree grammars to build statistical
parsers, supertaggers and so on.
Interestingly, another operation, thesister-adjunction,
is added to the Stochastic TIG (STIG) framework by
Chiang (2000) in order to handle flat structures inher-

ent to most treebanks. Furthermore, a special mode of
the Chiang’s STIG model implementation can lead to
the extraction of LTIGs that only containspines(i.e.
lineage from the anchor to its maximal projection), al-
lowing for more compact grammars that can counter-
balance data sparseness issues in a highly lexicalized
formalism such as LTIG. We call this model SPINAL

STIG and we present here an evaluation of its perfor-
mance on the Paris 7 French Treebank (FTB, (Abeillé
et al., 2003)) via the use of the Chiang (2003) STIG

parser.
This paper is structured as follows: we provide a brief
overview of the FTB, then we introduce the STIG and
SPINAL STIG models and outline their extraction pro-
cess. We present various possible parameter setups
affecting the spinal grammar probabilistic model. We
then provide a comparison between pure STIG and
SPINAL STIG models run on different instances of the
FTB. Before concluding, we discuss our results com-
pared to previous works.

2. The French Treebank

Unlike the Penn Treebank (Marcus et al., 1994), the
FTB proposes a flat annotation scheme (Abeillé et al.,
2003). For instance, there are no VPs for finite verbs
and only one sentential level for clauses or sentences
regardless of whether or not they are introduced by a
complementizer. Only theverbal nucleus(VN) is an-
notated and comprises the verb, its clitics, auxiliaries,
adverbs and surrounding negation. Because of this
lack of VP constituent for finite verbs in both tree-
banks, the distinction between argument and adjunct
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is not marked by a different structure but rather by
functional annotations. We use the treebank variation
described in (Crabbé and Candito, 2008) with theCC

tagset. All compounds are explicitly marked. We refer
to this treebank instance as FTB or FTB-CC wherever
the distinction is relevant.

3. Overview of Lexicalized Tree Adjoining
Grammars

A Lexicalized TAG grammar (LTAG) consists of a
large lexicon where each lexical entry (i.e., anchor)
is associated with a set of elementary trees.
Two composition operations are provided: the sub-
stitution which is a context free derivation of an ele-
mentary tree to a given leaf node of any tree, and the
adjunction which inserts a particular kind of tree on
a node. The tree being adjoined has one special leaf
node, marked by an asterisk and with the same label
as the root node of the adjoined tree. Those trees are
calledauxiliary trees whereas non-auxiliary elemen-
tary trees are calledinitial trees.
As the formalism’s basic units are trees, the derivation
tree and the derived tree (i.e., the parse tree) are not
isomorphic. The derivation tree strictly records the re-
sulting operation leading to a derived tree. Each node
of the derivation tree is labeled by a Gorn address1

telling us where the operation took place in the domi-
nating tree.
A toy grammar and a sketch of derivations for the
sentenceJean aime beaucoup Marie/John really likes
Mary is shown in Figure 1. Resulting derived and
derivation trees2 are shown in Figure 2.

β1α3α1|α2

V* Adv

beaucoup

V

aime

S

N N

N

(Jean | Marie)

V

Figure 1: LTAG toy grammar and sketch of deriva-
tions forJean aime beaucoup Marie/John really likes
Mary

Regarding context free variants of TAG such as TIG,
the main differences is that wrapping adjunction of

1The root has the address 0, theith child of the root has
addressi and for all other nodes: theith child of the node
with addressj has addressj.i.

2For the sake of simplicity, each tree whose name begins
with β, resp.α, is governed by adjunctions, resp. substitu-
tion.

auxiliary trees is not allowed (Schabes and Waters,
1995). This ensures that the weak generative power
is strictly the same as in context free grammars and
allows for a formalism parsable in cubic time.

α3 aime

(1) α1 Jean (3)α2 Marie (2)β1 beaucoup
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Figure 2: Derivation tree and derived tree of “Jean
aime beaucoup Marie”

4. Statistical TIG models

In this section, we introduce the Stochastic Tree Inser-
tion Grammar (STIG) variant, introduced by Chiang
(2000).

4.1. STIG

STIG is a tree rewriting system with three types
of elementary trees: initial, predicative auxiliary
trees and three composition operations: substitution,
adjunction and sister-adjunction. While the first two
are well known, being the classical TAG operations
introduced above, the sister-adjunction was intro-
duced in (Rambow et al., 1995) and used by Chiang
(2000) as a means to derive treebank flat structures. It
is a context-free operation only constrained through a
probability model that conditions the generation of a
modifier tree on a given node upon the root label of
the previously generated sister-adjoining tree.
As opposed to the induction of CFGs that can be
easily extracted from a treebank, the reconstruction of
STIG derivations must rely on heuristics stating which
nodes will be part of an elementary tree. Following
previous works on lexicalized PCFG induction (e.g.
(Magerman, 1995; Collins, 1997)), the Chiang’s
(2000) model makes use of a head-percolation table
to distinguish the path from a lexical anchor to its
maximal projection. This path is calledspine.3

In the LTAG framework, all elementary trees are
extended projections of lexical items and contain

3Note that in the TAG framework, the termspineusually
denotes the path from a root node of an auxiliary tree to its
foot node.
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all syntactic arguments of a lexical anchor (i.e., the
syntactic head). These argument nodes correspond to
substitution nodes of elementary trees and in order to
properly annotate these nodes, an argument-adjunct
distinction table is required (Xia, 1999). Given the
non-configurational nature of the French treebank,
our rules are based on functional annotations. In
Figure 3, we outline the STIG induction process from
a parse tree based on the FTB’s annotation scheme (1)
to the STIG grammar underlying the reconstructed
derivations (4).
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NPP

Marie
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Marie
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(1) Initial parse (2) Head annotation
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Figure 3: STIG extraction process
(1) Jean aime beaucoup Marie’John really likes Mary’

4.2. Spinal STIG

As shown in section 4.1., the conjunction of head-
percolation and argument/adjunct rules is essential to
extract proper elementary trees from treebank data.
Interestingly, having no access to an argument adjunct
table leads the Chiang’s (2000) STIG model imple-
mentation4 to extract a grammar where all extracted
trees have no argument nodes. All of these trees are
therefore made ofspinesand consequently handled by
sister-adjunction. This behavior results from an un-
documented side effect of the Chiang (2000) model
and was noticed during its preliminary adaptation to
French. Figure 4 shows the extraction process of such
a spinal grammar.
We notice that even though the extracted grammars are
different and lead to different derivation trees5, they

4Available at www.isi.edu/∼chiang/software/hybrid.tar.gz
5With respect to the types of the derivations and their

respective site nodes.
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Figure 4: Spinal STIG extraction process for (1)

share the same dependency structure (Fig. 5).

PURESTIG SPINAL STIG

α1

(1)-α2 (2.1)-α4 (3)-α3

α1

(0)-α2 (2)-α4 (0)-α3

Figure 5: Derivation trees for (1)

Finally, in order to ease the estimation of the proba-
bility model’s parameters, the grammar is implicitly
split between tree templates and lexical anchors, al-
lowing the probabilistic model to generate first a tem-
plate, then its anchor (Chiang, 2000). We describe the
parameter classes of the STIG models in the next sec-
tion.

4.3. STIG/STAG Parameter classes

Because TIGs are a subset of TAGs that retains the
same properties, regardless on constraints used to
avoid the generation of wrapping auxiliary trees, a
probabilistic model for Stochastic TAGs is also valid
for Stochastic TIGs. A Stochastic TAG (Resnik, 1992;
Schabes, 1992), henceforth STAG, is an history based
model, such as PCFGs, where the probability of a
TAG derivation tree is the product of the probabilities
of the operations used for its construction.
Chiang (2003) describes the parameters of a STAG as
follows:

∑

α

Pi(α) = 1

∑

α

Ps(α|η) = 1

∑

β

Pa(β|η) + Pa(NONE|η) = 1

Following the usage in the TAG literature,α denotes
initial trees,β auxiliary trees,γ any tree andη a node
of a tree.Pi(α) is the probability of a derivation start-
ing by α, Ps(α|η), the probability of a substitution of
α on η, Pa(β|η), the probability ofβ adjoining on
η andPa(NONE|η), the probability of having zero
adjunction onη.
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As we mentioned, the sister-adjunction operation
was added by Chiang (2000) to the original STAG
model in order to cope with treebanks’ flat annotation
scheme. Originating from D-tree grammars (Rambow
et al., 1995), this operation allows for any initial
tree to be inserted as a new daughter of a node. The
sister-adjunction also bears some resemblances with
the furcationoperation as described in (Halber, 1998;
Kilger and Poller, 2000). Its capacity to derive multi-
ple initial trees in the same node is also reminiscent
of the modifier adjunctionof Schabes and Shieber
(1994).
Its parameter class is the following (Chiang, 2003):

∑

α

Psa(α|η, i,X) + Psa(STOP |η, i,X) = 1

Whereα denotes initial trees and(η, i) varies over
possible sister-adjunction sites.Psa(α) the probability
of sister-adjoiningα andPsa(STOP ) the probability
of no further sister-adjunction.X is the root label of
the previous tree that was closer to the head, to sister-
adjoin at the site node(η, i).
The backoff structures of this model are presented in
the Appendix, Table 4.

5. Head rules and argument-adjunct
distinction tables

All lexicalized parsers use head propagation tables.
Adapting them to the French language requires to de-
sign French specific head propagation rules. To this
end, we used those described by (Dybro-Johansen,
2004) for extracting a Tree Adjoining Grammar from
an early release of the FTB. From this set, we built
a set of meta-rules that were automatically derived to
match each treebank annotation scheme that will be
used in the next two sections. Table 5 (Appendix) pro-
vides an example of such a head rule percolation table
for the FTB-CC.
As the pure STIG model needs to distinguish between
argument and adjunct nodes to extract proper initial
trees, we implemented an argument-adjunct distinc-
tion table that takes advantage of the function labels
annotated in the treebank.

6. Varying the generating context of the
spinal trees

As shown in section 4.3., the probability of an initial
tree to sister-adjoin on a site node(η, i) is conditioned
on a contextX, where X is set by default to the root
label of the previous tree that was sister-adjoined on
this site node.
As this parsing model allows for modifying this setup,
and because when run in spinal mode, all trees of

the extracted grammar are handled by the sister-
adjunction, it is interesting to observe the impact of
this context on parsing performance.
Thus, in this section we present results from exper-
iments where the context is either a flag stating that
the tree to be generated is the first modifier tree to be
sister-adjoined (first), the root label of the previous sis-
ter¯adjoined tree (root) or no context at all (none).
We also test whether generating the modifier trees
from the head outward instead of left-to-right has an
impact on a treebank as flat as the FTB. The idea is to
verify if the parsing of a relatively free word order lan-
guage such as French6 can benefit from a generative
process less dependent upon a recorded phrase order.

All evaluations are given from the SPINAL STIG

parsing of the canonical development section of the
FTB-CC with gold part-of-speech supplied for un-
known words. The evaluation metrics is PARSEVAL ’s
labeled brackets and POS tagging accuracy (Black et
al., 1991). As usual, scores are given for sentences of
length less than 41 words.

Results are presented in Table 1 and show that the
default setup conditioning the generation of spinal
trees upon the previous root label provides by far
the best performance when the heads are generated
from left to right. Nonetheless, the situation is
reversed when the trees are generated from the head
outward.7 One can notice the huge gap between the
POS tagging accuracies in the two parts of Table 1.
The point is that generating modifier trees from left
to right means that their root labels are generated by
a first-order Markov process (Chiang, 2003). Thus,
we can hypothesize that this process also applies to
the label of their pre-terminal nodes (the POS). In
fact, conditioning POS with a Markovian process
respecting the word order is probably more efficient
that conditioning them on a maybe more distant tree
that has been sister-adjoined to the head regardless of
their relative position on the word stream.
In the remaining part of this paper, we use the “root”
context with trees generated from left to right.

6French exhibits a limited amount of word order varia-
tion occurring at different syntactic levels including (i)the
word level (e.g.,pre or post nominal adjective, pre or post
verbal adverbs); (ii) phrase level (e.g.,possible alternations
between post verbal NPs and PPs).

7Note that generating modifier trees from the head out-
ward is similar to the way the Collins’ model 2 handles
modifier non terminal nodes (Bikel, 2004).
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CONTEXT REC. PREC. F1 POS ACC.
HEAD OUTWARD

none 71.39 71.32 71.36 97.27
first 79.63 78.43 79.03 97.24
root 78.75 77.38 78.06 97.08

LEFT-TO-RIGHT

none 71.39 71.32 71.36 97.27
first 81.72 81.59 81.66 97.73
root 82.9 83.13 83.01 97.91

Table 1: Sister-adjunction context variation for the
SPINAL STIG model on the FTB-CC dev section with
unknown word POS supplied

7. Grammar size and parsing performance

In (Seddah et al., 2009), a benchmarking between var-
ious probabilistic models applied to French treebanks
showed that the parsing performance of the spinal
STIG models ranks roughly in the middle of lexical-
ized parsers w.r.t to the classical labeled bracket met-
rics when evaluated on the FTB. However, it reaches
the state of the art regarding unlabeled dependency
evaluation.
Here we extend those results by showing that the pars-
ing model performance is bound to the size of the ex-
tracted grammar as shown by Table 3.
The same experimental protocol8 as Seddah et al.
(2009) is used on three instances of the FTB with dif-
ferent tagsets (Table 2).
The tagsetMIN contains only bare syntactic cate-
gories, the tagsetCC is the one described in (Crabbé
and Candito, 2008) and known to provide the best
parsing performance on the FTB, the tagsetSCHLU is
the one extracted from the Modified French Treebank
(Schluter and van Genabith, 2007), henceforth MFT.9

TAGSET POS
MIN A ADV C CL D ET I N P P+D P+PRO

PONCT PREF PRO V
CC ADJ ADJWH ADV ADVWH CC CLO CLR

CLS CS DET DETWH ET I NC NPP P
P+D P+PRO PONCT PREF PRO PROREL
PROWH V VIMP VINF VPP VPR VS

SCHLU A A_card ADV ADV_int ADVne A_int CC
CL C_S D D_card ET I N N_card P P+D
PONCT P+PRO_rel PREF PRO PRO_card
PRO_int PRO_rel V_finite V_inf V_part

Table 2: FTB POS Tagsets

8The first 10% of the FTB are used as the test set, the
next 10% for the development set and the rest for training
(i.e.,1235/1235/9881 sentences).

9See (Seddah et al., 2009) for further details on these
tagsets and their relative parsing performances.

Jointly with the PARSEVAL F1 labeled bracket metric,
we provide results of unlabeled dependency evalua-
tion which is computed using the algorithm described
in (Lin, 1995). In order to provide a realistic view
of the performance of STIG models, the different FTB

test sets are here tagged with the TNT tagger of Brants
(2000) trained on the training section of each instance
of the FTB.

TAG SET MIN CC SHLU

PURESTIG

# of tree templates 428 414 633
Labeled Bracket F1 80.52 81.18 81.16
Unl. Dep. F1 87.98 88.67 87.08
SPINAL STIG

# of tree templates 139 83 104
Labeled Bracket F1 80.66 81.73 81.54
Unl. Dep. F1 87.92 88.85 89.02

Table 3: PURE and SPINAL STIG parsing evaluation
results on the FTB test set with different tag sets

Results (Table 3) show that in all cases, a SPINAL

STIG model outperforms a genuine STIG using con-
stituency metric, the most compact grammar offering
the best performance. However, unlabeled dependen-
cies results are somehow a bit higher on the FTB-
SCHLU (i.e., the FTB with the SCHLU tagset) with
SPINAL STIG parsing. This tagset was conceived to
optimize LFG induction from the MFT and contains
more morphological information than theCC tagset.
This supplementary amount of data brought to the
head-percolation table used for the FTB-SCHLU pars-
ing leads the Lin (1995) dependency extraction pro-
cess to be less error-prone. This can explain this small
difference in these results.
We also note that the best results are provided by the
more compact grammars. These grammars are ex-
tracted from the FTB-CC. This shows that theCC

tagset granularity seems to be an advantage for STIG
parsing.

8. Related work and discussion

In (Sangati and Zuidema, 2009), a process of automat-
ically inducing a Lexicalized Tree Subtitution Gram-
mar from a treebank is described. Their goal is to val-
idate the automatic induction of head rules from an-
notated data. In their process, the first extracted gram-
mar is actually a spinal STIG. Also, note that a spinal
version of a PCFG is briefly described in (Post and
Gildea, 2009) in order to test the performance of dif-
ferent kinds of binarized grammars. In this approach,
each spinal tree corresponds to a set of CFG rules, the
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root node being considered as a left hand-side non-
terminal symbol.

Closer to our goals, a LTAGSPINAL model has been
proposed by Shen and Joshi (2005) and developed in
(Shen et al., 2008). Their grammar extraction algo-
rithm takes advantage of the PropBank annotations
(Palmer et al., 2005) in order to provide much deeper
syntactic dependencies than the ones underlying our
spinal grammars based only on a simple set of heuris-
tics. Note that the extracted LTAGSPINAL grammar
is one order of magnitude less coarse than our own, as
it contains 1,224 spinal trees.
Recently, a similar though richer model has been inde-
pendently proposed in (Carreras et al., 2008) with the
purpose of getting a powerful and very sophisticated
parsing model that can use non local features. As
these models are closely related, we ran the spinal TIG
model on the section 23 of the Penn Treebank and ob-
tained 87.79% of PARSEVAL labeled bracket F1 score
with 369 tree templates10 while Carreras et al. (2008)
report very high state-of-the-art results (91.1%). This
can be explained by the use of high level machine
learning techniques to cope with spine attachment de-
cisions whereas our model is based on a pure genera-
tive model.

As opposed to some of the works we briefly pre-
sented, we did not try to refine the spinal grammars
we extracted, for example we did not discriminate be-
tween spinal trees sister-adjoining on the right and
those sister-adjoining on the left of an elementary tree.
The idea for us was to see how far we could get using
the smallest possible grammar we could induce from
a treebank. Indeed, we showed that the parsing perfor-
mance for French was tied to the grammar size. More
compact grammars in the STIG model lead to better
results.
We believe that refining the model to take into account
more context and to split the grammar according to
the most probable side of sister-adjoining trees will
improve the parsing performance of the SPINAL STIG

model. Nonetheless, this is not the main point of deal-
ing with spinal grammars. We think that going from
horizontal grammars such as PCFGs to vertical ones
as implied by the emerging SPINAL framework is cur-
rently one of the best ways to deal with the unavoid-
able data sparseness issues due to the current average
limited size of usual treebanks.

10On the same PTB section, we obtained 88.69% for the
PURESTIG model with 868 templates. All scores are given
for sentences of length less than 41.

9. Conclusion

We reported evaluation parsing results from the ex-
traction of various STIG for French. We showed that
the SPINAL STIG model outperforms a genuine STIG
model when applied on a less hierarchical treebank
such as the FTB. We showed that having more com-
pact grammars leads to better parsing performance for
parsing French in a TAG framework. In our future
work, we will refine the extraction model in order to
extract less coarse grammars.
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Appendix

Ps,a(γ| · · · ) Psa(γ| · · · ) Pw(ω| · · · )
subst., adj. ofγ sister-adj. ofγ gen. ofγ’s anchor

0 τη, ωη, ηη τη, ωη, ηη, i,X τγ , tη, ωη, X

1 τη, ηη τη, ηη, i,X τγ , tη, X

2 τη, ηη τη, ηη, i τγ

3 ∅ ∅ tγ

Table 4: STIG Backoff structure (Chiang, 2003)
τ denotes a tree template,t a POS,eta a node andω an
anchor.
γ is the tree to be generated on the site nodeηη of the tree
templateτη, ωη is the lexical anchor ofτη, τη is τη stripped
from its anchor POS tagtη andX is the root label of the
previous tree to sister-adjoin at the site(ηη, i).
Those backoff structures are combined by linear interpola-
tion, see (Chiang, 2003) for details.

(
(S1 (first SENT) )
(PONCT (last *) )
(Sint (last VN) (last AP) (last NP) (last PP) (last VPinf)
(last Ssub) (last VPpart) (last A ADJ ADJWH) (last ADV
ADVWH) )
(VPpart (first VPR VPP) (first VN) )
(SENT (last VN) (last AP) (last NP) (last Srel) (last
VPpart) (last AdP) (last I) (last Ssub) (last VPinf) (last PP)
(last ADV ADVWH) )
(COORD (first CS CC PONCT) )
(AP (last A ADJ ADJWH) (last ET) (last VPP) (last ADV
ADVWH) )
(NP (first NPP PROREL PRO NC PROWH) (first NP)
(first A ADJ ADJWH) (first AP) (first I) (first VPpart) (first
ADV ADVWH) (first AdP) (first ET) (first DETWH DET)
)
(VPinf (first VN) (first VIMP VPR VS VINF V VPP) )
(PP (first P) (first P+D) (first NP P+PRO) )
(Ssub (last VN) (last AP) (last NP) (last PP) (last VPinf)
(last Ssub) (last VPpart) (last A ADJ ADJWH) (last ADV
ADVWH) )
(VN (last VIMP VPR VS VINF V VPP) (last VPinf) )
(Srel (last VN) (last AP) (last NP) )
(AdP (last ADV ADVWH) )
(* (first *) )
)

Table 5: Head rule percolation table for the FTB-CC

adapted from (Dybro-Johansen, 2004) in the Chiang
(2000) format
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