
Citation: Goutam, R.S.; Kumar, V.;

Lee, U.; Kim, J. Exploring the

Structural and Functional Diversity

among FGF Signals: A Comparative

Study of Human, Mouse, and

Xenopus FGF Ligands in Embryonic

Development and Cancer

Pathogenesis. Int. J. Mol. Sci. 2023, 24,

7556. https://doi.org/10.3390/

ijms24087556

Academic Editor: Ronca Roberto

Received: 24 February 2023

Revised: 11 April 2023

Accepted: 13 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Exploring the Structural and Functional Diversity among FGF
Signals: A Comparative Study of Human, Mouse, and Xenopus
FGF Ligands in Embryonic Development and Cancer Pathogenesis
Ravi Shankar Goutam 1 , Vijay Kumar 1,2, Unjoo Lee 3,* and Jaebong Kim 1,*

1 Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine,
Hallym University, Chuncheon 24252, Republic of Korea

2 iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
3 Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
* Correspondence: ejlee@hallym.ac.kr (U.L.); jbkim@hallym.ac.kr (J.K.); Tel.: +82-33-248-2544 (J.K.);

Fax: +82-33-244-8425 (J.K.)

Abstract: Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that
activate several intracellular signaling pathways to control diverse physiological functions. The
human genome encodes 22 FGFs that share a high sequence and structural homology with those of
other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation,
proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological
conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different
vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles
in vertebrates ranging from embryonic development to pathological conditions may expand our
understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their
structural and functional heterogeneity among vertebrates. This study summarizes the current
understanding of human FGF signals and correlates them with those in mouse and Xenopus models,
thereby facilitating the identification of therapeutic targets for various human disorders.

Keywords: fibroblast growth factors; diversity; diseases; therapeutics; vertebrate models

1. Introduction

Fibroblast growth factors (FGFs) were first identified in 1973 in bovine pituitary ex-
tract [1]. FGFs represent a family of conserved polypeptide mitogens known for their
ability to promote proliferation of various cells [2]. FGFs have pleiotropic activities that
distinguish this family from other growth factors. Moreover, combined with their prolifera-
tion activity, FGFs manifest neurotrophic and angiogenic activities [3,4] and are involved
in developmental events, including differentiation, migration, morphogenesis, and pat-
terning [5]. Abnormal FGF signaling causes various human diseases, such as congenital
craniosynostosis, dwarfism syndrome, insulin resistance, obesity, and cancer [6].

FGFs—present in invertebrates and vertebrates—are highly conserved in gene struc-
ture and amino acid sequence. Additionally, FGFs are the most diverse group of growth
factors in vertebrates; approximately 22 members of FGFs have been identified in verte-
brates, with a molecular mass of 17–34 kDa and 13–17% amino acid identity [7]. Most FGF
ligands share 28 highly conserved and six identical amino acid residues, implying similarity
in the internal core [8]. Based on sequence homology and phylogeny, vertebrate FGFs
are subdivided into canonical, hormone-like, and intracellular subfamilies [9]. Members
of these subfamilies share high sequence identity and biochemical and developmental
properties [10]. Four distinct high affinity receptor tyrosine kinases mediate the effects of
FGF signaling [2].

Moreover, diversified FGF signaling requires the precise regulation of FGF activity
and receptor specificity. The FGF family is extensively complex [2], and structurally diverse
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FGF ligands are functionally different [11]. However, a decade-long characterization of the
structural and functional diversity within the FGF ligand family has yielded new insights
on the differences in the mechanisms of action among members of the FGF family. In
this review, we provide an overview of the structural and functional diversity of FGFs in
vertebrates, present the supporting evidence for their roles in the pathogenesis of diseases,
and discuss potential options for targeting them to develop novel therapeutic approaches.

2. Gene Organization and Protein Length

Most Fgf genes are dispersed throughout the vertebrate genome. The human and
mouse Fgf families comprise 22 members, and the Xenopus Fgf family codes for approxi-
mately 19–20 FGFs [7,12,13]; their chromosomal locations are listed in Table 1. The location
of Human Fgf15, mouse Fgf19, Xenopus Fgf15, Fgf17, Fgf18, and Fgf21 has not yet been
identified. Moreover, evolutionarily, Fgf15 and Fgf19 are orthologs in vertebrates; human
Fgf19 and mouse Fgf15 share 51% amino acid identity, and Xenopus Fgf19 and mouse Fgf15
share 59% identity. Additionally, a few Fgf genes are clustered in the vertebrate genome,
including Fgf3, Fgf4, and Fgf19 (Fgf15 in mice), grouped on chromosome 11 in humans and
chromosome 7 in mice. However, these clustered associations of Fgfs are common in lower
vertebrates, such as Xenopus; Fgf3, and Fgf4, and Fgf19 are closely linked on chromosome 4,
and Fgf1, Fgf6, Fgf7, and Fgf23 are grouped on chromosome 3. Notably, Fgf3, Fgf4, and Fgf19
are separated by 30 kb and 45 kb on chromosome 4 in Xenopus; however, this distance
reduces to 40 kb and 10 kb in human chromosome 11. In humans and Xenopus, these gene
locations indicate a conserved evolutionary pattern conferred by gene and chromosomal
duplication and gene translocation.

Table 1. Chromosomal location of FGF ligands in different vertebrate species. Information on the
genome for human, mouse, and Xenopus models has been sourced from NCBI GeneBank, Mouse
genome informatics, and Xenbase database, respectively.

Fgfs Human Mus musculus Xenopus tropicalis

Fgf1 Chr5: 142,001,623–142,022,227 (20,605 bp) Chr18: 38,971,725–39,062,532 (90,807 bp) Chr3: 37,101,483–37,152,750 (51.27 kb)
Fgf2 Chr4: 124,206,684–124,278,197 (71,514 bp) Chr3: 37,402,616–37,464,255 (61,639 bp) Chr1: 65,933,388–65,960,806 (27.42 kb)
Fgf3 Chr11: 69,397,666–69,406,878 (9213 bp) Chr7: 144,392,349–144,397,085 (4736 bp) Chr4: 12,654,687–12,775,488 (120.8 kb)
Fgf4 Chr11: 69,360,727–69,363,101 (2375 bp) Chr7: 144,415,123–144,418,982 (3859 bp) Chr4: 12,805,564–12,818,136 (12.57 kb)
Fgf5 Chr4: 81,646,219–81,666,886 (20,668 bp) Chr5: 98,402,043–98,424,892 (22,849 bp) Chr1: 95,522,903–95,569,520 (46.62 kb)
Fgf6 Chr12: 4,413,569–4,425,041 (11,473 bp) Chr6: 126,992,505–127,001,681 (9176 bp) Chr3: 11,179,405–11,197,664 (18.26 kb)
Fgf7 Chr15: 47,431,515–47,495,579 (64,065 bp) Chr2: 125,876,578–125,933,105 (56,527 bp) Chr3: 104,281,252–104,316,082 (34.83 kb)
Fgf8 Chr10: 103,194,668–103,200,244 (5577 bp) Chr19: 45,724,930–45,742,941 (18,011 bp) Chr7: 31,012,191–31,022,187 (10 kb)
Fgf9 Chr13: 20,043,875–20,074,184 (30,310 bp) Chr14: 58,308,131–58,350,311 (42,180 bp) Chr2: 157,463,721–157,503,485 (39.77 kb)

Fgf10 Chr5: 44,350,598–44,434,285 (83,688 bp) Chr13: 118,851,235–118,929,109 (77,874 bp) Chr1: 194,526,912–194,599,107 (72.2 kb)
Fgf11 Chr17: 7,543,254–7,548,814 (5561 bp) Chr11: 69,686,894–69,693,775 (6881 bp) Scaffold_2560: 505–2966
Fgf12 Chr3: 193,182,711–193,446,925 (264,215 bp) Chr16: 27,976,535–28,571,995 (595,460 bp) Chr5: 105,036,268–105,258,133 (221.87 kb)
Fgf13 ChrX: 136,419,343–136,499,434 (80,092 bp) ChrX: 58,107,499–58,630,932 (523,433 bp) Chr8: 69,689,404–69,876,346 (186.94 kb)
Fgf14 Chr13: 100,073,036–100,752,125 (679,090 bp) Chr14: 124,211,853–124,915,098 (703,245 bp) Chr2: 119,766,570–120,110,357 (343.79 kb)
Fgf15 Missing Chr7: 1,444,502,269–1,444,454,690 (47,579 bp) Missing
Fgf16 ChrX: 77,447,389–77,457,278 (9889 bp) ChrX: 104,808,083–104,820,138 (12,055 bp) Chr8: 45,583,466–45,609,547 (26.08 kb)
Fgf17 Chr8: 21,922,365–21,928,256 (5892 bp) Chr 17: 70,873,643–70,880,064 (6421 bp) Missing
Fgf18 Chr5: 170,827,589–170,865,098 (37,510 bp) Chr 11: 33,066,970–33,097,400 (30,430 bp) Missing
Fgf19 Chr11: 69,285,937–69,292,036 (6100 bp) Missing Chr4: 12,861,360–12,867,681 (6.32 kb)
Fgf20 Chr8: 16,860,698–16,870,038 (9341 bp) Chr 8: 40,732,207–40,739,994 (7787 bp) Chr1: 42,116,142–42,120,691 (4.55 kb)
Fgf21 Chr19: 53,951,306–53,953,289 (1984 bp) Chr 7: 45,263,314–45,264,914 (1600 bp) Missing
Fgf22 Chr19: 590,926–594,604 (3679 bp) Chr 10: 79,590,887–79,593,629 (2742 bp) Chr1: 105,764,076–105,794,176 (30.1 kb)
Fgf23 Chr12: 4,347,654–4,359,141 (11,488 bp) Chr6: 127,049,865–127,059,259 (9394 bp) Chr3: 11,271,103–11,276,872 (5.77 kb)

Prototypic Fgfs consist of three coding regions (exons), and this number is relatively
conserved in humans, mice, and Xenopus. Exon 1 mainly contains the start codon (ATG);
however, there are few Fgfs (Fgf2 and Fgf3) where the sequence initiates from an additional
5′-transcribed sequence upstream of ATG [14,15]. Additionally, sub-exons are formed in
some Fgfs during the splicing process of Exon 1. The gene size of Fgfs varies from <2 kb
(in Fgf21) to over 500 kb (in Fgf14). Moreover, unlike other Fgf genes, the Fgf8 exon 1
is subdivided into four small exons in mammals [16] followed by typical exons 2 and 3,
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reflecting the multifunctionality of the Fgf8 gene. Comparing the genomic sequence of Fgf8
genes from various species reveals that the last three exons are substantially conserved
despite the upstream exons being very diverse [16]. Based on the phylogeny chromosomal
location (synteny) and homology, the Fgf gene family in humans, mice, and Xenopus can
be categorized into seven subfamilies [17], including Fgf1, Fgf4, Fgf7, Fgf8, Fgf9, Fgf11, and
Fgf19/15 (Figure 1). Phylogenetic studies suggest potential evolutionary and transformative
relationships within the vertebrate gene family. Moreover, studying gene loci on chromo-
somes allows the evaluation of more precise evolutionary relationships within the Fgf gene
family. Lastly, the protein length of FGF is in the range of 126–268 amino acids (aa) in
vertebrates, and FGFs in vertebrates are mostly of similar size; therefore, they are predicted
to be similarly structured (Table 2).
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Figure 1. Evolutionary analysis of FGF proteins in humans, mice, and Xenopus. A circular rooted
phylogenetic tree, depicting evolutionary relation between FGF proteins in Homo sapiens (HS), Mus
musculus (MM), and Xenopus tropicalis (XT) was determined by using Clustal Omega and visualized
by iTOL The evolutionary range among each protein is proportionate to the branch lengths and
different subfamilies of FGF proteins are indicated by different color ranges.
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Table 2. Protein length of FGF ligands in different vertebrate species. Information on each protein for
human, mouse, and Xenopus models has been sourced from NCBI GeneBank, Uniprot, and Xenbase
databases, respectively.

FGFs Human (aa) Mus musculus (aa) Xenopus tropicalis (aa)

FGF1 155 155 155
FGF2 155 154 154
FGF3 239 245 236
FGF4 206 202 192
FGF5 268 264 251
FGF6 208 208 195
FGF7 194 194 194
FGF8 233 244 211
FGF9 208 208 208
FGF10 208 209 196
FGF11 225 225 133
FGF12 243 243 243
FGF13 245 245 255
FGF14 247 247 252
FGF15 NA 218 NA
FGF16 207 207 202
FGF17 216 216 NA
FGF18 207 207 NA
FGF19 216 NA 215
FGF20 211 211 208
FGF21 209 210 NA
FGF22 170 162 175
FGF23 251 251 254

3. Structural and Functional Diversity

The molecular weight of FGFs in vertebrates ranges from 17–34 kDa, and the domain
structure of FGF protein constitutes an internal core region of approximately 120–140 aa [18]
(Figure 2). Within this core region, most FGFs contain a highly conserved sequence of
28 residues and 6 identical amino acids [8]. Among the 28 highly conserved amino acid
residues, 10 mediate the interaction of FGFs with their receptors (FGFR) [19]. Moreover, the
core region in most FGFs is composed of a cylindrical barrel resulting from the precise folding
of 12 antiparallel β-strands. However, FGF1 and FGF2 are exceptions because their structures
have a triangular array formed by the typical arrangement of four β-strands [20]. Notably,
FGF1 and FGF2—previously known as acidic and basic FGFs—were the first FGFs identi-
fied [21]. Sharing 55% homology within their sequence, acidic and basic FGFs have acidic and
basic isoelectric points of 5.6 and >9, respectively. FGF1 is a non-glycosylated polypeptide
that forms a 17–18 kDa protein (155 aa in length) in most vertebrates [22]. Moreover, the
domain structure of vertebrate FGF1 contains a nuclear localization signal (NLS) peptide
vital in DNA synthesis. Furthermore, in humans and mice, FGF2 is secreted as a monomer,
and it forms multiple isoforms due to the presence of different start codons; however, only
one FGF2 variant is known in Xenopus. Additionally, FGF2 functions intracellularly and
extracellularly in mammals. The vertebrate FGF3 domain structure is similar to that of other
FGFs, except for the presence of a NLS motif at the C-terminal region [23].

Additionally, FGF5 (FGF3a in mice) is a precursor polypeptide containing signal and
mature peptides of 17 and 251 aa, respectively, in humans. Unlike other FGFs, FGF5 is
characterized by two types of glycosylation: N- and O-linked glycosylation. Lastly, FGF5
has been identified in the Xenopus tropicalis genome [24].

However, its chromosomal location is unknown. Alternatively, spliced forms of
FGF8 (FGF8a and FGF8b) are highly conserved and well studied in humans, mice, and
Xenopus [25–27]. The domain structure of FGF9 does not contain any signal peptides.
However, FGF10 (keratinocyte growth factor-2) comprises a serine-rich motif positioned at
the amino terminus and a long signal peptide [28].
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The domain structure of FGF11—known as FGF homologous factor 3 (FHF-3)—
maintains an NLS without signal peptides. Additionally, the amino acid terminus of
FGF12 (FHF-1) has two NLS sequences known as bipartite NLS (Figure 2). Moreover,
FGF14 contains an additional bipartite NLS and signal motif. Since FGF16 and FGF20
lack the usual signal sequence of FGF-9, they are secreted similarly to FGF9. Next, FGF19,
FGF21, and FGF23 lack a heparin-binding site within their domain structure. Lastly, FGF18
is a secreted glycosylated polypeptide that interacts with heparin molecules [28] (Figure 2).

Based on the mechanism of action, FGFs can be classified into three subfamilies:
canonical (paracrine), endocrine (hormone-like), and intracellular FGFs (Figures 1 and 2).
The canonical subfamily has five members of FGFs; however, endocrine and intracellular
subfamilies have one member each [10]. The evolutionary relationship indicates that
intracellular FGFs may be the first members of the family to evolve, followed by canonical
FGFs, and the recent evolutionary trend of endocrine FGFs considered the latest [10].

Furthermore, in the canonical subfamily, FGFs are mainly secreted ligands and are
tightly bound to heparin/heparin sulfate (HS) proteoglycans (HSPGs) that regulate their
receptor specificity and affinity [29]. Members of this subfamily (FGF1, FGF4, FGF7,
FGF8, and FGF9) bind to cell surface FGFRs and their cofactor protein HS to form a FGF:
FGFR: HS dimer, activating in vertebrates [30]. Notably, the FGF1 and FGF2 belong to the
FGF1 subfamily.

The four major signaling pathways activated by canonical FGFs include the RAS-
MAPK, phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT, phospholipase Cγ/protein
kinase C, and signal transducer and activator (STAT) pathways [10]. Additionally, canonical
FGFs are key regulators of mesenchymal and epithelial signaling required for organogene-
sis [31].

After binding FGFR, FGF1 crosses the plasma membrane, passes through the cytosol,
and reaches the nucleus [32,33]. Notably, FGF1 is the only FGF that can activate all splice
variants of FGFR [10], and nuclear FGF1 possibly controls the cell cycle, cell differentiation,
survival, and apoptosis [34,35]. Furthermore, Xenopus FGF2 has been identified and cloned,
and its spatial and temporal expression suggests its role in early development, especially
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during neurulation [24]. Additionally, FGF1 and FGF2 are implicated in organogenesis
and reportedly promote lens formation and retinal pigment epithelium in Xenopus [36,37].
Lastly, FGF1 and FGF2 in Xenopus activate MAP kinase differently [38].

The FGF4 subfamily comprises FGF4, FGF5, and FGF6 [13]. The presence of FGF5 in
this group is controversial due to its close relationship (synteny) with the FGF1 subfamily [1].
Moreover, all members of this family have secreted proteins that possess cleavable N-terminal
signal peptides, and they activate IIIc splice variants of FGFRs 1–3 and FGFR4 [39,40].

Phylogenically, the FGF7 subfamily includes FGF3, FGF7, FGF10, and FGF22 [13].
However, some controversies exist regarding the inclusion of FGF3 in this subfamily, as
chromosomal synteny supports its inclusion in the FGF4 subfamily [1]. Notably, a recent
study has proposed a new subfamily of FGF3 [41]. All members of the FGF7 subfamily
selectively activate splice variant IIIb of FGFR2; besides this function, FGF3 and FGF10
activate the IIIb variant of FGFR1 [39,40].

Furthermore, members of the FGF8 subfamily (FGF8, FGF17, and FGF18) contain a
cleaved signal peptide at the N-terminus. Additionally, they interact with the IIIc splice
variants of FGFRs 1–3 and FGFR4 [39,40].

Alternatively, members of the FGF9 subfamily (FGF9, FGF16, and FGF20) lack any
N-terminal signal peptide; however, they comprise an internal sequence that functions as a
non-cleaved signal for their movement inside the cytosol and secretion from cells [42,43].
Additionally, this family has the unique property of activating the IIIb variant of FGFR3,
FGFR4, and IIIc splice variants of FGFR1, FGFR2, and FGFR3 [39,40].

Endocrine or hormone FGFs (hFGFs)), such as FGF19, have an overall systemic func-
tion [44]. Additionally, they have a lower affinity for HS and require protein cofactors
αKlotho, βKlotho, or KLPH for binding with their receptors [45]. FGF19/15, FGF21, and
FGF23 belong to this group and exert their effects in an FGF-dependent manner. Moreover,
endocrine FGFs are involved in bile acid, carbohydrate, lipid, and vitamin D metabolism [9].
FGF21 directly regulates hepatocyte and adipocyte metabolism by interacting with FGFR1
and βKlotho [46–48], and FGF19 interacts with and activates FGFR4 and regulates bile
acid synthesis and hepatocyte proliferation [46,49]. Additionally, FGF19 is linked to the
progression of hepatocellular carcinoma [50], and FGF23 mediates its effect by activating
FGFR1c, FGFR3c, FGFR4, and the α-Klotho cofactor [51,52]. Intracellular FGFs (iFGFs), in-
cluding FGF11, FGF12, FGF13, and FGF14, share a common structural core with other FGFs
and have an NLS; however, they are not secreted and do not interact with FGFR [53,54].
They mainly interact with proteins, such as members of the voltage-gated sodium channel
family [55], mitogen-activated protein kinase-interacting protein [56], β-tubulin [57] and
NF-κB essential modulators [58]. Additionally, FGF13 interacts with microtubules. Other
interacting proteins include the MAP kinase scaffolding protein IB2, which interacts with
FGF12 (FHF1). Loss of function studies has demonstrated iFGFs involvement in neuronal-
related activity [59]. Moreover, studies on chicken, mouse, and Xenopus models have
demonstrated that FGF signaling is crucial for mesoderm specification, neural induction,
and anterior–posterior axis patterning [60–63].

4. FGF Signaling in Early Development
4.1. FGF and Mesoderm Specification

Earlier investigations in the 1990s on Xenopus and other vertebrate models showed
that FGF signaling is necessary for the formation of the axial (which later forms the no-
tochord) and paraxial mesoderms (which develops into the axial skeleton, muscles, and
dermis) [60,64]. Inhibiting FGF signaling by expressing a dominant negative form of
the FGF receptor (Dn-FGFR) disrupts the notochord and somites [60,64,65]. It is unclear
whether FGF functions during the induction of axial and paraxial mesoderm or it is required
for the maintenance of these mesodermal subtypes. Fletcher and Harland [65] reported this
dilemma in 2008, when they showed in their investigation that the induction of the paraxial
mesoderm requires FGF, and axial mesoderm only requires FGF for maintenance during
gastrulation. The FGF requirement for notochord development is evolutionarily conserved
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in vertebrates [66]. Additionally, FGF2 (basic FGF) and FGF4 (previously known as eFGF)
are mainly implicated in the mesodermal specification of Xenopus embryos [67,68]. Mice
and rabbits show similar functions for FGF1 and FGF2 in defining mesodermal specifica-
tion [69,70]. Additionally, disturbing FGF4 signaling counteracts mesodermal induction
in embryonic stem cells [71]. Several independent investigations have demonstrated that
FGF signaling is a crucial signaling pathway in vertebrate mesoderm differentiation [60,72];
however, the molecular mechanism by which FGFs regulate mesodermal specification is
not entirely understood.

4.2. FGF and Neural Specification

The spinal cord cells in vertebrates are derived from neuromesodermal progenitors
(NMP) with neural and mesodermal features [73,74]. Events of spinal cord development
constitute complex processes, such as neurogenesis, ventral patterning, neural crest speci-
fication, and migration, governed by the elongation of the caudal axis [75]. Additionally,
spinal cord specification involves the FGF signaling pathway as a key regulator. During
chicken spinal cord specification, FGF3, FGF4, FGF8, FGF13, and FGF18 are expressed
in the caudal NMP region and tissues surrounding the NMPs [76,77]. FGF8 and FGF4
expression in the NMP region is sustained for several days, and then declines during the
last stage of somitogenesis and the cessation of axis elongation [75]. Similar investigations
have been performed in mice, where FGF3, FGF4, FGF8, and FGF17 were found in and
around the NMP region [78–80].

FGF/Ras/Mapk/Ets initiate neural induction in ascidians, which are the last common
ancestor of vertebrates in chordate evolution [72,81]. Studies in Xenopus embryos have set
the foundation for the classical model (default model) of neural induction, which suggests
that signals from the organizer instruct the ectoderm towards neural fate [82]. However
multiple investigations in chick embryos have established that FGF signaling is vital in
early neural differentiation, challenging the default model idea [83,84]. FGF signaling
in neuronal specification can be projected in two ways: first, as an instructive signaling
where FGF activates neural genes; second, as antagonist signaling where FGF inhibits
BMP signaling via smad1 phosphorylation [12]. Furthermore, Xenopus FGF2 induces the
neural-specific gene Zic3 when expressed ectopically [85]; however, FGF4 of Xenopus was
shown to activate early neural markers (zic3, zic1, and foxd5a) and inhibit BMP [86].

Studies indicate that the FGF4-ERK1/2 pathway is crucial for neural specification
in embryonic stem cells [87,88] and FGF4 disruption antagonizes neural induction in ES
cells [71]. Moreover, midbrain development in chicks [89] and anterior–posterior patterning
in Xenopus [26] are significantly influenced by FGF8. Recent findings suggest that FGF2,
FGF8, and Ets in Xenopus ectoderm cells are crucial for neural induction both in vivo
and in vitro [90]. Hongo et al. [90] showed that neural induction in ectoderm cells was
transduced through Fgf/Ras/Mapk/Ets without BMP signal inhibition, consistent with
previous studies.

In mice, FGF functions in neural stem cell maintenance and neurogenesis [91]. Addi-
tionally, FGF2 and epidermal growth factors can stimulate proliferation and the self-renewal
of neural stem cells in vitro [92–96]. FGF2 transforms embryonic stem cells into neural
stem cells, defined by self-renewal and the ability to generate neurons, oligodendrocytes,
and astrocytes [75]. Moreover, FGF2 in rodents can stimulate functional recovery following
spinal cord injury [97–100] and is involved in reviving synaptic connections [101]. Lastly,
FGF22 reportedly regulates excitatory synaptic contact formation [102], and mouse FGF7 is
essential for inhibitory synapse formation in the developing hippocampus [103].

4.3. FGF Signaling in Metabolism and Diseases (Cancer)

FGF signaling plays a part in the development of almost every organ (including
the heart, lungs, brain, urinary system, muscle, skeleton, and skin) and processes such
as angiogenesis and lymphangiogenesis [6]. Moreover, endocrine FGFs are functionally
essential for metabolism and regulate the brain, kidney, liver, and adipose tissues. The
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dysregulation of FGF signaling leads to various genetic disorders, including cancer, chronic
obstructive pulmonary disease, and chronic kidney disease. The next section briefly reviews
the roles of FGFs in metabolism and cancer.

4.3.1. FGF Signaling in Metabolism

FGF15/19, FGF21, and FGF23, which belong to the FGF19 subfamily, are endocrine
hormones that regulate bile acid, fatty acid, glucose, and mineral metabolisms. Moreover,
FGF19 in humans and its ortholog FGF15 are gut-derived circulating hormones that sup-
press hepatic bile acid via FGFR4 and the cofactor KLB complex [6]. Additionally, FGF15/19
negatively regulates bile acid synthesis and FGF15 deletion in mice upregulates bile acid
synthesis by inducing the expression of the rate-limiting and regulating enzyme cholesterol
7α-hydroxylase (CYP7A1) in the liver [104]. However, FGF15 overexpression restricts
bile acid synthesis by downregulating CYP7A1 mRNA levels [104]. Furthermore, FGF19
treatment blocks CYP7A1 expression in human hepatocytes in an autocrine/paracrine
manner [105,106].

FGF15/19 suppresses liver fat storage; in one study, FGF19 transgenic mice showed
low levels of lipogenic enzymes and liver triglycerides [107]. Moreover, FGF19 blocks
lipogenic enzyme expression in rat hepatocytes by inducing STAT3 signaling and suppress-
ing peroxisome proliferator-activated receptor-γ coactivator-1β expression [108]. Addition-
ally, FGF19 induces the expression of proteins associated with fatty acid oxidation [109].
Prolonged treatment with FGF19 in vivo reduces lipid accumulation in the liver and pre-
vents diet-induced steatosis [110]. Moreover, in binding to FGFR4 and KLB, FGF15/19
regulates the energy and glucose metabolism in the brain [111,112]. FGF19 functions in the
hypothalamus by activating ERK signaling [113]. Therefore, the FGF15/FGF19 pathway
provides great prospects for treating diseases associated with bile acids, such as primary
biliary cirrhosis and bile acid diarrhea. Furthermore, a study reported a newly engineered
variant of FGF19 that was less effective in activating FGFR4 but still positively affected
lipid and glucose metabolism [114]. Lastly, by deactivating the STAT3 pathway, another
FGF19 variant, NGM282 (M70), maintains the advantageous effects of BA metabolism and
is free of murine mitogenic activity [115]. Phase II clinical studies have been conducted
to investigate the effects of M70 in individuals with primary sclerosing cholangitis and
diabetes mellitus. These investigations offer a method to develop FGF19 as a potential
treatment for associated illnesses and injuries.

FGF21 is a hormone that regulates glucose and lipid homeostasis and insulin sensitivity.
FGF21 functions by binding to FGFR1c and its co-receptor protein KLB in the liver, brain,
and adipose tissues [116]. FGF21 overexpression in mice resists diet-induced obesity [117],
and FGF21 can affect weight loss, reduce plasma glucose and triglyceride levels, and boost
insulin sensitivity in obese and diabetic vertebrate models without altering the calorie
intake [117,118]. The subcutaneous administration of the FGF21 variant (LY2405319) in
DIO mice decreased plasma glucose and body weight at a potency comparable to that of
FGF21 [119]. Therefore, FGF21 may be an effective therapeutic agent for the treatment of
obesity and fatty liver disease. LY2405319 has undergone phase I clinical testing for lower
body weight and fasting insulin, and it is notable for enhancing dyslipidemia in individuals
with type 2 diabetes [120].

FGF23 is a regulator of phosphate metabolism and is produced mainly by the os-
teoblasts and osteocytes of bone tissue [121]. Additionally, FGF23 regulates phosphate
and vitamin D homeostasis in skeletal tissues [122], and its mutations lead to low serum
phosphorus levels, rickets, bone pain, osteomalacia, and short stature [123]. Moreover,
FGF23 overexpression in whole mouse, and mouse liver and osteoblasts, results in a low
serum phosphate concentration and rachitic bone [124–126]. Furthermore, FGF23 regulates
sodium and calcium metabolism [6]. Clinical studies have demonstrated that high serum
FGF23 concentration can be used to diagnose kidney disease progression, specifically in
the initial stages of diabetic nephropathy [127,128]. Furthermore, injection of a human IgG1
mAB (burosumab), which binds to and inhibits the biological activity of FGF23, restored
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normal phosphate and vitamin D levels in hypophosphatemia mouse models [129]. The re-
sults of burosumab’s phase II clinical studies support its use in X-linked hypophosphatemia.
A growing understanding of the physiological regulation and function of FGF23 could
contribute to elucidating the pathophysiology of illnesses related to bone and mineral
metabolism and kidney-related disorders. Moreover, recent investigations have linked
FGF23 to the immune system in chronic kidney disease; FGF23 induces TNF-α expression
and macrophages in response to immunological stimuli in mice [130], suggesting its role in
inflammatory processes.

Several studies have reported the role of FGFs in the regulation of inflammatory
responses. FGF1 can intensify inflammatory responses [131] because it is highly expressed
in inflammatory cells and tissues. Additionally, FGF1 stimulates IL-2 synthesis and NF-κB
induction in T cells [132] to maintain metabolic homeostasis. Moreover, insulin sensitization
has been established in mice receiving FGF1 [131]. In diabetic mice without hypoglycemia,
a single injection of mouse recombinant FGF1 resulted in significant dose- and insulin-
dependent glucose reduction [133]. Additionally, in diabetic mice, recombinant human
FGF1 (rhFGF1) restored blood sugar levels to normal [133]. These observations prompted
us to consider the therapeutic potential of FGF1 in mediating insulin sensitivity other than
inflammatory reactions.

FGF2 is involved in multiple inflammation-related diseases, such as rheumatoid
arthritis (Table 3) and multiple sclerosis [134]. HIV infection positively correlates with
FGF2 and CD4+ T cells [135]. Additionally, FGF2 is associated with the activation of pro-
inflammatory chemokines in endothelial cells (Ecs) and the engagement of monocytes and
macrophages during angiogenesis [136]. However, few studies have reported the role of
FGF3 in inflammation. FGF3 expression significantly upregulated in acute rhinitis and
chronic sinonasal inflammation (Table 3) in murine models [137,138]. Overall, associations
between canonical FGFs in HIV and pro-inflammatory chemokine regulation may provide
an insight into inflammatory disorders, HIV pathogenesis, and responses to their therapy.

4.3.2. FGF Signaling in Various Types of Cancer

FGFs are associated with the initiation and progression of cancers, such as multiple
myeloma, urothelial carcinoma, hepatocellular carcinoma, and prostate cancer. The FGF1
expression level in several cancer types, such as breast cancer, hepatocellular carcinoma,
and esophageal cancer, shows that growth factors promote tumor cell invasion and metas-
tasis [139–141]. A recent study showed that FGF1 regulates colorectal cancer progression
(Table 3) through the mTOR-S6K1 dependent pathway [142]. FGF1 association with various
cancer types indicates its potential diagnostic and therapeutic importance.

FGF2 can promote the development of breast cancer cells through ligand-independent
activation and the recruitment of estrogen receptor α and PRB4δ4 isoform to MYC reg-
ulatory regions [143]. Additionally, lung cancer cells that depend on the FGF2/FGFR
pathway may be prevented from proliferating using the FGF2 aptamer, which inhibits
FGF2 activity [144]. In human melanoma produced as a subcutaneous tumor model in
nude mice, introducing an episomal vector encoding antisense FGF2 or FGFR1 cDNA could
entirely prevent the formation of tumors by blocking angiogenesis [145]. Targeting FGF2 to
limit melanoma angiogenesis results in decisive anti-melanoma effects, which could lead
to novel therapeutic approaches for patients with advanced stages of the disease.

FGF4 is expressed more frequently in germ cell cancers, particularly non-seminomas,
and may target all-trans-retinoic acid to encourage the growth of malignant-cultured
embryonal carcinomas [146]. Moreover, increased FGF4 expression is linked to ovarian
cancer (Table 3) stem-like cells’ or cancer-initiating cells’ increased capacity to initiate
tumors [147]. Furthermore, FGF5 is highly expressed in patients with breast cancer [148],
and FGF6 expression is significantly induced in metastatic liver carcinoma tissues and
reduced in non-metastatic liver cancer lesion tissues [149]. Moreover, FGF7 levels are
elevated in gastric adenocarcinoma and gastric inflammation [150]. In prostate cancer, FGF8
overexpression is associated with low patient survival [151]. Additionally, as a downstream



Int. J. Mol. Sci. 2023, 24, 7556 10 of 19

cell growth regulator, FGF8 can mediate the tumor inhibitory effect of Annexin-A7 in
prostate cancer [152]. Moreover, prostate cancer cell proliferation may be significantly
reduced by neutralizing antibodies targeting FGF8b [151]. Likewise, the inhibition of FGF5,
FGF7, and FGF4 by themselves or in combination with known FGF antagonists may serve
as a broad-spectrum therapy for patients with melanoma. Furthermore, FGF9 expression
has been observed in many non-small-cell lung carcinoma (NSCLC) primary tumors, and
high expression of FGF9 is linked to the low survival rate of patients with NSCLC [153].
Lastly, abnormal FGF10 regulation through FGFR2b and FGFR1b facilitates the progression
of prostate cancer, breast cancer, pancreatic adenocarcinoma, gastric carcinoma, skin cancer,
and lung squamous cell carcinoma [154]. These findings could provide novel approaches
to target FGF9 and FGF10 signaling in various cancers.

Recently, FGF11, as part of a six-gene signature, has been linked to a worse prognosis in
bladder cancer [155], and macrophage-specific FGF12 accelerates the development of liver
fibrosis in mice [156]. In the future, liver fibrosis and bladder cancer may be treated with
therapeutic methods that block macrophage FGF12 and FGF11 expression. Furthermore,
FGF13 is highly upregulated in pancreatic endocrine and metastatic breast tumors [157],
and FGF13 may enable cancer cells to avoid proteostasis stress induced by oncogene
activation.

Compared with normal tissue, primary colorectal cancer has reduced FGF14 expres-
sion, and significantly higher methylation of FGF14 has been observed in colorectal can-
cer [158]. Additionally, FGF14 overexpression dramatically decreased tumor growth in a
xenograft mouse model [158]. Therefore, FGF14 is a novel tumor suppressor that functions
by regulating the PI3K/AKT/mTOR pathway to inhibit cell growth and induce apoptosis.
Furthermore, FGF16 is speculated to contribute to the development of certain cancers
including embryonic carcinoma, ovarian cancer, and liver cancer. FGF16 is overexpressed
in resected lung cancer tissues, and its high level is inversely correlated with low levels of
miR-520b—an inhibitor of cellular migration and invasion [159]. Overall, miR-520b and
FGF16 may be helpful in clinical treatment, with FGF16 as a potential biomarker.

In the CD44+ subpopulation of colon adenoma cells, FGF18/FGFR3IIIc was elevated,
promoting tumor cell proliferation [160]. Additionally, FGF18 downregulation inhibits
gastric cancer development, causes G1-phase cell cycle arrest, and improves anticancer
treatment sensitivity [161]. These investigations identified FGF18 as a novel prognostic
indicator of colon cancer development and a therapeutic target in gastric cancer. Further-
more, FGF10/FGF17 has been identified as a prognostic and drug response marker in acute
myeloid leukemia [162], suggesting that small-molecule inhibitors of FGF10 and FGF17 are
promising therapeutic targets.

A subset of human hepatocellular carcinomas is driven by abnormal signaling through
FGF19 and its receptor FGFR4, which is associated with poor prognosis [163]. Additionally,
in humans and mice, FGF19 significantly increases tumor invasiveness caused by the
Pregnane X receptor [164]. FGF19 inactivation may be an effective therapeutic strategy
for cancers and other malignancies involving the interaction between FGF19 and FGFR4.
Moreover, an antibody blocking the interaction of FGF19 to FGFR4 limited the formation of
colon tumor xenografts in vivo, preventing hepatocellular carcinomas in FGF19 transgenic
mice [165]. For the treatment of liver and colon cancer, and cancers related to head and
neck squamous cells, inactivating FGF19 may counteract carcinomas.

Similarly, FGF20 has also been implicated in cancer and is associated with the sup-
pression of macrophage function via β-catenin activation in glioma cells (Table 3) [166].
Furthermore, FGF21 is vital in preventing the onset of advanced diseases, such as pancreatic
ductal adenocarcinoma or hepatocellular carcinoma (Table 3), by delaying the onset of the
fatty pancreas, steatopancreatitis, fatty liver, and steatohepatitis [167]. Additionally, FGF22
aids pancreatic cancer cell invasion and migration [168]. Hence, developing analogs of
FGF21 and antagonists of FGF22 could be therapeutically beneficial for treating chronic
liver and pancreas diseases.
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FGF23 advances prostate cancer as an autocrine, paracrine, or endocrine growth factor.
In vitro studies showed that FGF23 promotes prostate cancer cell line proliferation, invasion,
and anchorage-independent growth; however, FGF23 knockdown slows tumor growth
in vivo [169]. These investigations on FGF23 demonstrate its multifaceted role in disease
progression and how its blockade can be beneficial in eliminating metabolic/mineral,
kidney disorders, and cancer regression. Overall, FGF signaling networks are becoming a
more appealing target for cancer therapeutic intervention as a result of these studies.

Table 3. FGFs and associated diseases, particularly those associated with tumorigenesis.

FGFs Associated Diseases References

FGF1 Colorectal cancers, breast carcinoma, hepatocellular carcinoma, and esophagus cancer [139–142]

FGF2 Rheumatoid arthritis, multiple sclerosis, breast cancer, lung cancer, and glioblastoma [134,162]

FGF3 Acute rhinitis and chronic sinonasal inflammation [137,138]

FGF4 Germ cell carcinoma and ovarian cancer [146,147]

FGF5 Breast cancer [148]

FGF6 Liver cancer [149]

FGF7 Gastric adenocarcinoma and gastric inflammation [150]

FGF8 Prostate cancer [151,152]

FGF9 Non-small cell lung carcinoma (NSCLC) [153]

FGF10 Prostate cancer, breast cancer, pancreatic adenocarcinoma, gastric carcinoma, skin
cancer and lung squamous cell carcinoma, and acute myeloid leukemia [154,162]

FGF11 Bladder cancer [155]

FGF12 Liver fibrosis [156]

FGF13 Pancreatic cancer, endocrine cancer, and breast cancer [157]

FGF15/19 Hepatocellular carcinoma [170]

FGF16 Embryonic carcinoma, ovarian cancer, and liver cancer [159]

FGF17 Acute myeloid leukemia [162]

FGF18 Breast cancer [171]

FGF20 Glioma [166]

FGF21 Prevents pancreatic ductal adenocarcinoma or hepatocellular carcinoma [167]

FGF14 Tumor suppressor in colorectal cancer [158]

FGF22 Pancreatic cancer [168]

FGF23 Tumor induced ostomalacia [172]

5. Conclusions

Current understanding of the roles of FGF signaling in various biological and devel-
opmental processes has substantially improved in the last few decades. The FGF/FGFR
system influences the pathophysiology of numerous human ailments, including hereditary
disorders, metabolic diseases, and cancers. Moreover, the molecular structures of FGFs
and their specific receptors regulate the transduction specificity and activation of FGF
signaling. Therefore, knowledge regarding the structural and functional diversity of FGFs
among different species is pertinent to understanding their influence on health and disease
progression. In this review, we outlined the structures and functions of several vertebrate
FGFs and correlated them with various human disorders.

The precise roles of specific FGFs/FGFRs in the onset and progression of diseases, their
spatiotemporal expression patterns, and underlying mechanisms remain largely unclear.
During various developmental and pathological processes, an extensive crosstalk occurs
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between the FGF pathway and other signaling pathways, including the BMP/TGF-β,
PTH, hedgehog, and retinoid pathways. Therefore, an understanding of the interaction
mechanism of FGF signaling with multiple signaling pathways in different species will
provide a molecular foundation for designing combination therapies [173]. Additionally,
FGF synthesis and expression can differ among various species. For instance, different
species may have specific transcription factors that regulate particular FGF synthesis.
Therefore, when analyzing these findings in different models and applying them to human
health, it is crucial to consider any potential inter-species variations in FGF biology.

Furthermore, precision medicine considerably relies on biomarkers and genetic vari-
ants. Therefore, identifying specific mutations and biomarkers associated with FGF-related
diseases will facilitate the development of more targeted treatments. However, the com-
monly employed technique for determining the contribution of certain FGFs to disease
etiology has drawbacks.

We need new methodologies to gain insights into FGF-targeted therapy, including
more spatiotemporally programmable genetic methods, single-cell analysis, in vivo imag-
ing, additional species of model organisms, and omics technologies. From the patient care
perspective, big data and artificial intelligence (AI) can be used to analyze patient data
to find trends that predict the evolution of FGF-related diseases and how well they will
respond to therapy.

On the bright side, scientists are approaching these targeted therapies in diverse ways.
For example, clinical trials have evaluated several FGF aptamers targeting bone-forming
sites in skeletal tissues and small molecule disrupters targeting several cancers. Disrupter
drugs such as PD173074 and bemarituzumab are the potent and selective blockers of FGFR1
and FGFR3, and FGFR2b, respectively [174,175], and are used to treat different cancers.

Conclusively, detailed studies on the structure- and function-based drug designing of
agonists and antagonists are warranted to improve therapeutic development.
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