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ABSTRACT 20 

Nipah virus (NiV) is an emerging zoonotic virus responsible to cause 21 

several serious outbreaks in South Asian region with high mortality rate of 40 to 22 

90% since 2001. NiV infection causes lethal encephalitis and respiratory disease 23 

with the symptom of endothelial cell-cell fusion. No specific vaccine has yet been 24 

reported against NiV infection. Recently, some Multi-Epitope Vaccines (MEV) 25 

has been proposed but they involve limited number of epitopes which further 26 

limits the potential of vaccine. To address the urgent need for a specific and 27 

effective vaccine against NiV infection, in the present study, we have design two 28 

multi-epitope vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) 29 

epitopes and 38 Helper T lymphocyte (HTL) epitopes. Both the MEVs carry 30 
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potential B cell linear epitope overlapping regions, B cell discontinuous epitopes 31 

as well as IFN-γ inducing epitopes. Hence the designed MEVs carry potential to 32 

elicit cell-mediated as well as humoral immune response. Selected CTL and HTL 33 

epitopes were validated for their stable molecular interactions with HLA class I 34 

and II alleles as well as in case of CTL epitopes, with human transporter 35 

associated with antigen processing (TAP). Human β-defensin 2 and β-defensin 3 36 

were used as adjuvants to enhance the immune response of both the MEVs. The 37 

molecular dynamics simulation study of MEVs-TLR3(ECD) (Toll-Like Receptor 3 38 

Ectodomain) complex indicated stable molecular interaction. Further, the codon 39 

optimized cDNA of both the MEVs has shown high expression potential in the 40 

mammalian host cell line (Human). Hence for further studies, both the design of 41 

CTL and HTL MEVs could be cloned, expressed and tried for in-vivo validations 42 

(animal trails) as potential vaccine candidates against NiV infection. 43 

 44 

Key words: Nipah virus (NiV), Human Transporter associated with antigen 45 

processing (TAP), Toll-Like Receptor 3 (TLR-3), Epitope, Immunoinformatics, 46 

Molecular Docking, Molecular Dynamics (MD) simulation, Multi-epitope Vaccine 47 

(MEV) 48 

 49 

INTRODUCTION 50 

Nipah virus (NiV) is an emerging zoonotic virus of the genus Henipavirus 51 

of the Paramyxoviridae family [1]. NiV infection causes fatal encephalitis and 52 

respiratory disease with a particular symptom of endothelial cell-cell fusion [2]. 53 
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The first NiV infection to human was first reported in Malaysia in 1998. Later NiV 54 

outbreak was reported from Meherpur, Bangladesh in 2001. In the Malaysia NiV 55 

infection, the transmission was primarily due being in contact of pigs, whereas in 56 

later outbreaks of Bangladesh and India the transmission was associated with 57 

contaminated date palm sap and human-to-human contact [3]. Bats are identified 58 

as the main reservoir for the NiV and they are responsible for the transmission of 59 

the infection to both humans and animals [4]. After 2001 NiV outbreak has been 60 

reported from different district of Bangladesh almost every year (2003-05, 2007-61 

12). Till March 31, 2012, a total of 209 confirmed cases of NiV infections were 62 

reported out of which 161 people died resulting in the mortality rate as high as 63 

77%. After several outbreaks in Bangladesh, in total three NiV outbreaks have 64 

also been reported from India. Two of them occurred in the state of West Bengal 65 

in 2001 and 2007 [5]. The most recent NiV outbreak was reported from the 66 

Kerala state of India during the period of May to June-2018. The Kerala outbreak 67 

claimed 17 lives leaving only two survivors out of 19 confirmed cases [6]. Till 68 

present, there has been no specific vaccine reported against NiV infection, and 69 

the pathogenesis mechanism of NiV to human cells is largely unknown. Hence, 70 

an immune-informatics approach investigating the potential of different NiV 71 

proteins for vaccine design would be an important and essential step forward for 72 

vaccine development. 73 

NiV infection of human cells involves several protein-protein interactions 74 

and protein cluster formation on the host cell surface. Essential proteins involved 75 

in NiV pathogenesis include C protein, Fusion glycoproteins (F), Glycoproteins 76 
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(G), Matrix proteins (M), Nucleocapsid protein, Phosphoprotein, Polymerase, V 77 

protein and the W protein [7-21]. The C protein regulates the early host pro-78 

inflammatory response as well as the pathogen virulence thus providing a 79 

conducive environment for a successful NiV infection [7]. The attachment 80 

glycoprotein (G), the fusion protein (F) and the matrix protein (M) together form a 81 

cluster on the human cell membrane facilitating virus particle assembly and 82 

pathogenesis [8-12]. The G and F proteins of NiV have been shown to be 83 

immunogenic by inducing protective immune responses in hamsters [22, 23]. The 84 

NiV matrix protein is observed to play a central role in virus particle formation and 85 

is essentially required for viral budding from the infected human cells [13-15]. 86 

The NiV Polymerase is responsible for the initiation of RNA synthesis, primer 87 

extension, and transition to elongation mode and hence the enzyme facilitates 88 

viral pathogenesis and survival in host cells [16]. The phosphoprotein and the 89 

glycoprotein of NiV are crucially involved in the regulation of viral replication [17, 90 

18] while the V protein of NiV is responsible for the host interferon (IFN) 91 

signalling evasion during pathogenesis [19, 20]. Interestingly, the identical N-92 

terminal region of the pathogen’s V and W protein is sufficient to exert the IFN-93 

antagonist activity [21]. Hence, all the nine above mentioned NiV proteins are 94 

crucial in different ways for viral pathogenesis and are important drug and 95 

vaccine candidates.  96 

The Nipah virus is a zoonotic RNA virus and it infects human respiratory 97 

epithelium cells as well as differentiated neurons (in the brain and spinal cord). 98 

Thus, as understood by previous animal model studies, recovery from viral 99 
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infection and the clearance of viral RNA requires the presence of virus-specific 100 

antibodies and interferon gamma (IFN-γ) secretion from T cells [24-26]. Along 101 

with the B cell, the T cell also play a critical role in immune response against NiV 102 

infection. In recent studies a number of B cell and T cell epitopes from the NIPAH 103 

proteome have been reported [27-38]. Most of these epitopes show strong 104 

interaction tendency with their respective HLA molecule binders. Further different 105 

approaches were proposed for the design of multi epitope vaccines [39, 40]. The 106 

proposed vaccines utilized a limited number (6 to 8) of T and B cell epitopes. The 107 

use of limited number of epitopes could be challenging for the successful 108 

presentation of the exogenous vaccine candidates in view of the proteolytic 109 

cleavage by Antigen Presenting Cells (APC).   110 

In present study we have screened out the most potential Cytotoxic T 111 

lymphocyte (CTL) epitopes, Helper T lymphocyte (HTL) and B cell epitopes from 112 

the NiV proteome. We have shortlisted and priotized  the most potential and 113 

highest scoring 33 CTL, 38 HTL and 16 B cell epitopes. We further studied 114 

several critical properties (like IC(50), Immunogenicity, Conservancy, Non-toxic 115 

etc) to identify the most potential epitopes against Nipah virus. The shortlisted 116 

epitopes were utilized for the design of CTL and HTL multi-epitope vaccines 117 

against Nipah virus. The designed vaccines were further studied for their stable 118 

interaction with immunological receptor the Toll-Like Receptor 3 (TLR3). The 119 

analysis of cDNA of the designed multi-epitope vaccine has predicted to be 120 

highly favorable for expression in mammalian cell line. Overall in the present 121 

study we have designed and proposed potential multi-epitope vaccines against 122 
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Nipah virus infection. 123 

 124 

METHODOLOGY 125 

In the present study, we have designed two multi-epitope vaccines 126 

(MEVs) composed of thoroughly screened most potential Cytotoxic T lymphocyte 127 

(CTL) epitopes and Helper T lymphocyte (HTL) epitopes derived from the nine 128 

NiV proteins (glycoprotein (gi-253559848); C protein (gi-1859635642); fusion 129 

protein (gi-13559813); matrix protein (gi-13559811); nucleoprotein (gi-130 

1679387250); phosphoprotein (gi-1802790259); V protein (gi-1802790260); RNA 131 

polymerase (gi-15487370); W protein (gi-374256971)). CTL and HTL epitopes 132 

would be the most potential vaccine candidates since they are responsible for 133 

cell-mediated immune response by their presentation on the surface of antigen 134 

presenting cells (APCs) by their respective Class I and II human leukocyte 135 

antigen (HLA) allele binders. Both the CTL and HTL epitopes chosen for MEV 136 

design also carry overlapping regions of linear B cell epitopes. Moreover, both 137 

the MEVs also carry potential discontinuous B cell epitopes as well as IFN-γ 138 

inducing epitopes in their tertiary structure model. Hence both the designed 139 

MEVs carry potential to elicit cell-mediated as well as humoral immune response. 140 

Furthermore, both the MEVs were designed with human β Defensin 2 and human 141 

β Defensin 3 as adjuvant at their N and C termini to enhance the immunogenic 142 

response [41-42]. The β-defensins have considerable immunological adjuvant 143 

activity. The β-defensins 2 & 3 have been shown in previous studies to generate 144 

potent humoral immune responses when fused with B-cell lymphoma epitopes in 145 
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mouse model [43-46]. Since, the pro-inflammatory mediators enhance the 146 

expression of β-defensins 2 & 3 in airway epithelial cells we chose β-defensins in 147 

our study. The selected CTL and HTL epitopes were validated for their stable 148 

molecular interactions with their respective HLA alleles binders; for CTL epitopes, 149 

their molecular interaction with human Transporter associated with antigen 150 

processing (TAP) was also analyzed [47, 48]. This analysis validated the CTL 151 

epitopes that get transported through the TAP cavity for their presentation on cell 152 

surface or not. The human TAP selectively pumps cytosolic peptides into the 153 

lumen of the endoplasmic reticulum in an ATP-dependent manner [49]. The 154 

tertiary structure models of both the MEVs were generated, refined, and further 155 

docked with the human Toll-Like Receptor 3 (TLR3), which is an essential 156 

immunoreceptor in this pathway [50, 51]. The nuclear localization of Nipah virus 157 

W protein inhibits the signaling pathway of TLR3 upon pathogenesis to suppress 158 

the TLR3 induced activation of the IFN response to eventually prevent relay of 159 

the warning signals to uninfected cells. TLR3 is preferentially expressed by 160 

human astrocytes of the central nervous system (CNS) upon infection.  The NiV 161 

infection involves invasion of the neurons of CNS and hence causes infection in 162 

CNS. These studies indicate the importance of the TLR3 responses in immune 163 

response and hence TLR3 has been chosen to be studied for its stable binding 164 

with the designed multi-epitope vaccines [52-55]. The complexes of CTL and 165 

HTL MEVs formed with the human TLR3 were further analysed for their stable 166 

molecular interaction by a molecular dynamics simulation study. The cDNA of the 167 

designed MEVs were generated and analysed for their high expression tendency 168 
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in the mammalian host cell line (Human). Overall, from the present in-silico study, 169 

we may put forward the design of two MEVs, which qualify all the significant 170 

criterions for being a potential vaccine candidate against NiV infection. The 171 

corresponding workflow is shown in Supplementary figure S1. 172 

 173 

NiV proteins selected for potential epitope screening. In the present study, nine 174 

NiV proteins were used for epitope screening. They include C protein, Fusion 175 

glycoproteins (F), Glycoproteins (G), Matrix proteins (M), Nucleocapsid protein, 176 

Phosphoprotein, Polymerase, V protein and the W protein. The full-length protein 177 

sequences of NiV proteins were retrieved from the NCBI database (National 178 

Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/protein). A 179 

total of 161 protein sequences available at NCBI, belonging to different strains 180 

and origins of NiV, were retrieved. For structural based epitope screenings 181 

available tertiary structures of NiV proteins were retrieved from Protein Data 182 

Bank (PDB) (http://www.rcsb.org/pdb/home/home.do). For the NiV proteins with 183 

no structure available, homology models were generated by Swiss-model, 184 

(http://swissmodel.expasy.org/) [56] (Supplementary table S1). 185 

 186 

Screening of Potential Epitopes 187 

T cell Epitope Prediction 188 

Screening of Cytotoxic T lymphocyte (CTL) Epitope. The screening of Cytotoxic 189 

T lymphocyte epitopes was performed by the IEDB (Immune Epitope Database) 190 

tool “Proteasomal cleavage/TAP transport/MHC class I combined predictor” 191 
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(http://tools.iedb.org/processing/) [57-59]. Proteasome cleavage score depend on 192 

the total amount of cleavage site in the protein. TAP score estimates an effective 193 

log -(IC50) values (half maximal inhibitory concentration (IC50)) for binding to 194 

TAP of a peptide or its N-terminal prolonged precursors. The MHC binding 195 

prediction score is -log(IC50) values for binding to MHC of a peptide [60]. The 196 

tool gives a “Total Score” which is a combined score of the proteasome, MHC, 197 

TAP (N-terminal interaction), and processing analysis scores. The total score is 198 

generated by using the combination of six different methods viz. Consensus, NN-199 

align, SMM-align, Combinatorial library, Sturniolo and NetMHCIIpan. The IC(50) 200 

(nM) value for each epitope and MHC allele binding pairs were also obtained by 201 

this IEDB tool. Epitopes having high, intermediate, and least affinity of binding to 202 

their HLA allele binders have IC50 values < 50 nM, < 500 nM and < 5000 nM 203 

respectively. Immunogenicity of all the screened CTL epitopes was also obtained 204 

by using “MHC I Immunogenicity” tool of IEDB 205 

(http://tools.iedb.org/immunogenicity/) with all the parameters set to default 206 

analyzing 1st, 2nd, and C-terminus amino acids of the given screened epitope 207 

[60]. The tool predicts the immunogenicity of a given peptide-MHC (pMHC) 208 

complex on the basis of the physiochemical properties of constituting amino acid 209 

and their position within the peptide sequence. 210 

 211 

Screening of Helper T lymphocyte (HTL) Epitopes. To identify the Helper T 212 

lymphocyte epitopes from NiV proteins, the IEDB tool “MHC-II Binding 213 

Predictions” (http://tools.iedb.org/mhcii/) was used. Peptides with IC50 values 214 
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<50 nM are considered high affinity, <500 nM intermediate affinity and <5000 nM 215 

low affinity [61-64]. The tool generates percentile rank for each potential peptide. 216 

This percentile rank is generated by the combination of three different methods 217 

viz. combinatorial library, SMM_align and Sturniolo and by comparing the score 218 

of the peptide against the scores of other random five million 15-mer peptides of 219 

SWISSPROT database [61-64]. The rank from the consensus of all three 220 

methods was generated by the median percentile rank of the three methods. 221 

Lower the value of percentile, higher would be the rank. 222 

 223 

Population Coverage by CTL and HTL epitopes. The “Population Coverage” tool 224 

of IEDB (http://tools.iedb.org/population/) was used to elucidate the world human 225 

population coverage by the shortlisted 33 CTL and 38 HTL epitopes derived from 226 

nine NiV proteins [65]. The T cells recognize complex between a specific major 227 

MHC molecule and a particular pathogen-derived epitope. The given epitope will 228 

elicit a response only in an individual that express an MHC molecule, which is 229 

capable of binding that particular epitope. This denominated MHC restriction of T 230 

cell responses and the MHC polymorphism provide basis for population coverage 231 

study. The MHC types are expressed at dramatically different frequencies in 232 

different ethnicities. Hence a vaccine with larger population coverage could be of 233 

greater importance [65]. Clinical administration of multiple-epitopes involving both 234 

the CTL and the HTL epitopes are predicted here to have a greater probability of 235 

larger human population coverage worldwide. 236 

 237 
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B Cell Epitope Prediction 238 

Sequence-based B Cell epitope prediction. Protein sequence-based six different 239 

methods were utilized to screen linear B cell epitopes from nine different NiV 240 

proteins. These methods are available at “B Cell Epitope Prediction Tools” of 241 

IEDB server (http://tools.iedb.org/bcell/). In this screening the parameters such 242 

as hydrophilicity, flexibility, accessibility, turns, exposed surface, polarity and 243 

antigenic propensity of the polypeptides are correlated with their localization in 244 

the protein. This allows the search for continuous epitopes prediction from 245 

protein sequence. The prediction is based on the propensity scales for each of 246 

the 20 amino acids. For a window size n, the i - (n-1)/2 neighboring residues on 247 

each side of residue i are used to compute the score for the residue i [66-71]. 248 

These methods utilize the propensity scale method as well as the physiochemical 249 

properties of the given antigenic sequence to screen potential epitopes using 250 

“Bepipred Linear Epitope Prediction”, “Chou & Fasman Beta-Turn Prediction”, 251 

“Emini Surface Accessibility Prediction”, “Karplus & Schulz Flexibility Prediction”, 252 

“Kolaskar & Tongaonkar Antigenicity” and “Parker Hydrophilicity Prediction” tools 253 

[66-71]. 254 

 255 

Structure-based B cell epitope prediction. The Ellipro (ElliPro: Antibody Epitope 256 

Prediction tool; http://tools.iedb.org/ellipro/) and the DiscoTope2.0 (DiscoTope: 257 

Structure-based Antibody Prediction tool; http://tools.iedb.org/discotope/) 258 

methods available at IEDB, were used to screen the linear and the discontinuous 259 

B cell epitopes [72, 73]. The ElliPro method analyses on the basis of the location 260 
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of residue in the protein’s 3D structure. The residues lying outside of an ellipsoid 261 

covering 90% of the inner core protein residues score highest Protrusion Index 262 

(PI) of 0.9; and so on. The discontinuous epitopes predicted by the ElliPro tool 263 

are clustered on the basis of the distance “R” in Å between two residue's centers 264 

of mass lying outside of the largest possible ellipsoid. The larger value of R 265 

indicates larger distant residues (residue discontinuity) are screened in the 266 

epitopes. The Discotope 2.0 method is based on the “contact number” of the 267 

residue’s Cα carbon atom as well as on the propensity of a given residue to be a 268 

part of an epitope [72, 73]. The residue “contact number” is the number of Cα 269 

atoms in the antigen within a distance of 10 Å of the particular residue's Cα atom. 270 

A low contact number would indicate the residue being close to the surface or in 271 

protruding regions of the antigen's structures. 272 

 273 

Characterisation of potential epitopes 274 

Epitope conservation analysis. The shortlisted CTL, HTL and B cell epitopes 275 

screened from nine NiV proteins were analysed for the conservancy of their 276 

amino acid sequence by “Epitope Conservancy Analysis” tool 277 

(http://tools.iedb.org/conservancy/) of IEDB. The epitope conservancy is the 278 

fraction of protein sequences that contain that particular epitope. The analysis 279 

was done against their entire respective source protein sequences of NiV 280 

proteins retrieved from the NCBI protein database [74]. 281 

 282 

Epitope Toxicity prediction. The tool ToxinPred 283 
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(http://crdd.osdd.net/raghava/toxinpred/multi_submit.php) was used to analyse 284 

the toxicity of shortlisted CTL, HTL and B cell epitopes. The tool allows to 285 

identifying highly toxic or non-toxic short peptides. The toxicity check analysis 286 

was done by the “SVM (Swiss-Prot) based” (support vector machine) method 287 

utilizing dataset of 1805 sequences as positive, 3593 negative sequences from 288 

Swissprot as well as an alternative dataset comprises the same 1805 positive 289 

sequences and 12541 negative sequences from TrEMBLE [75]. 290 

 291 

Overlapping residue analysis. The overlapping residue analysis for the shortlisted 292 

CTL, HTL and the B cell linear epitopes was performed by the Multiple Sequence 293 

Alignment (MSA) analysis by Clustal Omega tool 294 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) of EBI (European Bioinformatics 295 

Institute) [76]. The Clustal Omega multiple sequence alignment tool virtually 296 

aligns any number of protein sequences and delivers an accurate alignment. 297 

 298 

Epitope selected for molecular interaction study with HLA allele and TAP 299 

transporter. On the basis of the overlapping residue analysis of shortlisted CTL, 300 

HTL and linear B cell epitopes few numbers of CTL and HTL epitopes were 301 

chosen for further analysis involving stable interaction with their respective HLA 302 

allele binders and TAP cavity interaction (Supplementary table S3 & S4, Figure 303 

3). These epitopes were chosen on the basis of them having partial or full 304 

overlapping sequence region amongst all three types of epitopes (CTL, HTL and 305 

B Cell), or having full sequence overlap amongst any of the two types of 306 
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epitopes, or having the highest number of the HLA allele binders. 307 

 308 

Molecular interaction analysis of selected epitopes with HLA allele and TAP 309 

transporter. 310 

Tertiary structure modelling of HLA alleles and selected T cell epitopes. The 311 

Swiss-model was used for homology modelling of the HLA class I and II allele 312 

binders of shortlisted epitopes [56]. The amino acid sequence of the HLA allele 313 

binders were retrieved from Immuno Polymorphism Database (IPD-IMGT/HLA) 314 

(https://www.ebi.ac.uk/ipd/imgt/hla/allele.html). Templates for homology 315 

modelling were chosen on the basis of highest amino acid sequence similarity. 316 

All the HLA allele models were further validated by their QMEAN value. The 317 

QMEAN value gives a composite quality estimate involving both global as well as 318 

local analysis of the model [77]. Generated Model having acceptable QMEAN 319 

value (cutoff -4.0) were chosen for further studies (Supplementary table S2). 320 

The “Natural Peptides Module for Beginners” module of PEPstrMOD 321 

(http://osddlinux.osdd.net/raghava/pepstrmod/nat_ss.php) was utilized to 322 

generate tertiary structures for the selected CTL and HTL epitopes [78]. The time 323 

window for simulation was set to 100 picoseconds (ps) in a vacuum environment. 324 

 325 

Molecular interaction analysis of selected CTL and HTL epitopes with HLA 326 

alleles. The AutoDock 4.2 (ADT) and the AutoDock Vina were used for in-silico 327 

molecular docking study of the selected CTL and HTL epitopes with their 328 

respective HLA class I and II allele binders [79, 80]. The generated docked 329 
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complexes were studied for their stable nature by molecular dynamics simulation. 330 

MD simulation was performed by the Gromacs 5.1.4 using the Optimized 331 

Potential for Liquid Simulations - all-atom force field (OPLS-AA) [81, 82]. 332 

 333 

Molecular interaction analysis of selected CTL epitopes with TAP transporter. 334 

TAP transporter plays an important role in the presentation of CTL epitope. From 335 

the cytosol after proteasome processing, the fragmented peptide of foreign 336 

protein gets transported to endoplasmic reticulum (ER) through the TAP 337 

transporter, from the ER these short peptides reach to the Golgi bodies and then 338 

get presented on the cell surface [83]. Molecular interaction study of the 339 

shortlisted CTL epitopes with the TAP transporter cavity was performed by 340 

molecular docking using AutoDock Vina [79, 80]. As structural model the cryo-341 

EM structure of TAP transporter (PDB ID: 5u1d) after removing the antigen from 342 

TAP cavity of the original structure [48] was used for epitope-TAP interaction 343 

study. 344 

 345 

Design, characterisation and molecular interaction analysis of Multi-346 

Epitope Vaccines with immunological receptor. 347 

Design of Multi-Epitope Vaccines. All the screened CTL and HTL epitopes were 348 

utilized to design CTL and HTL Multi-Epitope vaccines. Short peptides EAAAK 349 

and GGGGS were used as rigid and flexible linkers respectively (Figure 1). The 350 

GGGGS linker provides proper conformational flexibility to the vaccine tertiary 351 

structure and hence facilitates stable conformation to the vaccine. The EAAAK 352 
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linker facilitates in domain formation and hence facilitates the vaccine to obtain 353 

its final stable structure [84-86]. The human beta-defensin 2 (hBD-2) (PDB ID: 354 

1FD3, Sequence: GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP) 355 

and the human beta-defensin 3 (hBD-3) (PDB ID: 1KJ6, Sequence: 356 

GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK) were used 357 

as adjuvants in the design of both the MEVs at N and C terminals respectively 358 

[41-46, 87,]. Human Beta-defensins (hBD) have an important role in the 359 

chemotactic activity memory T cells, immature dendritic cells and monocytes. 360 

Beta-defensins are also involved in degranulation of the mast cells. Due to the 361 

important role of hBDs in immune response enhancement, hBDs have been 362 

chosen and utilized as adjuvants for the MEV designs. 363 

 364 

Figure 1. Design of Multi-Epitope Vaccine (MEVs). (A) CTL and (B) HTL 365 

epitopes were linked by the short peptide linker ‘GGGGS’. Human β Defensin 2 366 

and β Defensin 3 were used as an adjuvant at the N and C terminals 367 

respectively. The short peptide EAAAK was used to link the β Defensin 2 and β 368 

Defensin 3. Epitopes from different proteins were coloured in different colours. C 369 

terminal 6xHis is designed as His tag. * Epitopes common to Phosphoprotein, V 370 

Protein and W protein. 371 

 372 

Characterisation of designed Multi-Epitope Vaccines 373 

Interferon gamma inducing epitope prediction. From the designed amino acid 374 

sequence of both the MEVs potential interferon gamma (IFN-γ) epitopes were 375 
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screened by the “IFNepitope” server 376 

(http://crdd.osdd.net/raghava/ifnepitope/scan.php) using “Motif and SVM hybrid”, 377 

(MERCI: Motif-EmeRging and with Classes-Identification, and SVM: support 378 

vector machine) method. The tool predicts peptides from protein sequences 379 

having the capacity to induce IFN-gamma release from CD4+T cells. This 380 

module generates overlapping IFN-gamma inducing peptides from query 381 

sequence. . For the screening, IEDB database with 3705 IFN-gamma inducing 382 

and 6728 non-inducing MHC class II binders is utilized [88, 89]. 383 

 384 

MEVs allergenicity and antigenicity prediction. The designed MEVs were further 385 

analysed for allergenicity and antigenicity prediction by utilizing the AlgPred 386 

(http://crdd.osdd.net/raghava/algpred/submission.html) and the Vaxigen 387 

(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) tools respectively 388 

[90, 91]. The AlgPred prediction is based on the similarity of already known 389 

epitope with any region of the submitted protein. For the screening of 390 

allergenicity, the Swiss-prot dataset consisting of 101725 non-allergens and 323 391 

allergens is utilized [90]. The VaxiJen utilizes an alignment-free approach, solely 392 

based on the physicochemical properties of the query amino acid sequence. For 393 

prediction of antigenicity, the Bacterial, viral and the tumour protein datasets 394 

were used to derive models for the prediction of whole protein antigenicity. Every 395 

set consisted of known 100 antigens and 100 non-antigens [91]. 396 

 397 

Physicochemical property analysis of designed MEVs. The ProtParam 398 
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(https://web.expasy.org/protparam/) tool was utilized to analyse the 399 

physiochemical properties of the designed CTL and HTL MEVs [92]. The 400 

ProtParam analysis performs an empirical investigation for the given query amino 401 

acid sequence. ProtParam computes various physicochemical properties derived 402 

from a given protein sequence. 403 

 404 

Tertiary structure modelling and refinement of MEVs. The tertiary structure of the 405 

designed CTL and HTL MEVs were calculated by homology modelling utilizing 406 

the RaptorX structure prediction tool 407 

(http://raptorx.uchicago.edu/StructurePrediction/predict/) [93]. RaptorX predicts 408 

template-based secondary and tertiary structures, contacts, solvent accessibility, 409 

disordered regions and binding sites for given protein sequence, with or with out 410 

having close homologs in the Protein Data Bank (PDB). RaptorX also assigns 411 

confidence scores to indicate the quality of a predicted 3D model [94-96]. Quality 412 

assessment for both the generated homology models of CTL and HTL MEVs was 413 

performed by their respective P-values. The P-value for a predicted homology 414 

model is a probability score of the generated model being worse than the best. 415 

Hence the P-value indicates a relative quality of the generated model in terms of 416 

modelling error, combining the global distance test (GDT) and the un-normalized 417 

global distance test (uGDT) indicating the error involved at each residue. The 418 

smaller the P-value the greater the quality of a predicted model.  419 

The refinement of both the generated MEV models was performed by 420 

ModRefiner (https://zhanglab.ccmb.med.umich.edu/ModRefiner/) and 421 
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GalaxyRefine tool (http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) 422 

[97, 98]. Modrefiner improves the physical realism and structural accuracy of the 423 

model using a Two-step Atomic-level Energy Minimization. ModRefiner is an 424 

algorithm for the atomic-level, high-resolution protein tertiary structure 425 

refinement. Both the side-chain and the backbone atoms of protein structure are 426 

completely flexible during the structure refinement simulations. The 427 

conformational search is guided by a composite of physics and knowledge based 428 

force field. The tool generates significant improvement in the physical quality of 429 

the local structures [97]. TM-score generated by ModRefiner indicates the 430 

structural similarity of the refined model with the original input model. Closer the 431 

TM-Score to 1, higher would be the similarity of original and the refined model. 432 

The GalaxyRefine tool refines the query tertiary structure by repeated structure 433 

perturbation as well as by utilizing the subsequent structural relaxation by the 434 

molecular dynamics simulation. The tool GalaxyRefine generates reliable core 435 

structures from multiple templates and then re-builds unreliable loops or termini 436 

by using an optimization-based refinement method [96, 99]. To avoid any breaks 437 

in the 3D model GalaxyRefine uses triaxial loop closure method. The MolProbity 438 

score generated for a given refined model indicates the log-weighted 439 

combination of the clash score (the number of atomic clashes per 1000 atoms), 440 

the Ramachandran favored backbone torsion angles and the percentage of bad 441 

side-chain rotamers (the percentages of rotamer outliers). The ‘GDT-HA’ (Global 442 

Distance Test-High Accuracy) generated by the tool indicates the backbone 443 

structure accuracy; ‘RMSD’ (Root mean Square Deviation) indicates the overall 444 
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structural deviation in refined model from the initial model and the ‘Rama favored’ 445 

indicates percentage of Ramachandran favored residues. 446 

 447 

Validation of CTL and HTL MEVs refined models. Both the refined CTL and HTL 448 

MEV 3D models were further validated by RAMPAGE analysis tool 449 

(http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) [100, 101]. The generated 450 

Ramachandran plots for the MEV models show the sterically allowed and 451 

disallowed residues along with their dihedral psi (ψ) and phi (φ) angles. 452 

 453 

Discontinuous B-cell epitope prediction from MEVs. Both the generated tertiary 454 

models of designed CTL and HTL MEVs were subjected to discontinuous B cell 455 

epitopes prediction. The structure-based discontinuous B cell epitopes were 456 

screened from both the MEV models by utilizing the ElliPro method as described 457 

earlier [72]. 458 

 459 

Molecular interaction analysis of MEVs with TLR-3 460 

Molecular interaction analysis of both the designed MEVs with Toll-Like receptor-461 

3 (TLR-3), was performed by molecular docking and molecular dynamics 462 

simulation. Molecular docking was performed by PatchDock server 463 

(http://bioinfo3d.cs.tau.ac.il/PatchDock/) [102-104]. PatchDock utilizes algorithm 464 

for unbound (real life) docking of molecules for protein-protein. The algorithm 465 

carries out the rigid docking, with the surface variability/flexibility implicitly 466 

addressed through liberal intermolecular penetration. The algorithm focuses on 467 
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the (i) initial molecular surface fitting on localized, curvature based surface 468 

patches (ii) use of Geometric Hashing and Pose Clustering for initial 469 

transformation detection (iii) computation of shape complementarity utilizing the 470 

Distance Transform (iv) efficient steric clash detection and geometric fit scoring 471 

based on a multi-resolution shape representation and (v) utilization of biological 472 

information by focusing on hot spot rich surface patches [102-104]. For molecular 473 

docking, the 3D structure of human TLR-3 ectodomain (ECD) was retrieved from 474 

the PDB databank (PDB ID: 2A0Z). Further, the molecular dynamics simulation 475 

study of the MEVs-TLR-3 complexes were performed by Gromacs 5.1.4, utilizing 476 

the Optimized Potential for Liquid Simulations - all-atom force field (OPLS-AA) 477 

[81, 82]. MD simulation was performed to understand the properties of the MEVs-478 

TLR3 complexes in terms of their structure and the microscopic interactions in 479 

the complex. The study provides dynamical properties of the designed system 480 

with MEVs-TLR3 complexes with a guess at the interactions between the 481 

molecules, and also it gives ‘exact’ predictions of bulk properties. MD Simulations 482 

act as a bridge between theory and experiment [81, 82]. 483 

 484 

In-silico analysis of MEVs for cloning and expression 485 

Analysis of cDNA of the MEVs for cloning and expression in mammalian cell line. 486 

Complementary DNA of both the MEVs, codon optimized for expression in 487 

Mammalian cell line (Human) were generated by Java Codon Adaptation Tool 488 

(http://www.jcat.de/). The generated cDNA were further analysed by GenScript 489 

Rare Codon Analysis Tool (https://www.genscript.com/tools/rare-codon-analysis). 490 
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The tool analyses the GC content, Codon Adaptation Index (CAI) and the 491 

Tandem rare codon frequency for a given cDNA [105-107]. The CAI indicates the 492 

possibility of cDNA expression in a chosen expression system. The tandem rare 493 

codon frequency indicates the presence of low-frequency codons in the given 494 

cDNA. 495 

 496 

RESULTS & DISCUSSION 497 

Screening of potential epitopes 498 

T cell Epitope Prediction 499 

Screening of Cytotoxic T lymphocyte (CTL) Epitope. Cytotoxic T lymphocyte 500 

(CTL) epitopes screened were shortlisted according to the highest “Total Score”, 501 

low IC(50) (nM) value for epitope-HLA class I allele complexes, and epitopes with 502 

the larger number of the HLA class I allele binders. The immunogenicity of the 503 

shortlisted CTL epitopes was also determined; the higher immunogenicity score 504 

indicates the greater immunogenic potential of the given epitope (Supplementary 505 

table S3, S7). A total of 33 CD8+ T cell epitopes were finally chosen. Out of the 506 

33 CTL epitopes reported here 10 epitopes (Fusion Protein: FALSNGVLF; 507 

Glycoprotein: TVYHCSAVY; Nucleocapsid: YPALALNEF; Phosphoprotein:508 

 VSDAKMLSY; Polymerase: YPECNNILF, FPVMGNRIY, 509 

AEFFSFFRTF, IPFLFLSAY, ETDDYNGIY, SQNLLVTSY) show a match with 510 

previous studies [35-38], indicating consensus of epitope screening by different 511 

approaches and methods (Supplementary table S3).  512 

 513 
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Screening of Helper T lymphocyte (HTL) epitopes. The screening of helper T 514 

lymphocyte (HTL) epitopes from nine different proteins of NiV was performed on 515 

the basis of “Percentile rank”. The smaller the value of percentile rank the higher 516 

would be the affinity of the peptide with its respective HLA allele binders. In our 517 

initial screening, we got several potential CD4+ T cell epitopes with high scoring. 518 

38 epitopes out of initial screening were shortlisted on the basis that they had 519 

highest percentile rank and highest number of HLA class II allele binders 520 

(Supplementary table S4, S8).  521 

 522 

Population Coverage by CTL and HTL epitopes. The population coverage by the 523 

shortlisted epitopes was also studied, in particular involving countries of South 524 

Asia, East Asia, Northeast Asia and the Middle East. From this study, we may 525 

conclude that the combined use of all the shortlisted CTL and HTL epitopes 526 

would have an average worldwide population coverage as high as 97.88%, with 527 

a standard deviation of 21.97 (Supplementary table S5). 528 

 529 

B Cell epitope prediction 530 

Sequence-based B Cell epitope prediction. In our initial study, we screened a 531 

total of 116 B Cell epitope from nine different NiV proteins, with the epitope 532 

length of at least four amino acids utilizing the Bepipred Linear Epitope Prediction 533 

method. B cell epitopes predicted by another five different methods based on 534 

different physiochemical properties were found to have significant consensus 535 

with the epitope amino acid sequences predicted by Bepipred Linear Epitope 536 
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Prediction. Here, 16 out of the 116 epitopes were shortlisted having a length of 4 537 

to 19 amino acids (Supplementary table S6, Figure 2). One of these 16 B cell 538 

epitopes (Matrix Protein: SIPREFMIY) matches with a previous study [39], 539 

indicating epitope screening consensus using different approaches and methods 540 

(Supplementary table S6). 541 

 542 

Figure 2. Overlapping regions amongst the linear B cell epitopes predicted 543 

by the BepiPred method and other seven different B cell epitopes 544 

prediction methods. B cell epitopes predicted by the BepiPred method and 545 

other different protein sequence based (Chou.., Emini.., Karplus.., Kolaskar.., 546 

and Parker..) and protein structure based (DiscoTope and ElliPro) prediction 547 

methods were found to have significant consensus. Consensus overlapping 548 

regions of BepiPred epitopes are underlined by the different colour, 549 

corresponding to respective prediction method. 550 

 551 

Structure-based B cell epitope prediction. Structure-based discontinuous and 552 

linear epitopes predicted by the DiscoTope 2.0 and the Ellipro methods have 553 

shown a significant consensus of overlapping amino acid sequence with the 554 

linear epitopes predicted by Bepipred linear epitopes method (Supplementary 555 

table S6, Figure 2). This result further confirms that the shortlisted B Cell 556 

Bepipred Linear Epitopes have a high chance of being highly immunogenic 557 

epitopes.  558 

 559 
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Characterisation of potential epitopes 560 

Epitope conservation analysis. Sequence conservation analysis of the shortlisted 561 

33 CTL, 38 HTL and 16 B cell epitopes showed that the ‘100% amino acid 562 

sequence’ conservancy of CTL, HTL and B cell epitopes amongst all retrieved 563 

NiV protein sequences is mostly 100%, as shown in Supplementary table S3, S4, 564 

S6. This result indicates the high conservancy nature of the amino acid sequence 565 

of the shortlisted CTL, HTL and B cell epitopes. 566 

 567 

Epitope toxicity prediction. Toxicity analysis of all the shortlisted CTL, HTL and B 568 

Cell epitopes was also performed. The ToxinPred study indicated the non-toxic 569 

nature of all the shortlisted epitopes (Supplementary table S3, S4, S6). 570 

 571 

Overlapping residue analysis. Amino acid sequence overlap analysis amongst 572 

the shortlisted CTL, HTL and B cell epitopes from nine NiV proteins was 573 

performed by using the Multiple Sequence Alignment (MSA) analysis tool Clustal 574 

Omega. Our analysis showed that several epitopes of CTL, HTL and B cell have 575 

overlapping amino acid sequence. The CTL, HTL and B cell epitopes having two 576 

or more amino acids overlap are shown in Figure 3. 577 

 578 

Figure 3. Overlapping CTL, HTL and B cell epitopes. Multiple sequence 579 

alignment performed by Clustal Omega at EBI to identify the consensus 580 

overlapping regions of CTL (red), HTL (blue) and B cell epitopes (green) 581 

amongst shortlisted epitopes. Epitopes with overlapping region amongst all the 582 
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three types of epitopes (CTL, HTL and B Cell epitopes), epitopes with full 583 

sequence overlap and epitopes with the highest number of HLA allele binders 584 

were chosen for further studies (encircled). 585 

 586 

Epitope selected for molecular interaction study with HLA allele and TAP 587 

transporter. Amongst all the shortlisted epitope peptides seven CTL and 588 

seventeen HTL epitope peptides have partial or full overlapping sequences or 589 

have the highest number of HLA allele binders were shortlisted for further studies 590 

(Figure 3, Supplementary table S3 & S4). 591 

 592 

Molecular interaction analysis of selected epitopes with HLA allele and TAP 593 

transporter. 594 

Molecular interaction analysis of selected CTL and HTL epitopes with HLA 595 

alleles. The molecular docking study of the shortlisted CTL and HTL epitopes 596 

with their respective HLA class I and II allele binders was performed using 597 

AutoDock Vina. Docking studies revealed for all epitopes significant molecular 598 

interaction with their HLA allele binders having low binding energies and multiple 599 

hydrogen bonds formated (Figure 4A & 4B). The stability of the obtained docking 600 

complexes was further tested by  molecular dynamics (MD) simulation studies. 601 

MD simulations were performed over a time interval of 0.5-1 ns at the invariable 602 

temperature of ~ 300 K and at invariable pressure of ~ 1 bar. All the complexes 603 

showed reasonably invariant root mean square deviation (RMSD) value 604 

(between ~ 0.2 to 0.4 nm) indicating the stable nature of the tested epitope-HLA 605 
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allele complexes (Figure 5A & 5B). Moreover, the reasonably invariant Rg (radius 606 

of gyration) of the complexes, throughout the MD simulation (Supplementary 607 

figure S2), and the root mean square fluctuation (RMSF) for all the atoms of the 608 

complexes (Supplementary figure S3) again indicate the stable nature of the 609 

epitopes and HLA allele complexes. Furthermore, the B-factor analysis of all the 610 

epitope-HLA allele complexes indicated most of the complex regions to be stable 611 

(blue) with a very small region being acceptably fluctuating (yellow and orange) 612 

(VIBGYOR colour presentation) Supplementary figure S4.  613 

 614 

Figure 4. (A) Molecular Docking analysis of CTL epitopes and HLA alleles. 615 

Molecular docking of selected CTL epitopes (cyan sticks) with their respective 616 

HLA class I allele binders (gray sticks). The study shows the docked complexes 617 

to have significantly negative binding energy along with hydrogen bonds (green 618 

dots) formation in the complex interface. (B) Molecular Docking analysis of 619 

HTL epitopes and HLA alleles. Molecular docking of selected HTL epitopes 620 

(cyan sticks) with their respective HLA class II allele binders (gray sticks). The 621 

study shows the docked complexes to have significantly negative binding energy 622 

along with hydrogen bonds (green dots) formation in the complex interface. 623 

 624 

Figure 5. (A) Molecular Dynamics simulation analysis of CTL epitopes and 625 

HLA allele complexes. Molecular Dynamics simulation study reveals a stable 626 

nature of the CTL-HLA allele complexes throughout 0.5-1 ns time window with 627 

reasonably invariable RMSD. (B) Molecular Dynamics simulation analysis of 628 
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CTL epitopes and HLA allele complexes. Molecular Dynamics simulation study 629 

reveals a stable nature of the HTL-HLA allele complexes throughout 0.5-1 ns 630 

time window with reasonably invariable RMSD. 631 

 632 

Molecular interaction analysis of selected CTL epitopes with TAP transporter. 633 

The molecular docking interaction analysis of the chosen CTL epitopes with the 634 

TAP transporter cavity showed a significantly strong molecular interaction with 635 

low binding energy and several hydrogen bonds formed at different sites of the 636 

TAP transporter cavity. Two sites of interaction were of particular interest, one 637 

located near the cytoplasmic end and the other in the vicinity of the ER lumen 638 

(Figure 6). Our study confirms the transportation feasibility of the chosen CTL 639 

epitopes from the cytoplasm into the ER lumen which is essential for the 640 

representation of peptides by the HLA allele molecules on the surface of antigen 641 

presenting cells. 642 

 643 

Figure 6. Molecular docking analysis of CTL epitopes within the TAP 644 

transporter cavity. Molecular interaction of CTL epitopes (cyan sticks) within the 645 

TAP cavity (gray ribbon/sticks) is shown in detail. For every panel of epitope-TAP 646 

complex, (A) shows the binding of epitope at two different sites within TAP cavity, 647 

(B) and (C) show detailed molecular interaction between epitopes and TAP 648 

cavity; (a, b) show chain A and B of TAP transporter. H-bonds are shown in 649 

yellow dots. (*) Binding energy, shown in kcal/mol.  650 

 651 
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Characterisation and molecular interaction analysis of designed Multi-652 

Epitope Vaccines with immunological receptor 653 

Characterisation of designed Multi-Epitope Vaccines 654 

Interferon-gamma inducing epitope prediction. Interferon-gamma (IFN-γ) 655 

inducing epitopes are involved in both the adaptive and the innate immune 656 

response. The IFN-γ inducing 15-mer peptide epitopes were screened from the 657 

CTL and HTL MEVs by utilizing the IFNepitope server. A total of 33 CTL MEV 658 

and 43 HTL MEV INF-γ inducing POSITIVE epitopes with a score of 1 or more 659 

than 1 were shortlisted (Supplementary table S9, Figure 7D & 7I). 660 

 661 

Figure 7. Tertiary structure modelling of CTL and HTL Multi-Epitope 662 

Vaccines. (A) & (F): Tertiary structural models of CTL and HTL MEVs showing 663 

epitopes in different colours corresponds to as in Figure 1. (B) & (G): Show the 664 

different domains of CTL and HTL MEVs. (C) & (H): The overlapping linear B cell 665 

epitope region present in CTL and HTL MEVs, shown by spheres. (D) & (I): From 666 

the CTL and HTL MEVs, the INF-γ inducing epitopes are shown in cyan, 667 

discontinuous B Cell epitopes are shown in magenta and the region common 668 

amongst INF-γ and discontinuous B Cell epitopes are shown in wheat colour. (E) 669 

& (J): RAMPAGE analysis of the refined CTL and HTL MEV models. 670 

 671 

MEVs allergenicity and antigenicity prediction. Both the CTL and HTL MEVs 672 

were analyzed to be NON-ALLERGEN by the AlgPred analysis scoring -673 

0.61243421 and -0.93493027 respectively while default threshold value being -674 
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0.4. CTL and HTL MEVs were also analyzed by VaxiJen to be probable 675 

ANTIGENS with the prediction score of 0.4447 and 0.4836 respectively, while the 676 

default threshold value for viral proteins being 0.4. Hence, with the mentioned 677 

analysis tools both the CTL and HTL MEVs are predicted to be non-allergic as 678 

well as antigenic in nature. 679 

 680 

Physicochemical property analysis of designed MEVs. ProtParam analysis were 681 

performed for both the CTL and HTL MEVs to analyse their physiochemical 682 

properties. The CTL MEV is composed of 576 amino acids, has a molecular 683 

weight of 58.57 kDa and a  theoretical pI of 8.19. The expected half-life of the 684 

CTL MEV in E.coli, yeast and mammalian reticulocytes were predicted with 10 h, 685 

20 min, and 30 h respectively; the aliphatic index of CTL MEV was found to be 686 

58.42, and grand average of hydropathicity (GRAVY) of CTL MEV was found to 687 

be -0.010, both indicating globular and hydrophilic nature of the CTL MEV. The 688 

instability index score of the CTL MEV was 48.03 indicating its stable folding 689 

under native conditions.  690 

Further, the ProtParam analysis of the HTL MEV showed for the 857 691 

amino acids, a molecular weight of 87.62 kDa and a  theoretical pI of 5.99. The 692 

expected half-life of HTL MEV in E.coli, yeast and mammalian reticulocytes was 693 

predicted to be 10 h, 20 min and 30 h, respectively. The aliphatic index of HTL 694 

MEV was calculated as 82.99, and the grand average of hydropathicity (GRAVY) 695 

of the HTL MEV was found to be 0.188, both indicating that HTL MEV has a 696 

globular and hydrophilic nature. The instability index of the HTL MEV was 45.66 697 
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indicating its stable nature. 698 

 699 

Tertiary structure modelling and refinement of MEVs. 3D homology models were 700 

generated for both the CTL and HTL MEVs by utilizing the RaptorX modelling 701 

tool (Figure 7A, 7F). The model obtained for CTL MEV has 6% helix, 27% β-702 

sheet, 66% coil content and structural elements are 23% exposed, 39% medium 703 

and 36% buried. The structural model has three domains ranging from amino 704 

acid 1 to 46 (1st domain, template-1fd3:A), 47 to 520 (2nd domain, templates-705 

1yrzA, 1y7bA, 5jozA, 3zxjA, 5z5dA) and 521 to 576 (3rd domain , template-706 

1kj6:A) (Figure 7B). Similarly, the 3D model calculated with RaptorX for the HTL 707 

MEV has 21% helix, 22% β-sheet, 56% coil content with 24% of the amino acids 708 

exposed, 39% medium and 36% buried. The structural model has three domains 709 

ranging from amino acid 1 to 46 (1st domain, template-1fd3:A), 47 to 801 (2nd 710 

domain, templates-5m5zA, 3eqnA), 802 to 857 (3rd domain, template-1kj6:A) 711 

(Figure 7G). The P-Value for the best template based CTL and HTL MEV 712 

homology models were 2.79e-04 and 5.99e-03 respectively. Good quality, mostly 713 

alpha proteins have a P-value of less than 10-3 and that of mostly beta proteins 714 

has a P-value of less than 10-4. Hence both the homology models of CTL and 715 

HTL MEVs are predicted to be of good quality. Since for the CTL and HTL MEV 716 

design, the CTL and HTL epitopes used also show overlapping common regions 717 

with the linear B cell epitopes (Figure 2), both the generated CTL and HTL MEV 718 

models also carry the overlapping regions of linear B Cell epitopes (Figure 7C, 719 

7H). 720 
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The generated CTL and HTL 3D models were further refined using 721 

ModRefiner to fix structural gaps followed by GalaxyRefine refinement. 722 

Refinement with ModRefiner showed a TM-score of 0.9703 and 0.8934 for the 723 

CTL and HTL models respectively, both being close to 1 indicating the initial and 724 

the refined models were structurally similar. For the CTL MEV model refinement, 725 

the sore of models 1 for different parameters were, Rama favored was 90.8%, 726 

GDT-HA was 0.9596, RMSD was 0.385, MolProbity was 2.673, Clash score was 727 

29.9, and Poor rotamers was 1.8. Likewise for HTL MEV model refinement, the 728 

sore of models 1 for different parameters were, Rama favoured was 88.5%, 729 

GDT-HA was 0.9463, RMSD was 0.419, MolProbity was 2.811, Clash score was 730 

38.4, and Poor rotamers was 1.6. Here, MolProbity shows the log-weighted 731 

combination of the clash score, percentage Ramachandran not favoured and the 732 

percentage bad side-chain rotamers. After refinement, all the mentioned 733 

parameters were significantly improved in comparison to the initial CTL and HTL 734 

MEV models (Supplementary table S10). 735 

 736 

Validation of CTL and HTL MEVs refined models. Both the CTL and HTL model 737 

were analysed with the RAMPAGE analysis tool after refinement. The refined 738 

CTL MEV model has 91.5% residues in favored regions, 6.8% residues in 739 

allowed regions, and only 1.7% residues in the outlier region; while the refined 740 

HTL MEV model was found to have 89.5% of residues in favored region, 8.7% 741 

residues in allowed region, and 1.9% residues in the outlier region (Figure 7E, 742 

7J). 743 
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 744 

Discontinuous B-cell epitope prediction from MEVs. Discontinuous B-cell 745 

epitopes were further predicted from the final refined 3D models of CTL and HTL 746 

MEVs utilizing the ElliPro tool on IEDB server. The screening revealed that the 747 

CTL MEV carries 3 and the HTL MEV has 2 potential discontinuous epitopes. 748 

The PI (Protrusion Index) score of the CTL MEV discontinuous B cell epitopes 749 

ranges from 0.682 to 0.747 and that of HTL MEV it ranges from 0.687 to 0.745 750 

(Supplementary table S11, Figure 7D & 7I). The higher PI score indicates a 751 

greater potential of the discontinuous B cell epitope. 752 

 753 

Molecular interaction analysis of MEVs with TLR-3 . 754 

The refined models of CTL and HTL MEVs were further studied for their 755 

molecular interaction with the ectodomain (ECD) of human TLR-3. Therefore, 756 

molecular docking of CTL and HTL MEVs model with the TLR-3 crystal structure 757 

model (PDB ID: 2A0Z) was performed utilizing the PatchDock tool. Generated 758 

docking conformation with highest scores of 22382 and 18264 for CTL and HTL 759 

MEVs, respectively were selected for further studies. The highest docking score 760 

predicted with the PatchDock tool indicates the best geometric shape 761 

complementarity fitting conformation of MEVs and the TLR-3 receptor. Both, the 762 

CTL and HTL MEVs were fitting into the ectodomain region of TLR-3 after 763 

docking (Figue 8A & 8E). The CTL and HTL MEVs have shown to form multiple 764 

hydrogen bonds within the ectodomain cavity region of TLR-3. Further, the 765 

molecular dynamics simulation study was also performed for the docked 766 
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complexes of both the MEVs and TLR-3. In MD simulations both the complexes 767 

have shown reasonably stable RMSD value between ~ 0.2 to 0.5 nm for a given 768 

time window of 10 ns at invariable pressure (~ 1 bar) and temperature (~ 300 K) 769 

(Figure 8B & 8F). The reasonably invariant radius of gyration (Rg) of both MEVs-770 

TLR-3 complexes (Figure 8C & 8G), and RMS fluctuation (RMSF) for all the 771 

atoms in both the complexes (Figure 8D & 8H) indicate that the MEVs-TLR3 772 

complexes are stable. The B-factor analysis of MEVs-TLR3 complexes was also 773 

performed. The B-factor indicates the displacement of the atomic positions from 774 

an average (mean) value i.e. the more flexible an atom is the larger the 775 

displacement from the mean position will be (mean-squares displacement) 776 

(Figure 8A and 8E). The areas with high B-factors are colored red (hot), while low 777 

B-factors are colored blue (cold) (VIBGYOR presentation). The B-factor of most 778 

of the regions of MEVs-TLR3 complexes indicates the stable nature of the 779 

complexes while a very small region is found to be fluctuating. The results 780 

suggest a stable complex formation tendency for both the CTL and HTL MEVs 781 

with the ectodomain of the human TLR-3 receptor. 782 

 783 

Figure 8. Molecular Docking and dynamics simulation study of CTL and 784 

HTL MEVs with TLR-3. (A) CTL and (E) HTL MEVs (VIBGYOR) docked 785 

complex with TLR-3 (gray). Both the complexes are forming several hydrogen 786 

bonds in the MEV and TLR-3 interface, as shown by green dots. B-Factor of the 787 

docked MEVs is shown by a rainbow (VIBGYOR) presentation. The regions in 788 

blue being indicated stable and the region in red indicate unstable. In the above 789 
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complexes, most of the region of docked MEVs is in blue and with the very small 790 

region is green, yellow or orange, hence the complexes are predicted to be very 791 

stable. (B) and (F), RMSD as generated by the molecular Dynamics simulation 792 

study of CTL, HTL MEVs and TLR-3 complexes. (C) & (G) Rg (radius of gyration) 793 

across the time window of 10 nanosecond. (D) & (H), RMS fluctuation for all the 794 

atoms of the CTL, HTL MEVs and TLR-3 complexes. 795 

 796 

In-silico analysis of MEVs for cloning and expression 797 

Analysis of cDNA of both the MEVs for cloning and expression in mammalian cell 798 

line. Complementary DNA codon optimized for CTL and HTL expression in 799 

mammalian host cell lines (Human) was generated with the Java Codon 800 

Adaptation Tool. The generated optimized cDNA’s for both the MEVs were also 801 

analysed by utilizing the GenScript Rare Codon Analysis Tool revealing aGC 802 

content of optimized CTL-MEV cDNA of 69.79% and a CAI (Codon Adaptation 803 

Index) score of 1.00 with 0% tandem rare codons. Likewise, the GC content of 804 

the optimized HTL-MEV cDNA was 70.69%, CAI score was 1.00 with 0% tandem 805 

rare codons. Since for higher possibility for cDNA expression in human 806 

expression system, the GC content of a cDNA should be within the range of 30% 807 

to 70%, the CAI score should be between 0.8-1.0, and the tandem rare codon 808 

frequency that indicates the presence of low-frequency codons, should be <30%, 809 

the cDNA constructs of CTL and HTL MPVs are expected to have high potential 810 

for expression in human expression system. The tandem rare codons may hinder 811 

the proper expression of the cDNA or even interrupt the translational machinery 812 
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of the chosen expression system. According to the GenScript Rare Codon 813 

Analysis the cDNA of both the MEVs satisfy all the mentioned parameters and 814 

are predicted to have high expression in the mammalian host cell line (Human). 815 

 816 

CONCLUSION 817 

In the present study, we have designed and validated two multi-epitope 818 

vaccines derived from CTL and HTL epitopes. The selected peptides show 819 

significant sequence overlap with screened linear B cell epitopes. Both the CTL 820 

and HTL MEVs tertiary models carry potential discontinuous B cell epitopes and 821 

INF-γ epitopes. Consequently, the designed MEVs might have the potential to 822 

elicit profound humoral and cellular immune responses. Human β-Defensin 2 and 823 

3 fused to the N and C terminal ends of both the MEVs serving as adjuvants to 824 

enhance the immune response. The identified epitopes for the CTL and HTL 825 

MEVs were also validated by molecular docking and MD simulation studies to 826 

test the interaction with their respective HLA allele binders. Molecular interaction 827 

of the selected CTL epitopes within the TAP transporter cavity was also 828 

evaluated indicating a favorable transport of epitopes from cytoplasm to lumen of 829 

Endoplasmic Reticulum for further presentation on cell surface by Golgi bodies. 830 

Our analysis of the shortlisted CTL and HTL epitopes combined revealed 831 

coverage of 97.88% world human population. The molecular interaction analysis 832 

of both the CTL and HTL MEVs with the immunoreceptor TLR3 showed 833 

structural fit of the MEVs into the ectodomain of TLR3 receptor cavity and the MD 834 

simulations indicate a very stable complex formation. Since both the CTL and 835 
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HTL MEVs carry CTL, HTL as well as discontinuous B cell epitopes, the 836 

combined administration of both the MEVs, is predicted to elicit both the humoral 837 

as well as cell-mediated immune response. The cDNA for both the MEVs were 838 

designed considering codon-bias for the expression in mammalian host cell lines 839 

(Human). The cDNAs were optimized with respect to their GC content and zero 840 

tandem rare codons  to gain high expression in mammalian host cell lines 841 

(Human). In future experimental studies the designed CTL and HTL MEVs 842 

should be cloned, expressed and validated in-vivo and in animal trails as 843 

potential vaccine candidates against NiV infection. 844 

  845 

Supplementary figure S1. Workflow chart. 846 

 847 

Supplementary figure S2. (A) Rg (radius of gyration) for the CTL epitope – HLA 848 

class I allele complexes, across the time window of 1 nano second. (B) Rg for 849 

the HTL epitope – HLA class II allele complexes, across the time window of 1 850 

nano second. 851 

 852 

Supplementary figure S3. (A) RMS fluctuation in nanometers for all the atoms 853 

of the CTL epitope – HLA class I allele complexes. (B) RMS fluctuation in 854 

nanometers for all the atoms of the HTL epitope – HLA class II allele complexes. 855 

 856 

Supplementary figure S4. (A) B-Factor of CTL epitope – HLA class I allele 857 

complexes (B) B-Factor of HTL epitope – HLA class II allele complexes. Epitopes 858 

are shown in sticks and HLA alleles are shown in gray cartoons. B-factor is 859 

indicated by rainbow (VIBGYOR) colour, blue for stable region and red for most 860 

unstable region. 861 

 862 

Supplementary table S1. Protein sequence retrieval, tertiary structures 863 

retrieval and homology modeling of nine Nipah proteins. Nipah  protein 864 

sequences were retrieved from NCBI. Available structure files (pdb) for Nipah 865 

proteins were retrieved from RCSB PDB. Nipah proteins with no tertiary structure 866 

available were subjected to homology modeling by Swissmodel. 867 

 868 

Supplementary table S2. Homology modeling for HLA alleles. Tertiary 869 

structure of HLA alleles were modeled by homology modeling using SwissModel 870 
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server. Templates were chosen with highest sequence identity. Generated 871 

models with acceptable QMEAN value were chosen for further studies. 872 

 873 

Supplementary table S3. Shortlisted high scoring CTL epitopes. Selected 874 

high scoring CTL epitopes and their respective HLA alleles binders are listed. In-875 

silico analysis have shown all the selected epitopes to be non-toxic (Non-Toxin) 876 

as well as they show significant conservancy. ToxinPred analysis is based on the 877 

ToxinPred main dataset used by “ToxinPred” algorithm to predict toxicity of any 878 

unknown peptide. # Epitope match with previous studies indicating consensus in 879 

epitope screening by different approaches and methods. 880 

 881 

Supplementary table S4. Shortlisted high scoring HTL epitopes. Selected 882 

high scoring HTL epitopes and their respective HLA alleles binders are listed 883 

above. In-silico analysis have shown all the selected epitopes to be non-toxic 884 

(Non-Toxin) as well as they show significant conservancy. 885 

 886 

Supplementary table S5. World population coverage by the shortlisted CTL 887 

and HTL epitopes combined. With a standard deviation of 21.97 on an average 888 

97.88% of world population could be covered by the joint administration of 889 

selected CTL and HTL epitopes as vaccine candidate. 890 

 891 

Supplementary table S6. Shortlisted B Cell epitopes. BepiPred Linear B Cell 892 

epitopes showing sequence overlap with CTL and HTL epitopes are shortlisted 893 

above. In-silico analysis have shown all the selected epitopes to be non-toxic 894 

(Non-Toxin) as well as they show significant amino acid sequence conservancy. 895 

# Epitope match with previous studies indicating consensus in epitope screening by 896 

different approaches and methods. 897 

 898 

Supplementary table S7. CTL epitope prediction. Detailed scoring of all 899 

screened CTL epitopes and their respective HLA class I allele binders. CTL 900 

epitopes were chosen on the basis of high “Total score” and higher number of 901 

HLA allele binders. Total score is a combined score of TAP score, MHC score, 902 

Proteasome score and Processing score. 903 

 904 

Supplementary table S8. HTL epitope prediction. Percentile rank of HTL 905 

epitopes and their respective HLA class II allele binders. HTL epitopes were 906 

screened on the basis of percentile rank (lower the percentile number, higher the 907 

rank) and larger number of HLA allele binders. Last column show the method 908 

used for epitope screening. 909 

 910 

Supplementary table S9. INF-γ epitopes from CTL and HTL MEVs. INF-γ 911 

inducing (POSITIVE) epitopes from CTL and HTL MEVs were screened by using 912 

“Motif and SVM hybrid” (MERCI & SVM) approaches. 913 

 914 
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Supplementary table S10. Refinement models of CTL and HTL MEVs. CTL 915 

and HTL MEVs models were refined by GalaxyWEB server and used for further 916 

studies. After refinement in particular Rama favored residues increased 917 

significantly. 918 

 919 

Supplementary table S11. B Cell discontineous epitopes of CTL & HTL 920 

MEVs. Discontinuous B Cell epitopes predicted by ElliPro (IEDB) from CTL & 921 

HTL MEVs. 922 
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Figure 1. Design of Multi-Epitope Vaccine (MEVs). (A) CTL and (B) HTL 995 

epitopes were linked by the short peptide linker ‘GGGGS’. Human β Defensin 2 996 

and β Defensin 3 were used as an adjuvant at the N and C terminals 997 

respectively. The short peptide EAAAK was used to link the β Defensin 2 and β 998 

Defensin 3. Epitopes from different proteins were coloured in different colours. C 999 

terminal 6xHis is designed as His tag. * Epitopes common to Phosphoprotein, V 1000 

Protein and W protein. 1001 
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Figure 2. Overlapping regions amongst the linear B cell epitopes predicted 1070 

by the BepiPred method and other seven different B cell epitopes 1071 

prediction methods. B cell epitopes predicted by the BepiPred method and 1072 

other different protein sequence based (Chou.., Emini.., Karplus.., Kolaskar.., 1073 

and Parker..) and protein structure based (DiscoTope and ElliPro) prediction 1074 

methods were found to have significant consensus. Consensus overlapping 1075 

regions of BepiPred epitopes are underlined by the different colour, 1076 

corresponding to respective prediction method. 1077 
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Figure 3. Overlapping CTL, HTL and B cell epitopes. Multiple sequence 1152 

alignment performed by Clustal Omega at EBI to identify the consensus 1153 

overlapping regions of CTL (red), HTL (blue) and B cell epitopes (green) 1154 

amongst shortlisted epitopes. Epitopes with overlapping region amongst all the 1155 

three types of epitopes (CTL, HTL and B Cell epitopes), epitopes with full 1156 

sequence overlap and epitopes with the highest number of HLA allele binders 1157 

were chosen for further studies (encircled). 1158 
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Figure 4 (A). Molecular Docking analysis of CTL epitopes and HLA alleles. 1235 

Molecular docking of selected CTL epitopes (cyan sticks) with their respective 1236 

HLA class I allele binders (gray sticks). The study shows the docked complexes 1237 

to have significantly negative binding energy along with hydrogen bonds (green 1238 

dots) formation in the complex interface. (B) Molecular Docking analysis of 1239 

HTL epitopes and HLA alleles. Molecular docking of selected HTL epitopes 1240 

(cyan sticks) with their respective HLA class II allele binders (gray sticks). The 1241 

study shows the docked complexes to have significantly negative binding energy 1242 

along with hydrogen bonds (green dots) formation in the complex interface. 1243 
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Figure 5 (A). Molecular Dynamics simulation analysis of CTL epitopes and 1316 

HLA allele complexes. Molecular Dynamics simulation study reveals a stable 1317 

nature of the CTL-HLA allele complexes throughout 0.5-1 ns time window with 1318 

reasonably invariable RMSD. (B) Molecular Dynamics simulation analysis of 1319 

CTL epitopes and HLA allele complexes. Molecular Dynamics simulation study 1320 

reveals a stable nature of the HTL-HLA allele complexes throughout 0.5-1 ns 1321 

time window with reasonably invariable RMSD. 1322 
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 1384 

Figure 6. Molecular docking analysis of CTL epitopes within the TAP 1385 

transporter cavity. Molecular interaction of CTL epitopes (cyan sticks) within the 1386 

TAP cavity (gray ribbon/sticks) is shown in detail. For every panel of epitope-TAP 1387 

complex, (A) shows the binding of epitope at two different sites within TAP cavity, 1388 

(B) and (C) show detailed molecular interaction between epitopes and TAP 1389 

cavity; (a, b) show chain A and B of TAP transporter. H-bonds are shown in 1390 

yellow dots. (*) Binding energy, shown in kcal/mol.  1391 
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Figure 7. Tertiary structure modelling of CTL and HTL Multi-Epitope 1438 

Vaccines. (A) & (F): Tertiary structural models of CTL and HTL MEVs showing 1439 

epitopes in different colours corresponds to as in Fig. 1. (B) & (G): Show the 1440 

different domains of CTL and HTL MEVs. (C) & (H): The overlapping linear B cell 1441 

epitope region present in CTL and HTL MEVs, shown by spheres. (D) & (I): From 1442 

the CTL and HTL MEVs, the INF-γ inducing epitopes are shown in cyan, 1443 

discontinuous B Cell epitopes are shown in magenta and the region common 1444 

amongst INF-γ and discontinuous B Cell epitopes are shown in wheat colour. (E) 1445 

& (J): RAMPAGE analysis of the refined CTL and HTL MEV models. 1446 
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Figure 8. Molecular Docking and dynamics simulation study of CTL and 1520 

HTL MEVs with TLR-3. (A) CTL and (E) HTL MEVs (VIBGYOR) docked 1521 

complex with TLR-3 (gray). Both the complexes are forming several hydrogen 1522 

bonds in the MEV and TLR-3 interface, as shown by green dots. B-Factor of the 1523 

docked MEVs is shown by a rainbow (VIBGYOR) presentation. The regions in 1524 

blue being indicated stable and the region in red indicate unstable. In the above 1525 

complexes, most of the region of docked MEVs is in blue and with the very small 1526 

region is green, yellow or orange, hence the complexes are predicted to be very 1527 

stable. (B) and (F), RMSD as generated by the molecular Dynamics simulation 1528 

study of CTL, HTL MEVs and TLR-3 complexes. (C) & (G) Rg (radius of gyration) 1529 

across the time window of 10 nanosecond. (D) & (H), RMS fluctuation for all the 1530 

atoms of the CTL, HTL MEVs and TLR-3 complexes. 1531 
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