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Abstract

Modern optimizing compilers apply a fixed sequence
of optimizations, which we call a compilation sequence,
to each program that they compile. These compilers
let the user modify their behavior in a small num-
ber of specified ways, using command-line flags (e.g.,
-O1, -O2, . . . ). For five years, we have been working
with compilers that automatically select an appro-
priate compilation sequence for each input program.
These adaptive compilers discover a good compilation
sequence tailored to the input program, the target
machine, and a user-chosen objective function. We
have shown, as have others, that program-specific se-
quences can produce better results than any single
universal sequence [1, 23, 7, 10, 21]

Our adaptive compiler looks for compilation se-
quences in a large and complex search space. Its
typical compilation sequence includes 10 passes (with
possible repeats) chosen from the 16 available—there
are 1610 or 1,099,511,627,776 such sequences. To
learn about the properties of such spaces, we have
studied subspaces that consist of 10 passes drawn
from a set of 5 (510 or 9,765,625 sequences). These 10-
of-5 subspaces are small enough that we can analyze
them thoroughly but large enough to reflect impor-
tant properties of the full spaces. This paper reports,
in detail, on our analysis of several of these subspaces
and on the consequences of those observed properties
for the design of search algorithms.

1 Compilation Sequences

Compilers operate by applying a fixed sequence of op-
timizations, called a compilation sequence, to all pro-
grams. The compiler writer must select ten to twenty
optimizations from the hundreds that have been pro-

† This work has been supported by the Los Alamos Com-
puter Science Institute and by the National Science Foundation
through grant CCR-0205303.

posed in the literature; then the compiler writer must
select an order in which they should execute. Choos-
ing the right optimizations and the right order for one
specific program is hard. The compiler writer must
choose a set that works well for all programs.

The compiler writer must choose a limited set
of techniques to include in the default compilation
sequence. A given optimization only improves pro-
grams exhibiting the inefficiencies that it targets. For
one program, the problem of optimization choice can
be solved: pick techniques that address that code’s
inefficiencies. The compiler’s “universal” sequence,
however, must work well for all programs. Thus,
these sequences tend to include optimizations that
are broadly applicable rather than high-payoff tech-
niques with a more narrow focus.1 As Robison ob-
serves: “Compile-time program optimizations are sim-
ilar to poetry: more are written than are actually
published in commercial compilers” [19].

The compiler writer must also pick an order in
which to execute the optimizations. We have little
theoretical understanding of the effect of a given com-
pilation sequence on the properties of the compiled
code that it produces. The interactions and inter-
dependences between optimizations are complex and
uncharacterized. Transformation a may create op-
portunities for later application of b; alternately, it
may eliminate opportunities for another transforma-
tion c [18, 23, 6]. In fact, this behavior is also program
specific; a’s ability to create or eliminate opportuni-
ties depends on the presence of specific features in
the code being compiled.

To address these problems—compilation choice and
compilation order—we have developed a new com-
piler structure. Our adaptive compiler uses a program-

1In practice, every compiler has economic limits: compile time,
developer effort, calendar time before release. These con-
straints limit the number of optimizations that will be imple-
mented. In this constrained environment, more general tech-
niques are the safe strategy.



specific compilation sequence to optimize each pro-
gram. Our work has shown that program-specific
compilation sequences can produce better code than
can a “universal” sequence [8, 1]. Today, our pro-
totype compiler must find these program-specific se-
quences with search techniques. To design effective
search techniques, we must understand the properties
of the spaces that the compiler searches.

Without a theory that accounts for the impact of
individual transformations and the interactions be-
tween several of them in sequence,2 the compiler can-
not compute a fitness function or a quality measure
for a proposed sequence except by evaluating it: com-
piling the program and measuring properties of the
compiled code. Further, we cannot determine how
good a sequence is compared to a sequence that opti-
mizes a given objective function—because we cannot
identify the optimal sequence except with exhaustive
search. The spaces are too large to examine each
solution. Our goal is to develop search algorithms
that, with high probability, find “good” solutions: so-
lutions with near-optimal fitness values. If we can
make the search for such sequences reasonably ef-
ficient, then discovering and using program-specific
compilation sequences will be practical.

Our approach has been to use empirical techniques
to discover properties of these search spaces. We
enumerated subspaces, recorded the results, and ana-
lyzed that data to discover properties of those spaces
that might affect the behavior of search algorithms.
To confirm that those properties carry over into larger
search spaces and into spaces for other programs, we
have conducted exploratory experiments with a larger
set of benchmarks and a larger set of optimizations.
Many of the observed properties of the subspaces also
appear to hold in these other spaces.

We have shown that program-specific sequences
produce consistently better results than any universal
sequence [1]. This paper reports on our preliminary
analysis of several 10-of-5 subspaces. Specifically, it
examines the following questions:

1. What percentage of the sequences have fitness
values within a given distance of optimal?

2. How are these “good” sequences distributed in
the search spaces?

3. Are local minima3 numerous? How are their
fitness values distributed?

2Others, notably Soffa et al., are working on models that cap-
ture these effects [24].
3The family of search algorithms we consider are randomized
hill climbing algorithms, and the distribution and preponder-
ance of local minima in the search space determine their overall
efficacy.

Equally important, we need to understand the struc-
tural properties of the search spaces. Do search tech-
niques outperform random sampling? Can searches
capitalize on the structure of the spaces?

The remainder of this paper is organized as fol-
lows. Section 2 describes our approach and provides
necessary background detail on the methods used in
the enumeration study. Section 3 presents the re-
sults of our initial exploratory surveys of two 10-of-5
subspaces. Section 4 describes the results of our ex-
periments that attempted to confirm for a 10-of-16
space and for larger benchmarks some of properties
observed in the subspace studies. Section 5 presents
one of the first empirically derived cost-benefit trade-
off curves for program-specific compilation sequences.
These curves demonstrate the dominance of our search
techniques over random sampling in spaces where the
probability of finding a good sequence is low, and
where there is structure in the form of long downhill
runs in fitness values in the space.

2 Experimental Plan

The experiments described in this paper consist of
two phases. In the first phase, we selected two in-
teresting but small Fortran programs and a set of
5 optimizations taken from the 16 in our prototype
compiler (see Table 1). We enumerated the corre-
sponding 10-of-5 space for each program. This is the
set of 510 sequences, each of length ten, constructed
from the five chosen optimizations. Note that re-
peated passes are considered. We compiled the code
for an abstract risc machine and simulated its execu-
tion to determine the number of operations executed.
We analyzed the data, offline, to discover answers to
the questions raised in Section 1.

In the second phase, we applied the insights gained
in the first phase to searches in a larger 10-of-16 space,
using a larger set of programs. We evaluated three
techniques, an impatient hill climber, a genetic al-
gorithm, and random sampling. Our results suggest
that many of the properties observed in the enumer-
ation studies carry over into these larger spaces.

Using an Abstract Machine The work in this paper fo-
cuses on searching the space of compilation sequences.
The details of evaluation matter much less than the
match between program and optimizations and the
interactions among optimizations. Using a simulated
abstract machine as a target allows us to create an
instrumented, homogeneous execution environment
using a variety of target machines. The many ex-
periments that underlie this paper took many CPU
months. Because we used the simulated abstract ma-
chine, we were able to perform the experiments on a



p loop peeling peels the first iteration of each in-
nermost loop

l partial redundancy elimination finds and elimi-
nates redundancies and partial redundancies [17]

o peephole optimization examines logically adja-
cent operations and tries to simplify them [13]

s register coalescing eliminates register-to-register
copy operations [5]

n useless control-flow elimination eliminates
empty blocks and redundant control-flow [11]

c sparse conditional constant propagation com-
bines optimistic constant propagation with un-
reachable code elimination [22]

d dead code elimination based on ssa-form [12, 11]
g optimistic value numbering uses partitioning to

find global redundancies [2]
m renaming builds a name space suitable for the

implementations of either l or z. The compiler
inserts it automatically before l or z.

r algebraic reassociation uses commutative and
distributive law to reorder expressions [3]

t strength reduction replaces iterated multiplies
with iterated additions [9]

u local value numbering folds constants and elimi-
nates redundancies [11]

v SCC value numbering implements an optimistic,
global version of value numbering [20]

x DVNT performs value numbering over domina-
tor trees [4]

y EBB value numbering performs value numbering
over extended basic blocks [4]

z lazy code motion improves on l with more careful
placement of inserted operations [16]

Table 1: Passes available in the prototype compiler

variety of machines. We can also compare and con-
trast the results with those of experiments that we do
in the future—after the current hardware is gone.4

Background on the Enumerations The two programs,
fmin and zeroin, are both taken from Forsythe, Mal-
colm, and Moler’s classic book on numerical algo-
rithms [14]. fmin computes the minimum of a uni-
modal function by a combination of golden section
search and parabolic interpolation. zeroin searches
for the zero of an input function between given bounds.
Both programs are small (see Table 2 in Section 4).

fmin has a complex control-flow graph [10]. The
column labeled ILOC lines in Table 2 gives the number
of operations when the code is translated into ILOC,

4To validate that the ideas and results hold for other machines,
we have also performed a series of experiments using our Sparc

code generator. The results on both the 10-of-5 and 10-of-16
spaces are similar to those described in Section 4.

the instructions for the simulated abstract machine
referred to earlier, that we use as an intermediate
code in the compiler [11].

To select 5 transformations for the enumerations,
we ran a hill-climbing algorithm to find good sequences
in a 10-of-16 space. The full set of transformations
is shown in Table 1; they address scalar inefficiencies
rather than memory performance [15, 11]. The ob-
jective function was ILOC operations executed, which
we also refer to as the dynamic operation count. We
started the hill climber from 100 randomly chosen
points and recorded the final sequence of each hill-
climber run. Finally, we computed the frequency with
which each transformation appears in the winning se-
quences. We chose the top 5 transformations selected
by this process: p, l, o, s, and n, listed at the top of
Table 1.

We exhaustively enumerated the 10-of-5 space for
both fmin and zeroin using these 5 transformations,
designated fmin+plosn and zeroin+plosn. The ini-
tial enumeration of fmin+plosn required 14 CPU-
months and 6 calendar-months on a set of 3 machines.
Subsequent improvements to the testing harness and
the compiler’s basic infrastructure have improved our
testing speed; today, we can enumerate fmin+plosn

in less than 40 CPU-days on a collection of SUN and
MacIntosh workstations. The enumeration scales well
because it consists of millions of independent tasks.

3 Surveying the Landscape

As a starting point, we enumerated the fmin+plosn

and zeroin+plosn spaces, using dynamic operation
counts as the fitness value. Figure 1 shows the dis-
tribution of dynamic operation counts for the two
spaces. Note that both distributions are discrete,
with large gaps in the fitness values. For instance,
there are no sequences with operation counts that lie
between 14% and 20% of the optimum. The best se-
quence in fmin+plosn is 41.6% better than the empty
compilation sequence (1002 vs 1716 operations), and
the best sequence in zeroin+plosn is 42.5% better
(832 vs 1446 operations). No sequence in either space
does worse than the empty compilation sequence. In
the full space, however, it is easy to get results that
are worse than the empty sequence, by a factor of two
or more. The bottom graph in Figure 1 shows cumu-
lative distributions for both spaces. Roughly 20% of
the sequences lie within 10% of the optimum, while
nearly 30% of the sequences fall within 20% of the op-
timum. These statistics suggest that good sequences
are common in both spaces.

If these solutions are distributed uniformly, we
would expect repeated random sampling of the space
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Figure 1: The distribution of dynamic operation counts
for fmin+plosn (top) and zeroin+plosn (center). The
bottom plot shows the percentage of sequences that are
within x% of the optimal solution for fmin+plosn and for
zeroin+plosn.

to yield good sequences. Let a good sequence be one
whose performance is within x% of the optimum, and
let p be the probability that a random sequence in the
subspace is good. The probability of picking a good
sequence at the N th probe, after failing the previous
N − 1 times is p(1 − p)

N−1
. If ǫ is a bound on the

probability of failure to obtain a good sequence after

N independent random probes, we have

p + p(1 − p) + p(1 − p)
2

+ . . . + p(1 − p)
N−1

≥ 1 − ǫ

which can be used to solve for the number of random
samples, N , needed to guarantee a solution within x%
of the optimum with probability greater than 1 − ǫ.
Simple algebra yields:

N ≤
log ǫ

log(1 − p)

Note that number of samples needed (N) depends
only on the percentage p of good solutions in the
space, and the probability 1− ǫ of not missing a good
solution. It is independent of the size of the space!
For fmin+plosn and zeroin+plosn, if we want solu-
tions that are within 10% of the optimum, with prob-
ability greater than 0.999, we need no more than 43
independent random samples.

The bound on N above assumes a uniform distri-
bution of good sequences throughout the space. Does
this assumption hold for fmin+plosn and zeroin+

plosn? To get a handle on this question, we must em-
pirically estimate the distribution. The estimation re-
quires that we define a neighborhood relation among
sequences. We say that sequence a is a neighbor of se-
quence b if they differ in exactly one position—that is,
their Hamming distance is one. Other possible defini-
tions of neighborhood remain to be investigated. The
results presented in this paper define a’s neighbors as
the set of strings at Hamming-1 distance.

To examine the distribution of solutions, we begin
by building a graph whose nodes are sequences with
fitness values that lie within x% of the optimum. We
add an edge between any two nodes whose sequences
are at Hamming-1 distance. Any connected compo-
nent of this graph is considered a cluster. We con-
sider a singleton node, connected to no other node,
as a degenerate cluster. Figure 2 shows the num-
ber and sizes of the clusters in the sequence space
as a function of x, the percentage difference in the
fitness value of a sequence from that of an optimal
sequence. For x < 2.6%, there are multiple isolated
clusters (as many as 42, most of them of size 1), and
a single large cluster. The bottom plot shows this
effect well. Further, it appears that the single large
cluster is quite well separated in the sequence space
from the smaller, isolated clusters for x < 2.6%. The
average Hamming distance between sequences in the
large cluster and those in the smaller clusters is 6.5,
while the Hamming distance between the sequences
in smaller clusters themselves averages 2.8.

A dramatic transition occurs in the clustering of
fmin+plosn sequences with dynamic operation counts
greater than 2.6% of the optimal sequence. At that



Number of clusters for fmin+plosn

0

5

10

15

20

25

30

35

40

45

0.00% 5.00% 10.00% 15.00% 20.00%

x% - distance from the best value

N
u

m
b

e
r
 o

f 
c
lu

s
te

r
s

0%

5%

10%

15%

20%

25%

30%

%
 o

f 
s
tr

in
g

s

number of clusters

strings in the top x% (secondary axis)

Mean cluster sizes for fmin+plosn

0

0.5

1

1.5

2

2.5

3

0.00% 5.00% 10.00% 15.00% 20.00%

x% - distance from the best value

S
iz

e
 (

m
il

li
o

n
s
)

mean cluster size

cluster size standard deviation

Clusters for fmin+plosn

(does not show the largest cluster in each set)

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

x% - distance from the best value

Figure 2: The top plot shows the number of clusters
in the fmin+plosn as a function of solution quality, mea-
sured as percentage from the optimal. Note that the num-
ber of clusters drops to 1 at x = 2.6%. The center plot
shows variation in cluster sizes as a function of solution
quality. The bottom plot is a scale representation of how
clusters (other than the single giant cluster) vary with
solution quality. The plots for zeroin+plosn are similar.

point, all sequences coalesce into a single cluster. The
number of good sequences also rises sharply. This
change suggests a phase transition at x = 2.6% in
the average case complexity of finding a good se-
quence in fmin+plosn. The existence of the phase

transition implies that the task of finding a sequence
that is within 2.6% of the optimum in fmin+plosn,
is qualitatively different from the task of finding se-
quences with a looser quality bound (x > 2.6%).
For the “hard” region, an algorithm with multiple
restarts is important to ensure that it can reach iso-
lated clusters. For the “easy” region, simple random
sampling might suffice, due to the large number of
good sequences and their widespread distribution in
the spaces.

While cluster analysis provides an overall view of
the distribution of good solutions in the spaces, it
gives no insight into the difficulty of reaching good
solutions from different starting points. Does the ter-
rain have a natural slope that can guide a descent
algorithm to a good solution? How widespread are
local minima in the space? How many of these lo-
cal minima are “good” (i.e., within x% of the opti-
mum)? fmin+plosn contains 31,995 local minima,
of which 189 are strict—each Hamming-1 neighbor
has a higher fitness value. The top graph in Figure 3
shows the distribution of local minima for fmin+plosn.
This is a bimodal distribution. Note the logarithmic
scale on the y axis, which is the number of local min-
ima. For x ≤ 2.0%, less than 13% of the local min-
ima are good. Between 2.0% and 2.6% the number
of good local minima rises sharply from 13% to 80%.
For x between 2.6, and 4%, 80% of the local min-
ima are good. Again, we see a phase transition in
the complexity of the problem around 2.6%. Below
2.6%, few local minima are good; above 2.6%, most
local minima are good.

To further understand the structure of the se-
quence space, in particular, how the local minima
are distributed, we examined the behavior of several
descent algorithms on both the fmin+plosn as well
as the zeroin+ plosn spaces. To take a step, the
algorithms generate a series of Hamming-1 neighbors
of the current sequence and find their fitness values.
In the 10-of-5 space there are 40 Hamming-1 neigh-
bors for every sequence. The algorithms generate the
neighbors in random order and take the first down-
hill step that they discover. Some of the algorithms
are impatient ; they examine a limited percentage of
a sequence’s neighbors before declaring the current
sequence to be a local minimum. The center plot of
Figure 3 shows the probability of being able to make
a downhill step (i.e., finding a lower neighbor) as a
function of the number of neighbors generated by an
impatient descent algorithm. At a patience level of
10% (i.e., no more than 4 random neighbors are ex-
amined at each step), the probability of being able to
continue with the descent is 76.59%. That is, 23.41%
of the time, the descent stops prematurely at the 10%
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Figure 3: The top plot shows the distribution of local
minima in fmin+plosn. The center plot shows the proba-
bility of finding a descent step as a function of the number
of neighbors examines. 4 neighbors is equivalent to 10%
patience, since the number of neighbors of a sequence in a
10-of-5 space is 40. The bottom plot shows the probability
of an individual descent run terminating in a local min-
imum between 2.6 to 4 percent of the optimal sequence,
as a function of patience.

patience level. If more than half the neighbors are
examined, the probability of finding a downhill step
comes close to 1. These are the probabilities for each
individual descent step.

How do we select patience levels for descent algo-

rithms? To do this in a principled manner, we need
to know how likely an algorithm with a certain pa-
tience level is to achieve a local minimum between
2.6% and 4% of the optimal value at termination.
We call these minima, “good” minima. The reason
we focus on this range of local minima is that they
comprise more than 80% of all local minima. The
minima whose values are below 2.6% of the optimum
are very difficult to reach, unless we have a starting
sequence very close (between 2 to 4 steps) to those
minima. The bottom plot in Figure 3 presents the
variation with patience of the probability of termina-
tion at a good local minimum. At the 10% patience
level, the probability of an individual descent run ter-
minating in a good local minimum is 40%, while at
the 20% patience level, this probability rises to 70%.
A descent algorithm with patience level of 20% exam-
ines more than twice the number of sequences in each
individual run as one with patience of 10% because
it makes longer descent runs in the space. Patient
descent algorithms which examine all 40 neighbors
of a sequence take on average between six to seven
steps. This amounts to between 240 to 280 evaluation
per restart. In contrast, across both fmin+plosn and
zeroin+plosn, the average number of descent steps
taken at patience level of 10% is 1.9. This amounts to
about 8 evaluations per restart. For the 20% patience
level, we have 8 neighbors times about 4 descents per
run, which is 32 evaluations for each restart. In this
space, termination in a local minimum between 2.6%
to 4% of the optimal requires a starting point that is
close (within 6 descent steps) to that local minimum.
Given a fixed number of evaluations, it is better to
keep the number of evaluations per restart low, and
to maximize the number of restarts. A patience level
of 10% allows four times the number of restarts as a
patience level of 20%. The low cost per impatient-
descent run makes multiple randomized restarts with
10% patience value, a very attractive strategy. Mul-
tiple restarts from random initial sequences increase
the likelihood of finding a good local minimum in this
space.

As a final confirmation of the difficult nature of
these spaces, consider the plot of the 4-of-5 subspace
of fmin+plosn, shown in Figure 4. Fitness values
are plotted as a function of the sequence’s prefix and
suffix, each of which is two characters long. The space
shows many sharp peaks and valleys, with no obvious
global minimum. The lack of long descent paths in
this space, and the preponderance of local minima
are made obvious in this visualization.

Implications for Search Design The craggy nature of
these spaces as shown in Figure 4, with many sharply
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Figure 4: Surface plot of 4-of-5 subspace, fmin+plosn.
Instead of plotting the 54 sequences on a single axis, we
split each sequence into a two character prefix and a two
character suffix from the alphabet plosn. Each grid point
on the xy plane represents a sequence of length 4, and the
z-axis of the plot shows its fitness value.

defined local minima, makes descent algorithms a
natural choice. The key considerations must be ef-
ficiency and likelihood of finding a good solution.

Impatience is a cost-benefit tradeoff. It lets a de-
scent algorithm bound the number of sequences that
it must evaluate. It creates the situation where the
algorithm may halt before reaching a true local min-
imum. The middle plot in Figure 3 suggests that
three-quarters of the time, or more, a patience level of
10% will suffice to find a descending step. Assuming
that these properties carry over from the enumerated
subspaces into larger spaces, using a 10% threshold
for patience, especially when combined with repeated
randomized restarts, should efficiently produce good
results.

The cluster analysis of fmin+plosn shows (and
zeroin+plosn confirms) that the algorithm should
easily find solutions between 2.6% and 4% of the op-
timum. Finding solutions within 2.6% of the opti-
mum is much harder, as only 13% of the local minima
fall in that range. A strategy of multiple trials from
random starting points will let a descent algorithm
find a “good” local minima. Given the data suggest-
ing that a descent algorithm with patience level of
10% is fast—that is, it takes relatively few steps and
examines relatively few neighbors per step—multiple
randomized restarts of an descent algorithm at the
10% patience level should find good solutions well.

The data in Figure 5 bears out these conjectures.
The top plot shows the number of restarts needed for
an impatient descent algorithm (with patience level
10%), as a function of solution quality, in fmin+plosn.
Note the dramatic drop after 2%, which again re-
flects the phase change that we saw in the earlier
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Figure 5: Comparing randomized restart impatient de-
scent algorithm versus independent random sampling for
fmin+plosn and zeroin+plosn.

data at 2.6%. (It requires 924 restarts to find a so-
lution within 0.5% of optimal, 6.1 to find one within
2% and 2.8 restarts to find one within 5%. The data
for zeroin follows a lower-valued but similarly shaped
curve.) The lower plots compare the average number
of evaluations required by the impatient descent al-
gorithm (here labeled as a hill climber) with patience
level of 10%, against random probing of the space,



in fmin+plosn and in zeroin+plosn. For solutions
within 1% or less of optimum, the impatient descent
algorithm wins. As solution quality decreases, ran-
dom probing becomes the more effective method.

Section Summary This survey of the landscape of
fmin+plosn and zeroin+plosn offers one of the first
computational glimpses of the space of compilation
sequences. Any analytical theory for sequence design
or prediction must capture the shape of the surface
shown in Figure 4. Our empirical analysis of the enu-
merated subspaces shows that there are many local
minima in the space, and that randomized restarts
should be an effective strategy to overcome shallow
local minima. The terrain is very rough and most de-
scent runs are short. Starting points matter for local
search algorithms; deep local minima are reachable
only if the starting points are very close to those min-
ima. There is a sharp phase transition in this space.
The problem of finding solutions that are within 2.6%
of the optimum is qualitatively harder than the prob-
lem of finding solutions that are greater than 2.6% of
the optimum. These properties need to be taken into
account in the design of effective search algorithms
for this space.

4 Exploring the Full Space

The complete mappings of fmin+plosn and zeroin

+plosn are only useful to the extent that they pro-
vide insights into searching the larger compilation-
sequence spaces that will arise in realistic contexts.
We conjecture that the broad-brush characteristics
of these small spaces also hold for larger spaces and
other programs. In particular, we expect that:

• the larger spaces will have many shallow local
minima;

• the probability of a random sequence being close
to optimal (within 1%) is low; and

• the complexity of finding solutions within x%
of optimal will exhibit phase transitions for cer-
tain values of x.

Unfortunately, the spaces of real interest are too large
to enumerate, so we cannot know the global minimum
fitness value. This fundamental lack of knowledge
makes it difficult to compare our solutions to an op-
timal one. To analyze this larger set of benchmarks
in the larger 10-of-16 space, we choose to compare the
results against those obtained with our compiler’s de-
fault compilation sequence.

To verify these expectations, we conducted a se-
ries of experiments using an expanded benchmark set
(Table 2) and the full set of transformations (Table 1)
to derive 10-of-16 sequences. We used two different

# of Source ILOC # of

Name Suite Proc’s. Lines ops. Blocks

adpcm-c Media 1 192 479 37
adpcm-d Media 1 168 424 30
g721-c Media 16 965 4066 268
g721-d Media 21 1080 4879 344

tomcatv Spec 1 192 2599 78
svd Fmm 1 351 2493 185

zeroin Fmm 1 125 332 39
fmin Fmm 1 160 434 59

Table 2: A list of the benchmark programs studied in this
paper. “Media” indicates the MediaBench suite; “Spec”
indicates the Spec benchmark suite; and Fmm refers to
the Forsythe, Malcolm, and Moler library [14]. Programs
above the line are written in C; those below the line are
written in Fortran 77. # of Blocks refers to the number
of basic blocks in the control flow graph of the program.

randomized local search algorithms: a descent algo-
rithm and a genetic algorithm. We compare the re-
sults of compilation against the performance of our
compiler’s universal sequence, rvzcodtvzcod.

The descent algorithm is the impatient algorithm
with patience level of 10% described earlier. This
implementation runs from 50 randomly-chosen start-
ing points and retains the best result. We call this
version HC 50.

The genetic algorithm was derived after extensive
experimentation to find good parameter settings. It
uses populations of 50 and 100 sequences, a single-
point random crossover and fitness proportional se-
lection. It uses 10% elitism (the top 10% of sequences
survive without change), and a mutation probabil-
ity of 0.02. An unusual feature of this GA is its
treatment of duplicate sequences. If selection-and-
crossover yields a sequence that already has been
evaluated by the current run, the GA replaces the
duplicate with a randomly-selected, untried sequence.
This process eliminates duplicate evaluations of the
same sequence in a single GA run. Each GA runs for
100 generations. We call the algorithms GA 50 and
GA 100, with population of 50 and 100 sequences.

Table 3 shows the results of using HC 50, GA 50,
GA 100, for fmin and zeroin, along with the results
produced by the compiler’s universal sequence. In ad-
dition, the table shows the results of random probing
for 200 trials (R200) and 2000 trials (R2000). Dy-
namic operation counts are given as a percentage im-
provement from the results of the universal sequence
(1,136 operations for fmin and 978 for zeroin). Since
these algorithms are randomized, we report the mean
and standard deviations on dynamic operation counts
over three independent runs.



fmin

DynOps StDev Cost Sequence

universal 1,136 1 rvzcodtvzcod

GA 50 26.5% 0.35 4,550 pppxocdlsn
GA 100 26.5% 0.15 9,110 opzpdppxsn
HC 50 10% 26.1% 0.13 2,124 noppppxdsn
R200 14.3% 0.56 200 zodyvvtgos
R2000 17.0% 3.90 2,000 nzypoogvsd

zeroin

DynOps StDev Cost Sequence

universal 978 1 rvzcodtvzcod

GA 50 30.4% 0.18 4,550 oplvscdzsn
GA 100 30.4% 0.18 9,110 pozvscvdsn
HC 50 10% 29.0% 0.56 2,054 pcnpvodnsn
R200 16.0% 2.13 200 zodyvvtgos
R2000 20.0% 2.04 2,000 nzypoogvsd

Table 3: The performance of HC 50, GA 50, GA 100,
R200 and R2000 against the universal sequence for fmin

and zeroin, shown as percentage improvement. Note the
diversity in the sequences; inter-sequence Hamming dis-
tance is as large as 8.

adpcm-c

DynOps StDev Cost Sequence

universal 13.3 1 rvzcodtvzcod

GA 50 33.0% 0.56 4,550 prppocvdsn
GA 100 33.0% 0.56 9,110 rpzpocdvsn
HC 50 10% 31.5% 0.36 2,238 nppcnlgpds
R200 24.0% 2.47 200 pzucvnsuss
R2000 29.0% 0.32 2,000 cxsdxvgcsn

adpcm-d

DynOps StDev Cost Sequence

universal 11.1 1 rvzcodtvzcod

GA 50 30.6% 0.01 4,550 prpopcdlsn
GA 100 30.6% 0.00 9,110 rppocdpvsn
HC 50 10% 30.0% 0.01 2,174 yrxrsvpscn
R200 24.5% 3.37 200 nulltrmzzs
R2000 30.0% 0.00 2,000 xscrndgvsn

Table 4: The performance of HC 50, GA 50, GA 100,
R200 and R2000 against the universal sequence for
adpcm-coder and adpcm-decoder. The dynamic opera-
tion counts are in the millions. Inter-sequence Hamming
distance varies from 4 to 8.

HC 50, GA 50 and GA 100 all find sequences that
are 26% better than the universal sequence for both
fmin and zeroin. They also outperform random
sampling; however, the two GA versions use signif-
icantly more evaluations than R2000. In contrast,
HC 50 examines an average of 2100 sequences for
both these programs. In both solution quality and
work, HC 50 dominates random sampling, which sug-
gests that the probability of finding a good solution

g721-c

DynOps StDev Cost Sequence

universal 426.2 1 rvzcodtvzcod

GA 50 18.7% 0.81 4,550 pnpppcdzsn
GA 100 19.2% 0.16 9,110 pppppcdvsn
HC 50 10% 16.7% 0.67 2,857 nzpppncpds
R200 7.7% 2.15 200 pzucvnsuss
R2000 12.4% 0.08 2,000 cxsdxvgcsn

g721-d

DynOps StDev Cost Sequence

universal 779.5 1 rvzcodtvzcod

GA 50 19.2% 1.42 4,550 vpppppcdsn
GA 100 19.5% 0.57 9,110 pppppcdvsn
HC 50 10% 17.9% 1.20 2,752 tvppppscnd
R200 7.7% 1.99 200 pzucvnsuss
R2000 12.5% 0.22 2,000 cxsdxvgcsn

Table 5: The performance of GA 50, GA 100, HC 50,
R200 and R2000 against the universal sequence for g721-c
and for g721-d. The dynamic operation counts are in mil-
lions. Inter-sequence Hamming distance varies between 6
and 8.

at random is very low.
As a final point, note the diversity of the derived

sequences. This behavior suggests that the 10-of-16
spaces contain isolated clusters of equivalent good se-
quences, as we saw in fmin+plosn for sequences that
fall within 2.6% of optimal.

Table 4 shows results for the five algorithms on
adpcm-coder and adpcm-decoder. Again, HC 50,
GA 50, and GA 100 find better sequences—between
30% and 33% better than the universal sequence.
HC 50 and R2000 are similar in solution quality and
effort. While the final sequences still show diversity,
the Hamming distance between them is lower than
in Table 3. This property suggests that good se-
quences are distributed among a smaller number of
clusters in the 10-of-16 spaces for adpcm- coder and
adpcm-decoder than in the 10-of-16 spaces for fmin
and zeroin. The fact that R2000 performs nearly as
well as HC 50 for the same effort suggests that the
10-of-16 spaces for adpcm-coder and adpcm-decoder

contain more good sequences than the spaces for fmin
and zeroin.5

Table 5 shows our results for g721-coder and
g721-decoder. HC 50, GA 50 and GA 100 all find
solutions that are 16% to 19% better than the univer-
sal sequence. Again, the derived sequences show large
diversity, with inter-sequence Hamming distances in
the range of 6 to 8. The Hamming distances suggest

5It would be interesting to determine whether there are so-
lutions that are more than 32% better than the universal se-
quence, and how they are distributed in the space.



tomcatv

DynOps StDev Cost Sequence

universal 220.0 1 rvzcodtvzcod

GA 50 17.3% 1.36 4,550 crxpotvdsn
GA 100 17.3% 1.31 9,110 rxpcotdvsn
HC 50 10% 17.0% 2.69 2,555 rytlxosnsd
R200 0.3% 5.32 200 lrvylgdodn
R2000 7.1% 1.82 2,000 ycrozzsddd

Table 6: The performance of GA 50, GA 100, HC 50,
R200 and R2000 against the universal sequence for
tomcatv. Inter-sequence Hamming distance varies be-
tween 4 and 8.

svd

DynOps StDev Cost Sequence

universal 5,120 1 rvzcodtvzcod

GA 50 26.1% 0.07 4,550 cztpvodvsn
GA 100 30.1% 2.34 9,110 ocdvtpvdsn
HC 50 10% 24.2% 1.84 2,756 potpvsdpnp
R200 1.8% 4.43 200 lrvylgdodn
R2000 11.7% 0.74 2,000 nzypoogvsd

Table 7: The performance of GA 50, GA 100 HC 50,
R200 and R2000 against the universal sequence for svd.
The different sequences suggest isolated clusters of equiv-
alent solutions. Hamming distance between sequences
varies from 4 to 8.

the presence of isolated clusters in the solution space.
The poor performance of R200 and R2000 demon-
strates that the probability of a random sequence in
this space being better than the universal sequence is
extremely low.

Table 6 shows the results for tomcatv from the
Spec benchmarks. HC 50, GA 50 and GA 100 find
solutions that are 17% better than the universal se-
quence. The random sampling techniques R200 and
R2000 fail to find good solutions, suggesting that the
probability of stumbling into a good solution in this
space is also extremely low.

Table 7 shows the results for the svd program.
HC 50 finds improvements of 24% over the univer-
sal sequence. The inter-sequence Hamming distance
between solutions found in three independent runs
of HC 50 suggests that there are isolated clusters of
equivalent solutions. GA 50 and GA 100 produce
better solutions, improving on the universal sequence
by 26% to 30%. The inter-sequence Hamming dis-
tance for the GA solutions is also large, ranging from
4 to 8. The sparsity of good solutions and their dis-
trubution in isolated clusters is confirmed by the poor
performance of R200 and R 2000.

Section Summary The randomized local search al-
gorithms, HC 50, GA 50, and GA 100 find solutions
that improve by 15% to 30% over the compiler’s uni-

versal sequence. Contrasting the behavior of R200
and R2000 against the others provides insight into the
difficulty of finding good solutions, while the inter-
sequence Hamming distances of the solutions pro-
vides some insight into the clustering of solutions in
the various spaces.

5 The Economics of Sequence Design

Figure 6 summarizes the discussion in the previous
section and presents the cost/benefit tradeoff for find-
ing program-specific compilation sequences for the
benchmarks examined in the previous section. Our
benchmarks cleanly divide into two categories: those
for which impatient descent algorithms with random-
ized restarts outperform simple random sampling, and
those for which random sampling is competitive with
descent algorithms. For adpcm-coder and adpcm-

decoder, there are a large number of good sequences
in the 10-of-16 space. There is little structure in the
space of solutions; the average number of descents
in each run of HC 50 is small. For such spaces,
the cost of descent is not worth the expected pay-
off. Random sampling with 2000 probes strikes the
right cost/benefit tradeoff for finding good compila-
tion sequences in these spaces. For fmin, zeroin,
g721-encoder, g721-decoder, tomcatv and svd, HC
50 dominates the other algorithms. Neither GA algo-
rithm is cost-effective because they both yield solu-
tions that are similar in quality to HC 50 for two to
five times the effort expended by HC 50. For these
benchmarks, good solutions are sparse, and are lo-
cated in isolated clusters. There is some structure
in the solution spaces, as evidenced by the somewhat
longer descent runs of HC 50 compared to those in the
adpcm benchmarks. However, relative to the diame-
ter of these sequence spaces, these descent runs are
still short, and the overall topography of the space is
similar to the one shown in Figure 4. Random sam-
pling fails to generate solutions of sufficient quality
for these benchmarks, because the probability of a
random sequence being a good one is extremely low.

Conclusions

This paper presents empirical data on the structure of
the sequence space for several interesting programs.
Exhaustive enumerations of fmin+plosn and zeroin

+plosn yield insights into the difficulties of analyti-
cally characterizing the impact of sequences on par-
ticular programs. The analyses suggest design crite-
ria for search algorithms to work in the full sequence
space and to work with larger programs. Our experi-
ments in the 10-of-16 space indicate that lessons from
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Figure 6: The cost-benefit tradeoff curve for HC 50, GA 50, GA 100, R200, and R2000, in 10-of-16 spaces for the
benchmarks studied in this paper. The most cost-effective position is the upper left-hand corners of both figures.
Our benchmarks divide into two categories: (adpcm-coder, adpcm-decoder), and (fmin, zeroin, g721-encoder,
g721-decoder, tomcatv, svd). For adpcm-coder and adpcm-decoder, R2000 is nearly as effective as HC 50, while
for all other benchmarks HC 50 clearly dominates R2000. adpcm-coder and adpcm-decoder are characterized by the
abundance of good solutions in the 10-of-16 space. For all other benchmarks, good solutions are sparse, and they are
located in isolated clusters in the space. There is also some structure in the solution space, which descent algorithms
take advantage of.

the exploratory survey have utility beyond the par-
ticular programs we investigated. Finally, Section 5
shows the first estimates of the empirical economic
tradeoffs that a compiler must make to decide how to
find program-specific compilation sequences.
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