
Exploring the support for high
performance applications in the container
runtime environment

John Paul Martin1* , A. Kandasamy1 and K. Chandrasekaran2

Introduction

Cloud computing is being used for innumerable applications these days. �e end-users

vary from naive clients to expertised technicians. Cloud is a pool of resources shared

among number of users [1]. Presently, in the world of cloud computing, it is the era of

XaaS (Anything-as-a-Service) which means that the providers offer a wide variety of ser-

vices [2, 3]. One of the most recent services provided through the cloud is high per-

formance computing (HPC) environments for the complex applications. Virtualization

is the technology which enables users to share a single entity among a group of users.

Abstract

Cloud computing is the driving power behind the current technological era. Virtualiza-

tion is rightly referred to as the backbone of cloud computing. Impacts of virtualiza-

tion employed in high performance computing (HPC) has been much reviewed by

researchers. The overhead in the virtualization layer was one of the reasons which

hindered its application in the HPC environment. Recent developments in virtu-

alization, especially the OS container based virtualization provides a solution that

employs a lightweight virtualization layer and promises lesser overhead. Containers

are advantageous over virtual machines in terms of performance overhead which is a

major concern in the case of both data intensive applications and compute intensive

applications. Currently, several industries have adopted container technologies such as

Docker. While Docker is widely used, it has certain pitfalls such as security issues. The

recently introduced CoreOS Rkt container technology overcomes these shortcomings

of Docker. There has not been much research on how the Rkt environment is suited

for high performance applications. The differences in the stack of the Rkt containers

suggest better support for high performance applications. High performance applica-

tions consist of CPU-intensive and data-intensive applications. The High Performance

Linpack Library and the Graph500 are the commonly used computation intensive and

data-intensive benchmark applications respectively. In this work, we explore the feasi-

bility of this inter-operable Rkt container in high performance applications by running

the HPL and Graph500 applications and compare its performance with the commonly

used container technologies such as LXC and Docker containers.

Keywords: Cloud computing, Containers, High performance computing, Core OS Rkt,

Docker, LXC, Linpack, Graph 500

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

https://doi.org/10.1186/s13673-017-0124-3

*Correspondence:

johnpm12@gmail.com
1 Department

of Mathematical

and Computational

Sciences, National Institute

of Technology Karnataka,

Surathkal, Karnataka, India

Full list of author information

is available at the end of the

article

http://orcid.org/0000-0002-6850-9079
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-017-0124-3&domain=pdf

Page 2 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

Based on the position of the virtualization layer, virtualization can be of different types

like full virtualization, paravirtualization and OS level virtualization.

Traditional HPC clusters are composed of many separate dedicated servers called

nodes and may be shared among different organizations. �e requirements of each user

or organization will be different, which demands the creation of customized environ-

ments without affecting others. �is is not an easy task in traditional HPC systems. As

a solution for this, virtualization was adopted for HPC. Virtualization materializes the

task by creating separate customized virtual environments of the system based on the

requirements of each user.

�e overhead associated with virtualization hindered its usage in HPC environments.

�ere exists different kinds of virtualization techniques [4]. One of the popular tech-

niques involves a Hypervisor (Virtual Machine Manager). Here virtualization services

are mainly provided through virtual machines (VM), but this creates an additional over-

head due to the running of a fully installed OS. �e guest OS in VMs creates calls to

the hypervisor rather than direct communication with the hardware, which causes some

reduction in application performance. �is overhead and limitation results in insuffi-

cient adaptability to the HPC environment. Virtualization technique based on the OS

level offers a model called Container Virtualization as a solution to all these overheads,

which gives near native performance [5]. Container virtualization allows to deploy and

run applications without creating separate VMs for each user. Multiple isolated con-

tainers are run on a single host with sharing a single kernel. �e Linux features such as

namespaces, chroot and cgroups provides secure execution of containers in the same

kernel. When compared to traditional virtualization, since containers do not use sepa-

rate OS instances, it requires less CPU, memory and storage, thus the same host can

incorporate more number of virtualized containers. �e time required to create and

deploy containers is very less compare to the virtual machine manager based systems.

�e Hypervisor based virtualization employs a full guest OS in each virtual machine

along with the necessary binaries and libraries for the applications. Containers will hold

only the necessary binaries required by any application to run [6]. Containers possess

packaged, ready to deploy applications or parts of applications, and if necessary mid-

dleware and business logic to run those applications [7]. Figures 1 and 2 shows the two

different virtualization architectures [8].

�ere exists different container management technologies for managing the entire life

cycle of containers. �is includes creating, deleting and performing modifications on

images and tools associated with it. Linux LXC, Docker and the latest release Rkt are the

major managing technologies. All the technologies work on the same base principle that

the application space should be isolated within the operating system.

�e Rkt container runtime was recently introduced to overcome the limitations of

the existing container runtimes. Being a more recent technology, the Rkt container is

expected to provide better support for HPC applications. Most of the current generation

applications demand high performance capabilities. It is essentially required to enhance

the support available for such applications. Researchers have been on the quest for tech-

nologies that will enable them to achieve performance which most resembles the bare

metal scenarios. In alignment with this research interest, we have identified the follow-

ing objectives:

Page 3 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

 • Investigate the existing works which aim at comparing and contrasting the various

container technologies in a performance-oriented perspective.

 • Explore the features which differentiate the Rkt container runtime from the other

runtimes.

 • Implement archetypes to assess the variation in support provided by the Rkt con-

tainer runtime for applications with high performance requirements.

Fig. 1 Hypervisor-based virtualization

Fig. 2 Container virtualization

Page 4 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

 • Analyze how the different features impact the performance of computationally chal-

lenging tasks.

 • Analyze the impact of the features specific to the Rkt container runtime on the data

intensive tasks.

Our primary aim is thus to explore the feasibility of the recent Rkt container [9] for HPC

environments and compare its performance with LXC and Docker containers. We are

mainly analyzing the performance results of computing intensive and data intensive

practical applications in all the scenarios. To the best of the authors’ knowledge, this is

the first work attempting to analyze the support provided by the Rkt container runtime

and contrast it with its predecessor, Docker. �e results of the work presented in this

paper will be of equal interest to researchers attempting to enhance the features of Rkt

and the group of researchers looking for the adoption of Rkt containers in high perfor-

mance environments.

�e rest of this paper is structured as follows: “Background and related work” section

contains the history of containers and similar works in this area. Detailed description

and specification of experiment setup and various benchmarking tools is elaborated in

“Experimental setup and benchmarking tools” section. “Results and discussions” section

contains the obtained results and analysis done based on it. Finally, the conclusion and

future scope of research is described in “Conclusion” section.

Background and related work

High performance computing is an activity which requires more than a normal com-

puter’s ability to execute it. Such activities are generally executed using parallel pro-

gramming efficiently. High performance computing centers are now beginning to use

container based cloud environments for solving their complex problems [10]. Adopting

containers in HPC is not an easy task-it involves a lot of challenges [11].

Container technology has been there for more than a decade and it allows the operat-

ing system to be virtualized and share the same instance of the OS. Containerization

was initiated by UNIX operating system in 1979 with their system called chroot. �en,

in 2000 Free BSD jail container technology evolved, which was similar to the chroot, but

incorporated features for isolating file system, users and networking. Linux VServer was

another jail mechanism and an initial implementation of virtual private servers. OpenVZ

containers emerged in 2005 which uses patched linux kernel. Each of the OpenVZ con-

tainer possess isolated file systems. �e first complete implementation of linux container

manager is LXC and it evolved in 2007 [12]. Later, people begin to think of containers as

processes with extra isolation, and thus helps in reducing the overhead associated with

virtual machines. Heroku PaaS provider initiated this concept of containers to deploy

applications. In 2013, Docker came up with an entire ecosystem for managing contain-

ers. Rocket containers came into existence for solving the drawbacks of Docker and to

provide more stringent security measures. In 2016, Microsoft Windows introduced a

container technology called Windows Containers for supporting windows server sys-

tems. �e standardised code in the containers can be easily plugged-in and run in the

operating systems. �is eases the portability of the applications.

Page 5 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

�e technologies available in the linux such as namespace, cgroup are used by the con-

tainer management systems for managing the various operations in containers. Major

existing technologies for container management are Linux LXC, Docker and Rkt. �e

common objectives of these technologies are achieved in a different manner.

 • LXC LXC is an interface for the linux kernel containment features and allows the

users to run multiple isolated images on a single host. �e isolation among LXC con-

tainers are provided through kernel namespaces. LXC containers uses PID names-

pace, IPC namespace and file system namespace for virtualizing and isolating PIDs,

IPCs and mount points respectively. Network namespace is used to connect the vir-

tual interface in a namespace to the physical interface and supports route based and

bridge based configurations. Resource management is done through cgroup. Some

other key responsibilities of cgroup are process control, limiting the usage of CPU

and isolating containers and processes. LXC has the unprivileged option to cre-

ate User space containers. It may seem advantageous in some aspects but in other

aspects it may create some security issues. Container portability allows the same

image to run in different distributions and hardware configurations without much

changes. In this regard, LXC provides only partial portability because it will work

across only Ubuntu distributions [13]. LXC allows multiple applications in a con-

tainer.

 • Docker Docker is one of the leading container life cycle management tools. Docker

allows to run and manage applications side-by-side in isolated containers. Similar to

LXC, Docker also make use of the features of the Linux kernel such as cgroups and

kernel namespaces [14].

• namespace: Docker uses namespace for creating isolation among containers. Fol-

lowing are the types of namespace used by Docker.

pid: pid namespace ensures that process in one container does not affect pro-

cess in a different container.

uts: used for kernel version isolation.

• mnt namespace: provides view of own file system and mount point.

ipc namespace: provides isolation for interprocess communication.

net : network isolation is provided through this namespace.

• Union file system: union file system allows to stack different layers and present it

as a single file system. �e writeable layer exists only at the top.

• Control group: resource management or efficient sharing of hardware among

containers is allowed.

 �e lightweight nature of the Docker container allows several containers to run

in a single server or virtual machine simultaneously [15]. �e major limitation of

Docker is its security issues, that is, an attacker can easily get superuser privileges.

Lack of interoperability is the another limitation of the Docker technology [16].

 • Rkt Core OS Rkt is a more secure, interoperable, and open source alternative to

Docker. It allows to run multiple isolated images sharing a common kernel space. Rkt

Page 6 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

provides more security compare to the Docker Containers in various aspects. For

example, while downloading an image docker does not ensure any kind of security

but rkt does a cross checking of the signature of the publisher of the image [9]. Rkt

has different stages.

• Stage 0

Interacts with the user.

Fetches the image and verifies it.

Handles image store operations.

Image rendering.

• Stage1

Pod isolation from others.

Relevant networking established.

Initialise file systems.

• Stage 2

Execution of the user application.

 Coreos, host, fly and kvm are the different modes of execution supported by Rkt in

Stage0. Coreos and host uses Linux namespaces for isolation such as pid, network

and so on. Fly mode is the lighter security mode-this does not have any isolation for

network, CPU and memory. SELinux is also not enabled in this mode. KVM mode

is the most secure mode, in which the Rkt container will behave like a lightweight

virtual machine itself. Sharing of kernels is not permitted in this mode. Several

researchers explored the area of virtualization from the past decades onwards, and

majority of the works were about virtual machines. Morabito et al. [17] made a com-

parison between hypervisor based virtualization and lightweight virtualization. �ey

considered KVM as an example of hypervisor-based virtualization and Docker, LXC

as the representatives of Lightweight virtualization. Xavier et al. [18] made a simi-

lar comparison between virtual machine and different containers. �ey considered

Xen as the VM technology and LXC, Vserver and OpenVZ are the containers. �ey

found that among those containers LXC is the suitable one for HPC environment.

Chung et al. [19] made a detailed evaluation about the suitability of Docker in HPC

environments and found that Docker is more suitable for data intensive applica-

tions. Kozhirbayev et al. [20] made a comparison among the container technologies

to find out which performs better in Cloud environments. �ey made a comparison

between Docker and Flockport with reference to the native performance and they

found that only I/O intensive operations suffer the impact of a higher overhead for

containers. Docker and Flockport doesnt suffer the overheads in terms of memory

and processor. �ey claim that containers reduces the difference between the Infra-

structure as service and baremetal systems by providing near native performance.

Varma et al. [21] performed an analysis of network overheads when Docker contain-

ers are used in Big Data environments. �e Hadoop benchmarks were executed in

different experimental setups, by varying the number of containers against the num-

ber of virtual machines. �e networking and latency aspects were considered. �e

throughput of the network was observed to be inversely proportional to the number

of nodes in a virtual machine. �e Docker containers were found to offer fair sup-

Page 7 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

port for big data applications. Chung et al. [22] evaluated the performance of virtual

machines and Docker HPC environments where the infrastructure is connected by

Infiniband and found that the overall performance of containers is better than the

virtual machines. C. de Alfonso et al. explored the practical feasibility of running

scientific workloads with high throughput requirements on containers [16]. Clusters

of machines running applications in containers were used to provide the require-

ments of the scientific applications. A middleware receives the user requests and

spawns the appropriate number of virtual nodes. �e CLUES manager is employed

to provide the required elasticity. Distributed computing paradigms such as the

Cloud, is the basis of the IT era. Docker containers offer an efficient option to run

applications in the Cloud [23]. �e Docker containers may be executed on single

host or on multiple hosts. When large number of Docker containers are run on mul-

tiple hosts, the management of the system becomes tedious, which can be tackled

by developing infrastructure solutions enabling the administrators to automate the

tasks of management of the system. Several open-source software solutions have

been developed for the Docker ecosystem. �ere is relatively less work focused in

the Rkt container in HPC environment, so, we decided to explore the feasibility and

performance impacts of this most secure container in HPC environment and to

check whether Rkt can meet the challenges of an HPC environment.

Experimental setup and benchmarking tools

Our experiments were performed on an HP EliteDesk 800G1 Tower system with two

Intel 4th Generation Core i7 Processors for a total of 16 cores. We used Ubuntu 16.04.2

LTS (Xenial Xerus) 64 bit with Linux kernel 4.4.0-62-generic, Docker container 1.3.0,

LXC 2.0.7, and Rkt container 1.24.0. For consistency, we used the same Ubuntu base

image on these different platforms.

CPU throttling was disabled in all the experiments because of the usage of BLAS

(Basic Linear Algebra Subprogram) specification in the ATLAS library. �e ATLAS

library requires disabling of CPU �rottling for its proper execution.

High performance computing applications can be either Computation Intensive

or Data Intensive. We evaluated the performance of Rkt container in both scenarios.

HPL benchmarking tool (computing intensive application) and Graph500 (data inten-

sive applications) are used for analysing the suitability of respective container platform

and for measuring the performance in high performance computing applications. For

analysis, the Linpack 2.1 CPU-intensive benchmark and Graph 500 2.1.4 Data-intensive

benchmarks were executed and results were collected.

Computing intensive applications

Linpack is the benchmarking tool which we used for analysing computing intensive

applications. It has two implementations. One is optimized only for Intel machines and

the other one is supported by all machines. HPL is the portable implementation of Lin-

pack, is written in C and requires an MPI implementation, BLAS interface implementa-

tion ATLAS library. HPL tests the performance of a system by generating and solving a

system of equations using LU decompositions [24].

Page 8 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

HPL generates and solves dense system of linear equations with LU factorization and

partial pivoting. It mainly involves multiplication of a scalar value with vector and add-

ing the results in to a vector, all these operations are carried out with values with double

precision floating point. HPL measures rate of floating point execution for solving these

linear equations and gives us the performance results. Mathlibrary, HPL package and

Message Passing Interface are required for running this in a distributed environment.

�e two major steps involved in the problem are:

 • Lower upper factorization of a random matrix.

 • Lower upper factorization used to solve the linear system consisting of the random

matrix and a scalar.

�e performance results from HPL are measured in Gflops (Billions of floating point

operations per second):

• Gflops = ops/(cpu ∗ 100000000)

Following are the test cases considered while analysing the performance of various con-

tainer platform.

 • Varying the problem size (N).

 • Varying block size (NB).

 • Varying the rfact and panel fact.

�e input given for the various tests can be summarized as shown in Table 1.

With these input parameter configurations around 120 tests were performed in all the

different container runtimes and the averaged experiment results on several runs were

used for the purpose of analyzing the performance.

Data intensive applications

We measured the performance impacts on data intensive applications in the container

environment using Graph500 benchmarking tool [25]. Graphs are a core part of analytic

Table 1 Values of the input parameters

Parameter # of values Values

Problems size (N) 5 10000 11000 12000 13000 15000

Block size (NBs) 4 100 92 104 98

Process grids (P × Q) 1 P = 4, Q = 8

Threshold 1 16

Panel fact 3 Right left crout

Recursive stopping criterium (NBMin) 1 4

Recursive panel fact (RFACTs) 2 Right left

Panels in recursion (NDIVs) 1 2

Swapping threshold 1 64

Page 9 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

workloads. Graph500 is a data intensive super computing application which uses a large

scale graph to evaluate the performance. �e execution of Graph500 involves two steps:

 • Data generation

• generates edge list.

• construction of graph from the generated edge list.

 • BFS (Breadth First Search) on the constructed graph

• randomly selects 64 unique search keys whose degree is greater than or equivalent

to one.

• parent array of each key is computed and check whether it is a valid BFS search

tree.

�ere exists different problem classes based on the size of the problem. �ey are

toy (17 GB) called as level 10, mini (140 GB)-level 11, small (1 TB)-level 12, medium

(17 TB)-level 13, large (140 TB)-level 14, huge (1.1 PB)-level 15.

�e input parameters to be given to Graph500 is SCALE and Edgefactor and this

determines the size of the graph. Number of vertices of the graph is calculated based on

the input parameter SCALE. Let N be the number of vertices in the graph.

Number of edges M in the graph can calculated as

Results and discussions

We explore the performance of CoreOS Rkt container in HPC environment and com-

pare it with existing popular container runtimes such as Docker and Linux LXC. HPC

environment mainly comprises of applications which are data intensive or computation

intensive in nature. We considered both of these important scenarios for our experimen-

tal analysis. �e tests were carried out in single node environment and later in a cluster

environment. We have tuned the HPL benchmark and tests were carried out.

Exploring computing intensive applications

�e behavior of a processor varies with the increase in the problem size (N) of the HPL

benchmark, based on that the behavior can fall into one of three different zones:

 • Rising zone �e low problem size wont invoke memory and processor to their maxi-

mum performance.

 • Flat zone Problem invokes only processor to its maximum performance.

 • Decaying zone Problem size is too large and cache memory is not large enough to

keep all the necessary data, because processor is running in top speed.

�e performance results of HPL in the CoreOs Rkt environment is in given in Fig. 3a.

�e GFlops on the Y axis gives the rate of execution of floating point operations on a

scale of billion. We have examined different problem sizes and varying block sizes. �e

results show that Rkt container performs well in computing intensive applications. We

N = 2
SCALE

M = N ∗ Edge factor

Page 10 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

can see a significant increase in execution rate with the increase in problem size (N val-

ues). Rkt runs in its rising zone of HPL. Figure 3b shows the results of HPL in Linux

LXC, Fig. 3c shows the results obtained when HPL is run on Docker containers and

Fig. 3d is the baseline performance obtained when running HPL on the native system.

�e rate of execution in billions is increasing almost linearly with increase in problem

size. Comparing with Rkt for larger problem sizes it does not perform well. �e results

of Docker in this environment gives better performance for smaller problem sizes and

there is a drastic degradation in the performance with an increase in the problem size.

When we compare these results with the results of a native system Rkt container gives

near native performance for larger problem sizes whereas for smaller problem sizes

Docker outperforms Rkt and gives near native results, as can be observed in Fig. 4.

�e Rkt container runtime runs for a longer time in the flat zone implying that the

load experienced by the containers are less challenging. Even when the Docker con-

tainer subsides to the decaying zone, the Rkt container continues in the flat zone. �is

is supporting the intuition that Rkt container engines provide better HPC support. �is

can be attributed to the absence of a daemon process in the Rkt runtime stack. �e Rkt

containers are started based on command clients. �is also resolves compatibility issues

with init systems (which are existing in Docker Runtime). �e absence of such a daemon

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

a

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

b

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100

NB=92

NB=104

NB=98

c

 25

 26

 27

 28

 29

 30

 31

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100

NB=92

NB=104

NB=98

d

Fig. 3 HPL on containers a Rkt, b LXC container, c Docker container, d native

Page 11 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

increases the startup time slightly, but greatly lowers the overhead experienced by the

containers. �is is the major reason why the Rkt containers fare better in the high per-

formance scenarios.

Many of the high performance applications are executed in cluster environments, so

for better understanding the performance in such an environment, cluster of containers

was created and performance was measured. �e CoreOS Rkt cluster performance is

compared with other platforms. �e results show that the clustered environment shows

almost same characteristics as that of the single node environment. �e obtained results

are illustrated in Fig. 5a–c and a better understanding may be obtained from Fig. 6. �e

Rkt container gives better performance results for larger problem sizes. In the case of

Docker containers, by default they use a time sharing algorithm such that each container

gets the CPU only for 100 ms and after that the CPU switches to the next container.

�is creates an overhead as it is required to save the process state information before

switching to the next process. �e computing intensive applications which takes long

time for execution will be affected by this overhead and will cause a degradation in its

performance.

Exploring data intensive applications

Graph500 represents a data intensive application benchmark. �is benchmark attempts

to obtain the BFS of a large graph and the performance is evaluated. Data traceability is

the criteria which is used for evaluation, it is the ability to keep track of data and access-

ing on a system. We examined the performance of Graph500 with varying Edge fac-

tors. We took edge factors varying from 16 to 36. Results are measured in TEPS which

is the Traversed Edges Per Second. We explored the simple graph problem size in the

Graph500 benchmark. �e results given in Fig. 7a–d show that LXC, Docker and Rkt

containers give near native performance because they are not emulating an entire sys-

tem like the host and they are virtualized only at the level of operating system. Contain-

ers are sharing the same kernel of the host system where it is running and this enables

them to access data in a very fast manner. Compared to virtual machines, containers fare

better in data intensive applications and Rkt container gives similar performance results

along with other containers such as Docker and LXC.

From the results shown in Fig. 8, it can be deduced that the Rkt container performs

well in data intensive applications, but, the performance is lower when compared to the

 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

Rkt Container

LXC Container

Docker Container

NB=98NB=104NB=92NB=100

Fig. 4 Comparison among containers-single node setup

Page 12 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

other container environments. �e LXC container has the performance closest to the

native performance in data-intensive applications.

�e results shows that Rkt container performs well in both computation intensive and

data intensive high performance application environments. However, the Rkt contain-

ers are better suited for computation-intensive applications. �e improved support for

computation-intensive applications coupled with advanced security features connotes

 28

 29

 30

 31

 32

 33

 34

 35

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100

NB=92

NB=104

NB=98

a

 18

 19

 20

 21

 22

 23

 24

 25

 26

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100

NB=92

NB=104

NB=98

b

 8

 10

 12

 14

 16

 18

 20

 22

 24

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100

NB=92

NB=104

NB=98

c

Fig. 5 Performance analysis on container clusters a Rkt, b LXC, c Docker

 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

Rkt Container

LXC Container

Docker Container

NB=98NB=104NB=92NB=100

Fig. 6 Comparison among container clusters

Page 13 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

Edge factor

6323926261

m
a

x
-T

E
P

S

×107

0

2

4

6

8

10

12

a

Edge factor

6323926261

m
a

x
-T

E
P

S

×107

0

2

4

6

8

10

12

b

Edge factor

6323926261

m
a

x
-T

E
P

S

×107

0

2

4

6

8

10

12

c

Edge factor

6323926261

m
a

x
-T

E
P

S

×107

0

2

4

6

8

10

12

d

Fig. 7 Data intensive performance analysis on containers a Rkt, b LXC, c Docker, d Native

Edge factor

16 18 20 22 24 26 28 30 32 34 36

m
a
x
-T

E
P

S

×108

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Rkt

Native

LXC

Docker

Fig. 8 Data intensive computing performance comparison among containers

Page 14 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

that the Rkt containers offer a viable option for HPC. �ere are more challenges to be

resolved to deliver the Rkt environment as the best option for HPC applications. Being

a successor of Docker, the Rkt containers are better in some aspects, on the other hand,

being an emerging technology still in its evolving stage, there remains more scope for

improvement.

Conclusion

Container technology is becoming a widespread platform used in Cloud computing.

High performance computing centers are now using containers for their complex appli-

cations because of the flexibility and gain in productivity. Adopting containers is not an

easy task. In this work, we explore the feasibility of CoreOS Rkt container in the HPC

world. We performed evaluations in two scenarios related to HPC. One is the data inten-

sive application environment and the other is the computation intensive environment.

We explored the widely used containers such as Docker and LXC in the same scenarios

and provided a comparison of the results.

�e results of the experiments show that the CoreOS Rkt container gives near native

performance in computational intensive and data intensive high performance appli-

cation environment. �e results are promising and indicate that Rkt is well suited to

run HPC applications as well, especially for computation-intensive workloads. Future

research can experiment various HPC applications, measure the communication per-

formance and tune the algorithms accordingly. �e enhanced security features, inter-

operability and better performance will lead Rkt to a prominent position in HPC

environments in the near future.

Authors’ contributions

JPM conducted the experiments, analysed the results and drafted the manuscript. AK and KC provided valuable sugges-

tions on improving the standards of the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Kar-

nataka, India. 2 Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal,

Karnataka, India.

Acknowledgements

The authors thank the reviewers for their suggestions which helped in improving the quality of the paper.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Not applicable.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 July 2017 Accepted: 20 December 2017

Page 15 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

References

 1. Moon Y, Yu H, Gil J-M, Lim J (2017) A slave ants based ant colony optimization algorithm for task scheduling in cloud

computing environments. Hum-centric Comput Inf Sci 7(1):28

 2. Zhu W, Lee C (2016) A security protection framework for cloud computing. J Inf Process Syst 12(3):538–547

 3. Kar J, Mishra MR (2016) Mitigate threats and security metrics in cloud computing. J Inf Process Syst 12(2):226–233

 4. Huh J-H, Seo K (2016) Design and test bed experiments of server operation system using virtualization technology.

Hum-centric Comput Inf Sci 6(1):1

 5. Yu H-E, Huang W (2015) Building a virtual hpc cluster with auto scaling by the docker. arXiv preprint

arXiv:1509.08231

 6. Louati T, Abbes H, Cérin C, Jemni M (2018) Lxcloud-cr: towards linux containers distributed hash table based

checkpoint-restart. J Parallel Distrib Comput 111:187–205

 7. Ciuffoletti A (2015) Automated deployment of a microservice-based monitoring infrastructure. Procedia Comput Sci

68:163–172

 8. Babu A, Hareesh M, Martin JP, Cherian S, Sastri Y (2014) System performance evaluation of para virtualization, con-

tainer virtualization, and full virtualization using xen, openvz, and xenserver. In: 2014 fourth international conference

on advances in computing and communications (ICACC). IEEE, New York, pp 247–250

 9. CoreOS. https://coreos.com/rkt. Accessed 23 June 2017

 10. Julian S, Shuey M, Cook S (2016) Containers in research: initial experiences with lightweight infrastructure. In: Pro-

ceedings of the XSEDE16 conference on diversity, big data, and science at scale. ACM, New York, p 25

 11. Jacobsen DM, Canon RS (2015) Contain this, unleashing docker for hpc. In: Proceedings of the Cray User Group

 12. Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and linux

containers. In: 2015 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE,

New York, pp 171–172

 13. Linux LXC. https://linuxcontainers.org/lxc/. Accessed 23 June 2017

 14. Docker Hub. https://hub.docker.com/. Accessed 23 June 2017

 15. Kniep C (2014) Containerization of high performance compute workloads using docker. doc.qnib.org

 16. de Alfonso C, Calatrava A, Moltó G (2017) Container-based virtual elastic clusters. J Syst Softw 127:1–11

 17. Morabito R, Kjällman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In:

2015 IEEE international conference on cloud engineering (IC2E). IEEE, New York, pp 386–393

 18. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CA (2013) Performance evaluation of container-based

virtualization for high performance computing environments. In: 2013 21st euromicro international conference on

parallel, distributed and network-based processing (PDP). IEEE, New York, pp 233–240

 19. Chung MT, Quang-Hung N, Nguyen M-T, Thoai N (2016) Using docker in high performance computing applications.

In: 2016 IEEE sixth international conference on communications and electronics (ICCE). IEEE, New York, pp 52–57

 20. Kozhirbayev Z, Sinnott RO (2017) A performance comparison of container-based technologies for the cloud. Fut

Gener Comput Syst 68:175–182

 21. Varma PCV, Kumari VV, Raju SV et al (2016) Analysis of a network io bottleneck in big data environments based on

docker containers. Big Data Res 3:24–28

 22. Chung MT, Le A, Quang-Hung N, Nguyen D-D, Thoai N (2016) Provision of docker and infiniband in high perfor-

mance computing. In: 2016 international conference on advanced computing and applications (ACOMP). IEEE, New

York, pp 127–134

 23. Peinl R, Holzschuher F, Pfitzer F (2016) Docker cluster management for the cloud-survey results and own solution. J

Grid Comput 14(2):265–282

 24. HPL—a portable implementation of the high-performance Linpack benchmark for distributed-memory computers.

http://www.netlib.org/benchmark/hpl/. Accessed 4 July 2017

 25. Top 10 (2016) http://www.graph500.org/. Accessed 4 July 2017

http://arxiv.org/abs/1509.08231
https://coreos.com/rkt
https://linuxcontainers.org/lxc/
https://hub.docker.com/
http://www.netlib.org/benchmark/hpl/
http://www.graph500.org/

	Exploring the support for high performance applications in the container runtime environment
	Abstract
	Introduction
	Background and related work
	Experimental setup and benchmarking tools
	Computing intensive applications
	Data intensive applications

	Results and discussions
	Exploring computing intensive applications
	Exploring data intensive applications

	Conclusion
	Authors’ contributions
	References

