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Introduction

Cloud computing is being used for innumerable applications these days. �e end-users 

vary from naive clients to expertised technicians. Cloud is a pool of resources shared 

among number of users [1]. Presently, in the world of cloud computing, it is the era of 

XaaS (Anything-as-a-Service) which means that the providers offer a wide variety of ser-

vices [2, 3]. One of the most recent services provided through the cloud is high per-

formance computing (HPC) environments for the complex applications. Virtualization 

is the technology which enables users to share a single entity among a group of users. 
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Based on the position of the virtualization layer, virtualization can be of different types 

like full virtualization, paravirtualization and OS level virtualization.

Traditional HPC clusters are composed of many separate dedicated servers called 

nodes and may be shared among different organizations. �e requirements of each user 

or organization will be different, which demands the creation of customized environ-

ments without affecting others. �is is not an easy task in traditional HPC systems. As 

a solution for this, virtualization was adopted for HPC. Virtualization materializes the 

task by creating separate customized virtual environments of the system based on the 

requirements of each user.

�e overhead associated with virtualization hindered its usage in HPC environments. 

�ere exists different kinds of virtualization techniques [4]. One of the popular tech-

niques involves a Hypervisor (Virtual Machine Manager). Here virtualization services 

are mainly provided through virtual machines (VM), but this creates an additional over-

head due to the running of a fully installed OS. �e guest OS in VMs creates calls to 

the hypervisor rather than direct communication with the hardware, which causes some 

reduction in application performance. �is overhead and limitation results in insuffi-

cient adaptability to the HPC environment. Virtualization technique based on the OS 

level offers a model called Container Virtualization as a solution to all these overheads, 

which gives near native performance [5]. Container virtualization allows to deploy and 

run applications without creating separate VMs for each user. Multiple isolated con-

tainers are run on a single host with sharing a single kernel. �e Linux features such as 

namespaces, chroot and cgroups provides secure execution of containers in the same 

kernel. When compared to traditional virtualization, since containers do not use sepa-

rate OS instances, it requires less CPU, memory and storage, thus the same host can 

incorporate more number of virtualized containers. �e time required to create and 

deploy containers is very less compare to the virtual machine manager based systems.

�e Hypervisor based virtualization employs a full guest OS in each virtual machine 

along with the necessary binaries and libraries for the applications. Containers will hold 

only the necessary binaries required by any application to run [6]. Containers possess 

packaged, ready to deploy applications or parts of applications, and if necessary mid-

dleware and business logic to run those applications [7]. Figures 1 and 2 shows the two 

different virtualization architectures [8].

�ere exists different container management technologies for managing the entire life 

cycle of containers. �is includes creating, deleting and performing modifications on 

images and tools associated with it. Linux LXC, Docker and the latest release Rkt are the 

major managing technologies. All the technologies work on the same base principle that 

the application space should be isolated within the operating system.

�e Rkt container runtime was recently introduced to overcome the limitations of 

the existing container runtimes. Being a more recent technology, the Rkt container is 

expected to provide better support for HPC applications. Most of the current generation 

applications demand high performance capabilities. It is essentially required to enhance 

the support available for such applications. Researchers have been on the quest for tech-

nologies that will enable them to achieve performance which most resembles the bare 

metal scenarios. In alignment with this research interest, we have identified the follow-

ing objectives:
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  • Investigate the existing works which aim at comparing and contrasting the various 

container technologies in a performance-oriented perspective.

  • Explore the features which differentiate the Rkt container runtime from the other 

runtimes.

  • Implement archetypes to assess the variation in support provided by the Rkt con-

tainer runtime for applications with high performance requirements.

Fig. 1 Hypervisor-based virtualization

Fig. 2 Container virtualization
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  • Analyze how the different features impact the performance of computationally chal-

lenging tasks.

  • Analyze the impact of the features specific to the Rkt container runtime on the data 

intensive tasks.

Our primary aim is thus to explore the feasibility of the recent Rkt container [9] for HPC 

environments and compare its performance with LXC and Docker containers. We are 

mainly analyzing the performance results of computing intensive and data intensive 

practical applications in all the scenarios. To the best of the authors’ knowledge, this is 

the first work attempting to analyze the support provided by the Rkt container runtime 

and contrast it with its predecessor, Docker. �e results of the work presented in this 

paper will be of equal interest to researchers attempting to enhance the features of Rkt 

and the group of researchers looking for the adoption of Rkt containers in high perfor-

mance environments.

�e rest of this paper is structured as follows: “Background and related work” section 

contains the history of containers and similar works in this area. Detailed description 

and specification of experiment setup and various benchmarking tools is elaborated in 

“Experimental setup and benchmarking tools” section. “Results and discussions” section 

contains the obtained results and analysis done based on it. Finally, the conclusion and 

future scope of research is described in “Conclusion” section.

Background and related work

High performance computing is an activity which requires more than a normal com-

puter’s ability to execute it. Such activities are generally executed using parallel pro-

gramming efficiently. High performance computing centers are now beginning to use 

container based cloud environments for solving their complex problems [10]. Adopting 

containers in HPC is not an easy task-it involves a lot of challenges [11].

Container technology has been there for more than a decade and it allows the operat-

ing system to be virtualized and share the same instance of the OS. Containerization 

was initiated by UNIX operating system in 1979 with their system called chroot. �en, 

in 2000 Free BSD jail container technology evolved, which was similar to the chroot, but 

incorporated features for isolating file system, users and networking. Linux VServer was 

another jail mechanism and an initial implementation of virtual private servers. OpenVZ 

containers emerged in 2005 which uses patched linux kernel. Each of the OpenVZ con-

tainer possess isolated file systems. �e first complete implementation of linux container 

manager is LXC and it evolved in 2007 [12]. Later, people begin to think of containers as 

processes with extra isolation, and thus helps in reducing the overhead associated with 

virtual machines. Heroku PaaS provider initiated this concept of containers to deploy 

applications. In 2013, Docker came up with an entire ecosystem for managing contain-

ers. Rocket containers came into existence for solving the drawbacks of Docker and to 

provide more stringent security measures. In 2016, Microsoft Windows introduced a 

container technology called Windows Containers for supporting windows server sys-

tems. �e standardised code in the containers can be easily plugged-in and run in the 

operating systems. �is eases the portability of the applications.
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�e technologies available in the linux such as namespace, cgroup are used by the con-

tainer management systems for managing the various operations in containers. Major 

existing technologies for container management are Linux LXC, Docker and Rkt. �e 

common objectives of these technologies are achieved in a different manner.

  • LXC LXC is an interface for the linux kernel containment features and allows the 

users to run multiple isolated images on a single host. �e isolation among LXC con-

tainers are provided through kernel namespaces. LXC containers uses PID names-

pace, IPC namespace and file system namespace for virtualizing and isolating PIDs, 

IPCs and mount points respectively. Network namespace is used to connect the vir-

tual interface in a namespace to the physical interface and supports route based and 

bridge based configurations. Resource management is done through cgroup. Some 

other key responsibilities of cgroup are process control, limiting the usage of CPU 

and isolating containers and processes. LXC has the unprivileged option to cre-

ate User space containers. It may seem advantageous in some aspects but in other 

aspects it may create some security issues. Container portability allows the same 

image to run in different distributions and hardware configurations without much 

changes. In this regard, LXC provides only partial portability because it will work 

across only Ubuntu distributions [13]. LXC allows multiple applications in a con-

tainer.

  • Docker Docker is one of the leading container life cycle management tools. Docker 

allows to run and manage applications side-by-side in isolated containers. Similar to 

LXC, Docker also make use of the features of the Linux kernel such as cgroups and 

kernel namespaces [14].

• namespace: Docker uses namespace for creating isolation among containers. Fol-

lowing are the types of namespace used by Docker.

pid: pid namespace ensures that process in one container does not affect pro-

cess in a different container.

uts: used for kernel version isolation.

•  mnt namespace: provides view of own file system and mount point.

ipc namespace: provides isolation for interprocess communication.

net : network isolation is provided through this namespace.

•  Union file system: union file system allows to stack different layers and present it 

as a single file system. �e writeable layer exists only at the top.

• Control group: resource management or efficient sharing of hardware among 

containers is allowed.

 �e lightweight nature of the Docker container allows several containers to run 

in a single server or virtual machine simultaneously [15]. �e major limitation of 

Docker is its security issues, that is, an attacker can easily get superuser privileges. 

Lack of interoperability is the another limitation of the Docker technology [16].

  • Rkt Core OS Rkt is a more secure, interoperable, and open source alternative to 

Docker. It allows to run multiple isolated images sharing a common kernel space. Rkt 
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provides more security compare to the Docker Containers in various aspects. For 

example, while downloading an image docker does not ensure any kind of security 

but rkt does a cross checking of the signature of the publisher of the image [9]. Rkt 

has different stages.

• Stage 0

Interacts with the user.

Fetches the image and verifies it.

Handles image store operations.

Image rendering.

•  Stage1

Pod isolation from others.

Relevant networking established.

Initialise file systems.

•  Stage 2

Execution of the user application.

 Coreos, host, fly and kvm are the different modes of execution supported by Rkt in 

Stage0. Coreos and host uses Linux namespaces for isolation such as pid, network 

and so on. Fly mode is the lighter security mode-this does not have any isolation for 

network, CPU and memory. SELinux is also not enabled in this mode. KVM mode 

is the most secure mode, in which the Rkt container will behave like a lightweight 

virtual machine itself. Sharing of kernels is not permitted in this mode. Several 

researchers explored the area of virtualization from the past decades onwards, and 

majority of the works were about virtual machines. Morabito et al. [17] made a com-

parison between hypervisor based virtualization and lightweight virtualization. �ey 

considered KVM as an example of hypervisor-based virtualization and Docker, LXC 

as the representatives of Lightweight virtualization. Xavier et al. [18] made a simi-

lar comparison between virtual machine and different containers. �ey considered 

Xen as the VM technology and LXC, Vserver and OpenVZ are the containers. �ey 

found that among those containers LXC is the suitable one for HPC environment. 

Chung et al. [19] made a detailed evaluation about the suitability of Docker in HPC 

environments and found that Docker is more suitable for data intensive applica-

tions. Kozhirbayev et al. [20] made a comparison among the container technologies 

to find out which performs better in Cloud environments. �ey made a comparison 

between Docker and Flockport with reference to the native performance and they 

found that only I/O intensive operations suffer the impact of a higher overhead for 

containers. Docker and Flockport doesnt suffer the overheads in terms of memory 

and processor. �ey claim that containers reduces the difference between the Infra-

structure as service and baremetal systems by providing near native performance. 

Varma et al. [21] performed an analysis of network overheads when Docker contain-

ers are used in Big Data environments. �e Hadoop benchmarks were executed in 

different experimental setups, by varying the number of containers against the num-

ber of virtual machines. �e networking and latency aspects were considered. �e 

throughput of the network was observed to be inversely proportional to the number 

of nodes in a virtual machine. �e Docker containers were found to offer fair sup-
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port for big data applications. Chung et al. [22] evaluated the performance of virtual 

machines and Docker HPC environments where the infrastructure is connected by 

Infiniband and found that the overall performance of containers is better than the 

virtual machines. C. de Alfonso et  al. explored the practical feasibility of running 

scientific workloads with high throughput requirements on containers [16]. Clusters 

of machines running applications in containers were used to provide the require-

ments of the scientific applications. A middleware receives the user requests and 

spawns the appropriate number of virtual nodes. �e CLUES manager is employed 

to provide the required elasticity. Distributed computing paradigms such as the 

Cloud, is the basis of the IT era. Docker containers offer an efficient option to run 

applications in the Cloud [23]. �e Docker containers may be executed on single 

host or on multiple hosts. When large number of Docker containers are run on mul-

tiple hosts, the management of the system becomes tedious, which can be tackled 

by developing infrastructure solutions enabling the administrators to automate the 

tasks of management of the system. Several open-source software solutions have 

been developed for the Docker ecosystem. �ere is relatively less work focused in 

the Rkt container in HPC environment, so, we decided to explore the feasibility and 

performance impacts of this most secure container in HPC environment and to 

check whether Rkt can meet the challenges of an HPC environment.

Experimental setup and benchmarking tools

Our experiments were performed on an HP EliteDesk 800G1 Tower system with two 

Intel 4th Generation Core i7 Processors for a total of 16 cores. We used Ubuntu 16.04.2 

LTS (Xenial Xerus) 64 bit with Linux kernel 4.4.0-62-generic, Docker container 1.3.0, 

LXC 2.0.7, and Rkt container 1.24.0. For consistency, we used the same Ubuntu base 

image on these different platforms.

CPU throttling was disabled in all the experiments because of the usage of BLAS 

(Basic Linear Algebra Subprogram) specification in the ATLAS library. �e ATLAS 

library requires disabling of CPU �rottling for its proper execution.

High performance computing applications can be either Computation Intensive 

or Data Intensive. We evaluated the performance of Rkt container in both scenarios. 

HPL benchmarking tool (computing intensive application) and Graph500 (data inten-

sive applications) are used for analysing the suitability of respective container platform 

and for measuring the performance in high performance computing applications. For 

analysis, the Linpack 2.1 CPU-intensive benchmark and Graph 500 2.1.4 Data-intensive 

benchmarks were executed and results were collected.

Computing intensive applications

Linpack is the benchmarking tool which we used for analysing computing intensive 

applications. It has two implementations. One is optimized only for Intel machines and 

the other one is supported by all machines. HPL is the portable implementation of Lin-

pack, is written in C and requires an MPI implementation, BLAS interface implementa-

tion ATLAS library. HPL tests the performance of a system by generating and solving a 

system of equations using LU decompositions [24].
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HPL generates and solves dense system of linear equations with LU factorization and 

partial pivoting. It mainly involves multiplication of a scalar value with vector and add-

ing the results in to a vector, all these operations are carried out with values with double 

precision floating point. HPL measures rate of floating point execution for solving these 

linear equations and gives us the performance results. Mathlibrary, HPL package and 

Message Passing Interface are required for running this in a distributed environment. 

�e two major steps involved in the problem are:

  • Lower upper factorization of a random matrix.

  • Lower upper factorization used to solve the linear system consisting of the random 

matrix and a scalar.

�e performance results from HPL are measured in Gflops (Billions of floating point 

operations per second):

•  Gflops = ops/(cpu ∗ 100000000)

Following are the test cases considered while analysing the performance of various con-

tainer platform.

  • Varying the problem size (N).

  • Varying block size (NB).

  • Varying the rfact and panel fact.

�e input given for the various tests can be summarized as shown in Table 1.

With these input parameter configurations around 120 tests were performed in all the 

different container runtimes and the averaged experiment results on several runs were 

used for the purpose of analyzing the performance.

Data intensive applications

We measured the performance impacts on data intensive applications in the container 

environment using Graph500 benchmarking tool [25]. Graphs are a core part of analytic 

Table 1 Values of the input parameters

Parameter # of values Values

Problems size (N) 5 10000 11000 12000 13000 15000

Block size (NBs) 4 100 92 104 98

Process grids (P × Q) 1 P = 4, Q = 8

Threshold 1 16

Panel fact 3 Right left crout

Recursive stopping criterium (NBMin) 1 4

Recursive panel fact (RFACTs) 2 Right left

Panels in recursion (NDIVs) 1 2

Swapping threshold 1 64
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workloads. Graph500 is a data intensive super computing application which uses a large 

scale graph to evaluate the performance. �e execution of Graph500 involves two steps:

  • Data generation

• generates edge list.

• construction of graph from the generated edge list.

  • BFS (Breadth First Search) on the constructed graph

• randomly selects 64 unique search keys whose degree is greater than or equivalent 

to one.

• parent array of each key is computed and check whether it is a valid BFS search 

tree.

�ere exists different problem classes based on the size of the problem. �ey are 

toy (17  GB) called as level 10, mini (140  GB)-level 11, small (1  TB)-level 12, medium 

(17 TB)-level 13, large (140 TB)-level 14, huge (1.1 PB)-level 15.

�e input parameters to be given to Graph500 is SCALE and Edgefactor and this 

determines the size of the graph. Number of vertices of the graph is calculated based on 

the input parameter SCALE. Let N be the number of vertices in the graph.

Number of edges M in the graph can calculated as

Results and discussions

We explore the performance of CoreOS Rkt container in HPC environment and com-

pare it with existing popular container runtimes such as Docker and Linux LXC. HPC 

environment mainly comprises of applications which are data intensive or computation 

intensive in nature. We considered both of these important scenarios for our experimen-

tal analysis. �e tests were carried out in single node environment and later in a cluster 

environment. We have tuned the HPL benchmark and tests were carried out.

Exploring computing intensive applications

�e behavior of a processor varies with the increase in the problem size (N) of the HPL 

benchmark, based on that the behavior can fall into one of three different zones:

  • Rising zone �e low problem size wont invoke memory and processor to their maxi-

mum performance.

  • Flat zone Problem invokes only processor to its maximum performance.

  • Decaying zone Problem size is too large and cache memory is not large enough to 

keep all the necessary data, because processor is running in top speed.

�e performance results of HPL in the CoreOs Rkt environment is in given in Fig. 3a. 

�e GFlops on the Y axis gives the rate of execution of floating point operations on a 

scale of billion. We have examined different problem sizes and varying block sizes. �e 

results show that Rkt container performs well in computing intensive applications. We 

N = 2
SCALE

M = N ∗ Edge factor
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can see a significant increase in execution rate with the increase in problem size (N val-

ues). Rkt runs in its rising zone of HPL. Figure 3b shows the results of HPL in Linux 

LXC, Fig.  3c shows the results obtained when HPL is run on Docker containers and 

Fig. 3d is the baseline performance obtained when running HPL on the native system. 

�e rate of execution in billions is increasing almost linearly with increase in problem 

size. Comparing with Rkt for larger problem sizes it does not perform well. �e results 

of Docker in this environment gives better performance for smaller problem sizes and 

there is a drastic degradation in the performance with an increase in the problem size. 

When we compare these results with the results of a native system Rkt container gives 

near native performance for larger problem sizes whereas for smaller problem sizes 

Docker outperforms Rkt and gives near native results, as can be observed in Fig. 4.

�e Rkt container runtime runs for a longer time in the flat zone implying that the 

load experienced by the containers are less challenging. Even when the Docker con-

tainer subsides to the decaying zone, the Rkt container continues in the flat zone. �is 

is supporting the intuition that Rkt container engines provide better HPC support. �is 

can be attributed to the absence of a daemon process in the Rkt runtime stack. �e Rkt 

containers are started based on command clients. �is also resolves compatibility issues 

with init systems (which are existing in Docker Runtime). �e absence of such a daemon 
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increases the startup time slightly, but greatly lowers the overhead experienced by the 

containers. �is is the major reason why the Rkt containers fare better in the high per-

formance scenarios.

Many of the high performance applications are executed in cluster environments, so 

for better understanding the performance in such an environment, cluster of containers 

was created and performance was measured. �e CoreOS Rkt cluster performance is 

compared with other platforms. �e results show that the clustered environment shows 

almost same characteristics as that of the single node environment. �e obtained results 

are illustrated in Fig. 5a–c and a better understanding may be obtained from Fig. 6. �e 

Rkt container gives better performance results for larger problem sizes. In the case of 

Docker containers, by default they use a time sharing algorithm such that each container 

gets the CPU only for 100  ms and after that the CPU switches to the next container. 

�is creates an overhead as it is required to save the process state information before 

switching to the next process. �e computing intensive applications which takes long 

time for execution will be affected by this overhead and will cause a degradation in its 

performance.

Exploring data intensive applications

Graph500 represents a data intensive application benchmark. �is benchmark attempts 

to obtain the BFS of a large graph and the performance is evaluated. Data traceability is 

the criteria which is used for evaluation, it is the ability to keep track of data and access-

ing on a system. We examined the performance of Graph500 with varying Edge fac-

tors. We took edge factors varying from 16 to 36. Results are measured in TEPS which 

is the Traversed Edges Per Second. We explored the simple graph problem size in the 

Graph500 benchmark. �e results given in Fig. 7a–d show that LXC, Docker and Rkt 

containers give near native performance because they are not emulating an entire sys-

tem like the host and they are virtualized only at the level of operating system. Contain-

ers are sharing the same kernel of the host system where it is running and this enables 

them to access data in a very fast manner. Compared to virtual machines, containers fare 

better in data intensive applications and Rkt container gives similar performance results 

along with other containers such as Docker and LXC.

From the results shown in Fig. 8, it can be deduced that the Rkt container performs 

well in data intensive applications, but, the performance is lower when compared to the 
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other container environments. �e LXC container has the performance closest to the 

native performance in data-intensive applications.

�e results shows that Rkt container performs well in both computation intensive and 

data intensive high performance application environments. However, the Rkt contain-

ers are better suited for computation-intensive applications. �e improved support for 

computation-intensive applications coupled with advanced security features connotes 
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that the Rkt containers offer a viable option for HPC. �ere are more challenges to be 

resolved to deliver the Rkt environment as the best option for HPC applications. Being 

a successor of Docker, the Rkt containers are better in some aspects, on the other hand, 

being an emerging technology still in its evolving stage, there remains more scope for 

improvement.

Conclusion

Container technology is becoming a widespread platform used in Cloud computing. 

High performance computing centers are now using containers for their complex appli-

cations because of the flexibility and gain in productivity. Adopting containers is not an 

easy task. In this work, we explore the feasibility of CoreOS Rkt container in the HPC 

world. We performed evaluations in two scenarios related to HPC. One is the data inten-

sive application environment and the other is the computation intensive environment. 

We explored the widely used containers such as Docker and LXC in the same scenarios 

and provided a comparison of the results.

�e results of the experiments show that the CoreOS Rkt container gives near native 

performance in computational intensive and data intensive high performance appli-

cation environment. �e results are promising and indicate that Rkt is well suited to 

run HPC applications as well, especially for computation-intensive workloads. Future 

research can experiment various HPC applications, measure the communication per-

formance and tune the algorithms accordingly. �e enhanced security features, inter-

operability and better performance will lead Rkt to a prominent position in HPC 

environments in the near future.
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