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Exploring the symbiotic pangenome of the
nitrogen-fixing bacterium Sinorhizobium meliloti
Marco Galardini1, Alessio Mengoni1*, Matteo Brilli2, Francesco Pini1, Antonella Fioravanti1, Susan Lucas3,
Alla Lapidus4, Jan-Fang Cheng3, Lynne Goodwin5, Samuel Pitluck3, Miriam Land6, Loren Hauser6, Tanja Woike3,
Natalia Mikhailova3, Natalia Ivanova3, Hajnalka Daligault3, David Bruce3, Chris Detter3, Roxanne Tapia3, Cliff Han3,
Hazuki Teshima3, Stefano Mocali7, Marco Bazzicalupo1 and Emanuele G Biondi1,8

Abstract

Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive
polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in
relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse
symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain
AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83
and BL225C, we sequenced the complete genomes for these two strains.

Results: With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the
laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups,
while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only
three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found
65 interesting orthologous groups of genes that were present only in the accessory genome, consequently
responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis
inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for
accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and
BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic
interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory
genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic
performances among the analyzed strains.

Conclusions: In conclusions, the extended comparative genomics approach revealed a variable subset of genes
and regulons that may contribute to the symbiotic diversity.

Keywords: Sinorhizobium meliloti nodulation, symbiosis, comparative genomics, pangenome, panregulon

Background
Sinorhizobium (syn. Ensifer) meliloti belongs to the Rhi-

zobiales order of the alpha-Proteobacteria class, together

with important human pathogens such as Bartonella

and Brucella, and with several plant-associated bacteria

of relevant agricultural importance, such as Agrobacter-

ium, Ochrobactrum, Bradyrhizobium, Mesorhizobium

and Rhizobium [1]. S. meliloti is distributed world-wide

in many soil types where it can be found in free living

form or as a symbiont of leguminous (Fabaceae) plants,

on which it induces the formation of nodules, specia-

lized organs where bacteria fix nitrogen within the plant

cytoplasm [2]. Medicago sativa L. (alfalfa) and the

diploid relative M. truncatula Gaertn. (barrel medic) are

among the most studied host species for the S. meliloti

symbiosis [2-4]. Although several essential features of

the symbiotic association between alfalfa (and barrel

medic) and S. meliloti have been elucidated and,
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nowadays, scientists are able to explain most of the

major steps of nodule formation, many aspects are still

not fully understood [2]. In fact, although the main

steps and genes related to symbiosis have been identified

by mutants produced in laboratory (see NodMutDB,

[5]), one of the less considered aspects of the rhizo-

bium-legume symbiosis concerns the effects of genetic

variation of natural strains on plant growth due to dif-

ferences in symbiotic efficiency. In this perspective, two

of the most investigated strains of S. meliloti are

BL225C and AK83 [6]. These strains were isolated while

investigating the genetic variability of S. meliloti popula-

tions ([7] and M. Roumiantseva, unpublished results)

and revealed different symbiotic phenotypes [8]. Strain

BL225C was found to be more effective in increasing

plant growth of M. truncatula and alfalfa plants than

strain AK83; indeed plants inoculated with AK83 grow

similar to un-inoculated control plants even though they

produce a larger number of immature nodules. Com-

parative genomic hybridization (CGH) studies showed

that AK83 and BL225C strains have from 5.7% to 6.5%

of CDS divergent (mutated or deleted) with respect to

the reference sequenced strain Rm1021 [6], most of the

genomic polymorphism being located on the symbiotic

megaplasmid pSymA. However, a CGH array can only

reveal when genes present in the microarray, repre-

sented by the reference genome, are lost or duplicated

in the other strains, but it is unable to identify the

genetic repertoire exclusively possessed by a novel

strain. To date, the only genome sequence available for

S. meliloti belonged to strain Rm1021 [9] and only

recently also to strain SM11 [10]. However it is known

that most of the genomic analyses in bacteria revealed

large differences in genes content even between closely

related strains (for a review see [11]) justifying the intro-

duction of the pangenome concept [12,13] where the

pangenome is intended as the sum of “core” (conserved

in all strains) and “accessory” (variable among strains)

genes. It has also been proposed that non-essential

genes are responsible for driving the evolutionary diver-

sification between bacterial strains [14], even if their

adaptive value is often uncertain [15]. Despite the large

interest and the number of studies performed on S.

meliloti biology and genetics, the size and the function-

alities of the S. meliloti pangenome remain to be exten-

sively elucidated, especially at the level of the symbiotic

diversity.

Moreover, besides the gene content present in the

accessory genome, also regulatory networks have been

shown to be plastic enough to accommodate and

explain phenotypic variability at different evolutionary

scales [15-17]. In bacteria, regulon polymorphism, that

is the existence of a core and an accessory regulon, has

been previously studied in different contexts and

taxonomic scopes, such as pathogenesis regulation in

Clostridium perfringens strains [18] and cell cycle con-

trol in the alpha-proteobacteria class [19], both at the

intra-specific and inter-specific levels, respectively. In

particular, it was shown that in some alpha-proteobac-

teria the cell-cycle regulatory circuits undergo rearran-

gements which seem to maintain the logic of the

regulation.

In this work, we present the genome sequences of S.

meliloti strains AK83 and BL225C, aiming to provide a

depiction of the S. meliloti pangenome, which may be

associated with symbiotic interaction and then could be

at the basis of differences in the symbiotic efficiency of

natural strains. To address this aim, after full genome

sequencing and annotation, we developed a pipeline of

automatic search which integrates available general pur-

pose genomic databases (NCBI, KEGG, InterPro) with

rhizobial specific resources (Rhizobase Bibliome and the

nodMutDB [5]) to identify all genes that could be possi-

bly related to symbiosis. Then we investigated the possi-

ble genetic determinants of phenotypic differences

between these strains using computational methods and

integrating classical genomics analysis, such as the identi-

fication of shared and specific genes with the prediction

of regulons for selected transcription factors that are

known to play a role during symbiosis. Together, these

approaches allowed us to find a genomic interpretation

to the phenotypic differences and to define a set of acces-

sory genetic factors related to the symbiotic process.

Results and Discussion
General features of AK83 and BL225C genomes

The genome sequences of strains AK83 and BL225C,

were obtained as described in Materials and Methods;

both genomes resulted to be larger than that of strain

Rm1021 by additional 450 kbp (AK83) and 290 kbp

(BL225C) (Table 1). This larger DNA content is paral-

leled by an increase in the number of CDSs (from 6218

of Rm1021 to 6518 and 6359 of the mentioned

sequenced strains, respectively).

Strain AK83 has the highest percentage of ORFans

(orphan ORFs) (5.63%), defined as those genes with no

detectable similarity with other genes in any other

organism [20], and the lowest number of ORFs coding

for proteins with homology to COGs, InterPro, GO and

Rhizobase entries, while strain Rm1021 shows the high-

est number of transposases and Insertion Sequences

(152) compared to AK83 and BL225C (135 and 76,

respectively). Other relevant features of general impor-

tance are those related to the environmental sensing

and transport: we noticed that BL225C and AK83

strains have more Type IV secretion systems-related

proteins than the reference strain Rm1021. However, a

similar number of ABC transporters-related proteins
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and of Type III secretion systems-related proteins were

found across the three genomes, tough no fully func-

tional Type III secretion systems were detected, as pre-

viously noticed for Rm1021 strain [9]. Finally, two-

component signal transduction systems related proteins

are slightly higher in Rm1021 and BL225C strains than

in AK83 (129, 134 and 125, respectively).

Defining core and accessory S. meliloti genome

By comparing the 19095 CDSs, found in the three gen-

omes, a set of 7824 orthologous groups was identified; a

subset of 5124 was conserved across all the three gen-

omes and accordingly defined as the core genome of S.

meliloti species. The remaining 2700 orthologous groups

were defined as members of the accessory genome for

these three genomes. The strain with more unique

genes is AK83, with 843 exclusive groups, while BL225C

and Rm1021 have 469 and 602 exclusive groups, respec-

tively (Figure 1). In Additional file 1 the full list of core

and accessory proteins is reported.

When the very recently published SM11 genome [10]

was added to our proteome set of the three strains

(AK83, BL225C, Rm1021), the core genome contained

5075 orthologous groups, with the loss of 49 groups,

suggesting a certain stability of the core genome size in

this species, while the accessory genome comprised

3810 orthologous groups.

In order to define possible differences in functions

encoded by the core and/or the accessory genomes and

by the different strains, each protein was assigned to a

COG category (Additional file 2) and the abundance of

each COG category was plotted (Figure 2, Additional

file 3). Statistically significant differences between core

and accessory genome were found only for COG cate-

gory L (DNA replication, recombination and repair) and

for proteins with no assigned COG (X): in these two

categories, the accessory genome is enriched, especially

in the category X. Similar enrichment in CDSs with no

assigned function has been previously reported in the

accessory genome of other organisms [21] as well as in

the S. meliloti plasmid pSmeSM11a [22]. For other

COG categories, no statistically significant difference

was found, though a higher representation of all

assigned functions was found in the core. Finally no sig-

nificant difference of COG categories between the three

strains was found (Additional file 3).

Structural genomics

While BL225C contains three replicons as Rm1021,

AK83 is composed by five circular replicons, corre-

sponding to the chromosome, pSymA and pSymB,

Table 1 General genomic features of AK83 and BL225C

strains in comparison with Rm1021

Rm1021* AK83 BL225C

Length (Mb) 6.69 7.14 6.98

G+C content 61.3% 61.9% 62.0%

Coding 86.1% 85.6% 84.7%

ORFs 6218 6518 6359

rRNA 9 9 9

tRNA 54 56 55

Chromosome (Mb) 3.65 3.82 3.67

Chromid pSymB (Mb) 1.68 1.68 1.69

Megaplasmid pSymA (Mb) 1.35 1.31 1.61

Plasmid 1 (Mb) NP 0.26 NP

Plasmid 2 (Mb) NP 0.07 NP

ORFs with no function 23.72% 28.86% 24.60%

ORFs with no similarity (ORFan) 3.22% 5.63% 3.74%

ORFs annotated by COG 76.28% 71.14% 75.40%

ORFs annotated by Interpro 85.70% 82.60% 84.29%

ORFs annotated by GO 66.13% 62.44% 64.16%

ORFs annotated by KEGG 55.53% 54.88% 54.32%

ORFs with homology with members of
Rhizobase**

92.46% 87.63% 90.64%

Putative transposases 152 135 76

Putative Type III secretion systems-related
proteins

5 5 5

Putative Type IV secretion systems-related
proteins

4 8 7

Putative Two component systems-related
proteins

129 126 134

Putative ABC transporters-related proteins 314 302 309

* Data from NCBI genome database http://www.ncbi.nlm.nih.gov/sites/entrez?

db=genome

** Not considering strain Rm1021

NP: not present

Figure 1 Size of core and accessory genome of three S. meliloti

strains. The number of orthologous groups found in each
intersection is reported. Areas are not in scale.
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which are also present in the genome of Rm1021 and

BL225C and two new small replicons 1 and 2, respec-

tively 0.26 Mbp and 0.07 Mbp in size as schematized in

Figure 3. The genomic structures of the fully assembled

complete genomes were compared with a full-scale

genomic alignment (see materials and methods). The

chromosome and the pSymB chromid are characterized

by a high resistance to genome rearrangements, with an

almost perfect shared synteny, with only few insertions

in the chromosome of strain AK83 and few rearranged

regions of the chromid pSymB. The other replicons

showed indeed lower degrees of synteny: in particular

Plasmid2 of strain AK83 had no region of similarity

with the other replicons of strain Rm1021 and BL225C

(and with other plasmids available in the NCBI data-

base). Concerning the symbiosis-required megaplasmid

pSymA, a very low degree of synteny was observed indi-

cating an increased rate of rearrangements for pSymA,

and indeed evidences for rearrangements were noticed,

since at least three fragments of Plasmid1 showed an

high degree of similarity with the Rm1021 pSymA (ca.

47 kbp), while just one fragment was found to be highly

similar to the pSymA of BL225C (ca. 27 kbp). These

data suggest that AK83 Plasmid1 may be derived from

or represent an evolutionary step toward the megaplas-

mid pSymA. Interestingly, a fragment 8 kbp long of

Plasmid1 showed similarity with another symbiotic-

related plasmid (Sinorhizobium fredii NGR234 plasmid

pNGR234b). On the other hand, megaplasmid pSymA

of strain BL225C compared to Rm1021 showed a higher

number of syntenic regions and a lower number of

Figure 2 Distribution of orthologs for each COG category in

the core and the accessory genome; asterisks indicate those

categories that are significantly different. See Table S2 for COG
codes.

0.52 1.05 1.57 2.10 2.62 3.15 3.67 4.20 4.72 5.25 5.77 6.30

AK83

pSymB

Chromosome

pSymA

Replicons:

AK83 Plasmid 1

AK83 Plasmid 2

**

****

* *

*

0.52 1.05 1.57 2.10 2.62 3.15 3.67 4.20 4.72 5.25 5.77 6.30 6.82

6.82

Rm1021

BL225C

* * * * *

* * *

Figure 3 Structure of S. meliloti genomes: genomic alignment of strain BL225C (top), Rm1021 (middle) and AK83 (bottom) with each

replicon highlighted by different colours. The size is expressed in Mbp. Red connections indicate syntenic regions, blue ones inversions,
asterisks indicate the regions containing transposases as discussed in the text.
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inversions than AK83 (6 regions over 27 for the former

and 11 regions over 24 for the latter). The genomic

structure of the newly sequenced S. meliloti strain SM11

was also analyzed (data not shown); as expected SM11

pSmeSM11c (replicon carrying symbiotic functions, ana-

logous to Rm1021 pSymA) is the most diverse replicon

in comparison with replicons of strains AK83 and

BL225C. No significant homologies were found between

the small plasmids of strain AK83 (Plasmid 1 and Plas-

mid 2) and strain SM11 genome, as well as no signifi-

cant hits between strain SM11 small plasmids

(pSmeSM11a and pSmeSM11b) and AK83 and BL225C

genomes. However, the presence on strain SM11

pSmeSM11a plasmid of two regions of 15 and 10 kbp

syntenic to megaplsmid pSymA of strain Rm1021 was

confirmed [22].

The location of transposases and insertion sequences

was analyzed. Indeed in most of the cases, transposase

encoding genes were enriched in regions carrying the

traces of genomic rearrangements (with a frequency of

1.53, 1.32 and 0.59 IS/10 kb in RM1021, AK83 and

BL225 respectively), than in highly syntenic regions

where the corresponding frequencies are 0.19, 0.11 and

0.06 IS/10 kb in the three genomes. As reported in Fig-

ure 3, 17 transposases were found in a 80 kbp insertion

of the chromosome of strain Rm1021 (3’357’000 to

3’440’000), as well as in the biggest five non-syntenic

regions of the AK83 chromosome. In the pSymA mega-

plasmids, 13 transposases were found in the non-synte-

nic region of strain Rm1021 (200’000 to 390’000), 14

and 15 transposases were found in strain AK83 in two

non-syntenyc regions (300’000 to 457’000 and 1’102’000

to 1’198’000) and in strain BL225C 17 and 2 transpo-

sases were found in two non-syntenyc regions (630’000

to 934’000 and 144’000 to 1’482’000). Finally, 4 transpo-

sases were found flanking the two regions of strain

AK83 Plasmid1 that are also present on megaplasmid

pSymA in strain Rm1021.

Accessory genome and symbiosis-related functions

Looking at the genetic content of the symbiotic mega-

plasmid pSymA of Rm1021 in comparison with AK83

and BL225C, previous findings using CGH were con-

firmed [6,23]: in fact, many genes harbored by Rm1021

pSymA were found missing in the genomes of the two

other strains (Figure 4). Moreover, two regions of

Rm1021 pSymA (200’000 to 390’000 and 679’000 to

708’000), predicted to be a large part of the so-called

microaerophilic gene set [24], were not present in strain

AK83 and to a lesser extent also in strain BL225C.

We then focused on genes involved in some aspects of

the symbiotic process, that we identified using a data

mining strategy combining different sources of informa-

tion, using the following approach: for each orthologous

group having a predicted link to a NodMutDB and/or

Rhizobase member (see materials and methods) the

related literature was retrieved and analyzed to speculate

its actual role in symbiosis. This approach was com-

bined with other annotation sources (such as KEGG and

Interpro) in a dedicated data mining procedure (Addi-

tional file 4); together with this approach, also those

proteins with names containing symbiosis-related terms

(e.g. fix, nif, nod) were retrieved. In particular we were

interested in genes that are differentially present in the

three strains and that could be related to the different

symbiotic phenotypes of these strains.

By using the strategy described above, we identified,

among the accessory genes, those that have been impli-

cated in the symbiotic process in rhizobia through

experimental work. Within a total number of 290 ortho-

logous groups retrieved, 61 of them were found to belong

to the accessory genome (21%) (Additional file 5).

These 61 accessory genes were divided in 36 entries

(since 32 of them were organized in 7 operons): 22 of

which were present in BL225C, 21 in Rm1021 and 12 in

AK83 genomes (Table 2). Three main classes were iden-

tified, one comprising genes involved in microaerophilic

growth during bacteroid development and putatively

under the control of the transcriptional regulator FixK

AK83Rm1021

BL225C

Reference genome Missing ORFs

Figure 4 Regions of Rm1021 pSymA megaplasmid (red circle)

and regions absent in the genomes of strains AK83 (blue bars)

and BL225C (green bars). The micro-aerophilic regions [24] are
indicated with red external arches.
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Table 2 Relevant genes of the accessory genome related to symbiotic interaction

Orthologous group(s)* Gene or Protein Name Strain(s) Copies Phenotype*** Species**** NodMutID

Microaerophilic gene
set

5488 fixK-like Rm1021/BL225C 4 Nod+Fix- B. japonicum USDA110 924-5

5305, 5324, 5377, 5379 fixNOQP3 Rm1021/BL225C 3 Nod+Fix- B. japonicum USDA110 933-950

5327, 5300, 5361, 5326,
5378

norBCDEQ Rm1021/BL225C 1 Nod+- B. japonicum USDA110 921

5432, 5427, 5508, 5586,
5502, 5567, 5554

nosRZDFYLX Rm1021/BL225C 1 Nod+Fix+ B. japonicum USDA110 1075

5498, 5537 nirKV Rm1021/BL225C 1** Nod+- B. japonicum USDA110 922

5298, 5394, 5563 nnrRSU Rm1021/BL225C 1** N2metabolism S.meliloti JJ1c10 —

5441, 5485, 5583 nrtABC Rm1021/BL225C 1** N2metabolism S.meliloti Rm1021 —

7166 cycB2 Rm1021 2 Not known S. meliloti Rm1021 —

5391 hemN Rm1021/BL225C 1 Not known S. meliloti JJ1c10 —

Others

5422 Symbiosis-related SDR Rm1021/BL225C 1 Nod+Fix+- S. meliloti Rm1021 1310

6532 nwsB BL225C 1 Nod+- B. japonicum USDA110 911, 1015,
1019

5532, 5338, 5424, 548,
5381, 5346, 5437, 5522

rhbABCDE, rhtAX, rhrA Rm1021/BL225C 1** Nod+Fix+- S. meliloti Rm1021 —

5832 acdS AK83/BL225C 1 Nod+- Several rhizobial species —

5635 fixKweakhomolog AK83/BL225C 4 Nod+Fix- B.japonicum USDA110 924-5

7649 nodQ1 Rm1021/AK83 2 Nod+- S. meliloti Rm1021 104, 119,
134-7, 618,
629

6799 fixT3 Rm1021 7 Not known S. meliloti Rm1021 —

6905 nodP2 Rm1021 2 Host S. meliloti Rm1021 —

7041 fixT2 Rm1021 7 Nod+Fix+ S. meliloti Rm1021 685

7042 fixK2 Rm1021 4 Nod+Fix- S. meliloti Rm1021 489

5593 C P450 AK83/BL225C 3 Nod+Fix+ B. japonicum USDA110,
Rhizobium sp. BR816

—

7427 hupE AK83 1 Nod+Fix+ A. caulinodans ORS571 —

5770 hemA homolog AK83/BL225C 1 Nod+Fix+- B. japonicum USDA110 —

6640 Pcs distant homolog BL225C 2 Host Several bacterial species —

7666 CTP:
phosphocholinecytidylyltransferase

AK83 1 Host Several bacterial species —

7766 Cadherin-likeprotein AK83 1 Host R. leguminosarum bv.
viciae

—

6766 cgmB Rm1021 1 Host S. meliloti Rm1021 —

6835 expR (fragment) Rm1021 1 Not known S. meliloti Rm1021 —

5551 Sugar isomerase Rm1021/BL225C 1 Host S. meliloti Rm1021 —

3183 nodM (AK83) AK83 2 Host S. meliloti Rm1021 —

Not characterized

6353 napC/nirT-like BL225C 1 N2metabolism Several rhizobial species —

8184 glnA-like AK83 9 N2metabolism Several rhizobial species —

5573 fixS2 Rm1021/BL225C 2 Not known S. meliloti Rm1021 —

5936 fixO-like AK83/BL225C 2 Not known Several rhizobial species —

5950 fixT1-like AK83/BL225C 7 Not known Several rhizobial species —

6498 fixT-like BL225C 7 Not known Several rhizobial species —

7148 fixL-related Rm1021 2 Not known S. meliloti Rm1021 —

See text and Figure S1 for details of the searching procedure.

* See Table S1 for the accession numbers of the single proteins belonging to each group

** One or more genes are present in more than one copy

*** Host: recognition, communication and invasion of a host plant; Nod: nodulation phenotype; Fix: nitrogen fixation and plant growth promotion phenotype; +

positive phenotype; +- slightly reduced phenotype; - absent phenotype

**** Organism in which the function of a specific protein or operon was elucidated
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[2], the second comprising other genes either directly or

indirectly related to symbiosis (e.g. affecting host range,

nodule competitiveness, nodule number, nitrogen meta-

bolism, etc.) and the latter comprising those proteins

with limited information about their function, although

probably involved in the symbiotic process. As men-

tioned before, genes belonging to the first class (micro-

aerophilic gene set), were absent in the accessory

genome of strain AK83 and present in both Rm1021

and BL225C strains (with the exception of cycB2, pre-

sent in Rm1021 only). These genes are mainly clustered

in three parts of the pSymA replicon of Rm1021, two of

which known to be induced in microaerophilic condi-

tions [24] (Figure 4). They include: a fixK-like gene

encoding for a transcriptional regulator, the third copy

of the operon fixNOQP encoding for an electron trans-

port chain with high affinity to oxygen and a series of

operons related to nitrogen metabolism: nor (nitric

oxide reduction), nir (nitrite reduction), nos (nitrous

oxide reduction), nnr (regulation of nir and nor oper-

ons), nrt (nitrate transport), plus two genes also related

to the microaerophilic environment, cycB2 and hemN.

Interestingly, we also identified different copy numbers

of fixK genes in the three genomes: the actual regulator

(belonging to the orthologous group N.280) was present

in the core genome, FixK2 (orthologous group N.7042)

was present only in Rm1021, and a FixK-like copy

(orthologous group N.5488) was found in Rm1021 and

BL225C genomes, as a part of the microaerophilic gene

set; finally a FixK-like weak homolog was found in

strains AK83 and BL225C (orthologous group N.5635).

Other genes, present only in the accessory genome of

Rm1021 and BL225C genomes, include a gene for a

short chain dehydrogenase (SDR) whose mutation leads

to the formation of white and elongated nodules [25]

and the gene cluster for rhizobactin biosynthesis which,

though not directly affecting nitrogen fixation [26], may

have long-term effect on plant growth [27]. All together

these two groups of accessory genes absent in AK83

genome may help explain for the reduced efficiency of

plant growth promotion by this strain. Interestingly,

only one symbiotic gene is absent just in strain BL225C;

the first copy of the nodQ gene, the mutation of which

leads to a slightly delayed nodulation [28-31]; since

strain BL225C does not exhibit such a phenotype, it can

be argued that probably this strain can overcome this

gene loss, although the mechanism is still unclear.

Among the remaining genes, 4 are exclusively present in

strain AK83 including a nickel permease/hydrogenase

hupE putatively involved in recycling the hydrogen

developed during nitrogen fixation [32], a cadherin-like

gene which may have auxiliary roles via Type I secretion

system in cellular aggregation or attachment to roots

[33], a CTP:phosphocholine cytidylyltransferase, involved

in the phosphatididylcholine metabolism whose presence

in the bacterial membrane is also important for the

adhesion to eukaryotic cells [34] and the nodM gene,

whose sequence is homologous but not orthologous to

the same gene in the other two strains; since this gene

plays a crucial role in the early steps of the rhizobial

invasion of the host plant, this difference could have an

impact on the symbiotic process. Two symbiotic genes

are present in BL225C only, namely a phosphatidylcho-

line synthase distant homolog and the putative two-

component response regulator gene nwsB, which is

related to strain competition for nodulation in B. japoni-

cum [35]. Six genes are present in Rm1021 only: cgmB,

the second and the third copies of fixT, the second copy

of nodP, the second copy of fixK and the expR fragment;

this means that expR is disrupted in Rm1021 and there-

fore it doesn’t give any functional products. The remain-

ing genes include a homolog of the 5-aminolevulinate

synthase (hemA) involved in the biosynthesis of por-

phyrins and putatively involved in the release of the rhi-

zobial cells from the infection threads (absent in

Rm1021) [36], one gene encoding a cytochrome P450

oxidase (CP450, absent in Rm1021), known to be

expressed in bacteroids in other rhizobial species [37],

the acdS gene encoding ACC deaminase (absent in

Rm1021), which play a role in competition for nodula-

tion [38], and a putative fucose isomerase (absent in

AK83), which may add modifications to the Nod factor

of strain Rm1021 and BL225C, thus potentially altering

the communication with the host plant [39].

In conclusion, it can be noted that 48 orthologous

groups are missing in the symbiosis defective AK83,

which is, in fact, a large proportion of the accessory

genes related to symbiosis (79%).

The symbiosis-related panregulon

To further investigate the genomic differences that may

be related to the variable symbiotic phenotypes of

AK83, BL225C and Rm1021 strains, the predicted regu-

lons of a series of symbiotic transcription factors were

analyzed. A set of eight transcriptional regulators related

to symbiotic interaction was chosen, based on the

knowledge of their DNA binding sites (Additional file 6)

and on regulon information on closely related rhizobial

species that may share the same binding site with S.

meliloti. The set included transcriptional regulators

involved in root exudates perception and early nodula-

tion steps (NodD, NolR), microaerophilic adaptation

(FixK), nitrogenase synthesis (FixJ, NifA), iron uptake

(Fur), EPS biosynthesis (ChvI) and plant invasion com-

petition (NesR) (Table 3). It should be noticed that the

FixK regulated genes only partially overlap with those

found to be expressed under microaerophilic conditions

[24], which may be under control of other regulators.
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For each transcriptional regulator, genes putatively regu-

lated and present in the genomes of strains Rm1021,

AK83 and BL225C were sorted out by HMM scanning

and the core (conserved in all strains) and the accessory

(variable among strains) putative regulons were defined

(Figure 5a). We defined the panregulon as the totality of

gene families controlled by a specified transcription fac-

tor in a certain number of genomes, in analogy to the

term pangenome [12], and which is formed by the core

and the accessory regulons. The putative panregulon

varies in sizes from 101 (FixK) to 6 (NolR) orthologous

groups (i.e. genes); since some of the regulated targets

could be part of an operon or be additional regulators,

the actual size of the predicted panregulon is definitely

under-estimated. NolR and NesR show a very little pan-

regulon (with a core regulon of 3 and 5 orthologs,

respectively); the accessory regulons of the other tran-

scriptional regulators are very large and variable,

accounting for 31-79% (average 55%) of all panregulons.

The occurrence of wide accessory regulons could be due

to the absence in one or two strains of the target genes

or to the absence of the regulatory upstream sequences

when the genes are present. The absence of target genes

is the most frequent case ranging from 50% (NesR) to

100% (NolR) of the targeted genes, with an average

value of 69% (Figure 5b). On the contrary the variability

of DNA binding sites upstream CDSs (genes were still

present in a given genome but were not putatively regu-

lated by that transcription factor) is less frequent with

an average value of 31%. The list of all genes sorted out

as putatively regulated by the selected transcriptional

regulators is reported in Additional file 6. The composi-

tion of the accessory regulons in terms of un-annotated

targets was calculated counting the number of CDS with

no COG classification (Additional file 7) resulting in an

average percentage of 49%, while for the core regulons

the percentages of un-annotated targets is lower (21%).

Figure 5 General features of the panregulons for selected

symbiosis-related transcriptional regulators; a) the overall

number of putative target genes and their core and accessory

fractions are indicated for each regulator; b) the fractions of

regulons that are accessory due to the absence of the genes

or the DNA-binding sites.

Table 3 Selected transcriptional regulators related to symbiosis with known binding site in S. meliloti (see Table S5 for

consensus sequences)

Genes regulated

Transcription
factor

Symbiotic process Reference Rm1021 AK83 BL225C

NodD1 Flavonoid perception [40,68] 10 13 12

ChvI EPS biosynthesis [45] 54 65 52

FixK Microaerophilic adaptation [41] 54 61 54

FixJ Nitrogenase synthesis and functioning via nifA [69] 26 31 35

NifA Nitrogenase biosynthesis [41] 35 48 42

Fur Iron uptake [43] 9 8 9

NolR* Optimization of nodulation, bacterial growth on solid medium, survival under stress
conditions, and conjugative transfer of plasmids

[70] 3 6 3

NesR Competition for plant nodulation [44] 6 5 7

* gene disrupted by a frameshift mutation in Rm1021 [46]
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Figure 6 Schematic diagram of the predicted regulons in all strains. a) Putatively regulated genes have been vertically arranged in relation
to their involvement in electron transport, symbiosis and nitrogen metabolism and other functions, while the genes without enough functional
information are not reported in the diagram (see Table S3 for the complete list). Arrows indicate the presence of a predicted DNA-binding site
upstream the indicated gene, with no inference about the role in the regulation of gene expression. Black gene names and arrows belong to
core genome/regulons; red gene names and arrows belong to accessory genome/regulons. b) Details of the regulation of symbiosis-related
genes among the three strains analyzed, Rm1021 (left), BL225C (middle) or AK83 (right); the color of the cell represents the absence of the gene
(grey) or the presence of the gene (white, non-regulated or blue, regulated); only the scores above threshold are reported.
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The genes of the predicted regulons were then divided

into 5 functional groups: electron transport, symbiosis,

nitrogen metabolism, others or un-annotated. In Figure

6a the eight regulons are showed; in many cases puta-

tively regulated genes could be matched with experi-

mental data: for NodD1 the experimental regulation of

nodL, nodF, nodA, nodM and syrM [40] was confirmed

by the analysis; for FixK the regulation of fixNOQP1, fix-

NOQP2, fixGIS, arcABC, napEFDABC, norBCE, cycB2

and degP4 was confirmed [41]; for NifA the regulation

of nifHDKEX, fixABCX operons and the nifB genes [41]

were also confirmed. Experimental confirmation of regu-

latory predictions by NolR was also found for nodA,

nodD1, nodD2 and nodM [42], by Fur for sitA [43], by

NesR for the metHK operon and the ahcY gene [44] and

by ChvI for ropB [45]. Interestingly, even if the nolR

gene is disrupted by a single base insertion in strain

Rm1021 [46], the NolR binding sites in front of nodD1,

nodD2 and nodA are maintained, suggesting that the

inactivation may be relatively recent. Co-regulation by

different factors was observed on several genes; in parti-

cular 7 genes were putatively regulated by more than

one regulator (nodD1, nodD2, nodA, nodM, the AK83

copy of nodM and two other uncharacterized proteins)

and a co-regulation by 4 out of the 8 selected regulators

was also found (NolR on NodD1 and FixJ on FixK),

indicating that some of the symbiotic regulators are

linked together in a network that ensures the coordina-

tion of the expression of the genes required during

infection and nitrogen fixation. The FixK regulator is

predicted to control the highest number of genes

involved in the symbiotic process, as well as those

involved in nitrogen metabolism and electron transport

needed in the microaerophilic environment of the bac-

teroid [24].

Concerning the variability in the predicted regulons

(Figure 6b), it is evident that AK83, shows some differ-

ences in the regulatory networks: in AK83 purB is

apparently not controlled by NifA; nodM is regulated by

NolR only in strain AK83; in AK83 FixK controls napE

and napF. It should be noted that these differences were

not observable from patterns of gene presence/absence,

illustrating the added value of regulon prediction in

comparative genomics.

Conclusions
The symbiosis between the nitrogen-fixing bacterium S.

meliloti and the leguminous host plant Medicago is a

case of a complex multigenic phenotype and one of the

most deeply studied model systems [47]. In order to elu-

cidate the genomic bases of the significant variability

exhibited by environmental strains of the symbiotic phe-

notype, we sequenced the genomes of two strains of S.

meliloti, AK83 and BL225C. These strains have different

effects on plant growth, also in comparison with the

reference strain Rm1021 [8].

We defined the core and the accessory genome of

these three genomes as an approximation of the species

pangenome, identifying a large set of genes, about 35%

of the total number of genes annotated, belonging only

to one or two of the strains analyzed; this proportion is

similar to the pangenomic content of Escherichia coli,

with ca. 42% of the genes belonging to the accessory

genome, while in other species, such as Bacillus anthra-

cis and Streptococcus pneumoniae, the size of the acces-

sory genome is larger, 60% and 77% respectively. The S.

meliloti pangenome elucidated in this work using three

strains can be considered a good approximation of the

species symbiotic pangenome, considering that the core

genome size wasn’t strongly affected by the addition of

strain SM11.

The considerable number of accessory genes supports

the vast phenotypic diversity of these strains and of the

species [8].

Therefore we focused on genes, present in accessory

genome, which were linked with the symbiotic process,

using all literature and database data available. The

approach, developed to aim at that purpose as depicted

in Additional file 4, applied to the repertoire of symbio-

tic genes, had the advantage to speed up the data

mining step, since any source of information was in the

same database, allowing us to combine the results of

various analyses. It should be emphasized that the pro-

cedure can be extended to any interesting phenotype for

which genomic molecular information (genes) are

available.

Symbiosis related genes have previously been shown

to be highly variable among rhizobial species [48] To

address the presence of an intra-specific variability in S.

meliloti, a list of variable genes linked to symbiosis was

compiled and analyzed trying to highlight the putative

connection with the symbiotic phenotype of the three

strains (AK83, BL225C, Rm1021). Surprisingly, the sym-

biotic accessory genome was found to be highly variable,

including about 21% of all the symbiotic orthologs con-

sidered. We can then expect that different symbiotic

phenotypes shown by S. meliloti strains may be indeed

due to such high variability in the symbiotic accessory

genome.

The most notable feature found was a large variability

in the so-called “microaerophilic” gene set [24], which

includes the transcriptional regulator annotated as FixK-

like, a third copy of electron transport chain (fixNOQP)

and several genes related to nitrogen metabolism (nos,

nor, nir, nnr and nrt). These results confirm previous

data obtained by CGH [6] and by phenotypic microarray

on different metabolic activity of these strains in differ-

ent nitrogen sources [8]. These findings, together with
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the lack of a symbiosis-related short chain dehydrogen-

ase and the entire rhizobactin operon, may contribute to

link the reduced plant height phenotype with the geno-

mic structure of strain AK83. The inefficiency of sym-

biotic phenotype of strain AK83 was also confirmed by

the observation of a relatively large number of immature

nodules produced by AK83 on M. truncatula [8] and

alfalfa (unpublished results). Consequently, the content

of the accessory genome in the different strains can

explain the differences in the symbiotic phenotype.

Even if the extent of the accessory genome by itself

could account for the phenotypic differences between

AK83 and BL225C/Rm1021, a comparable variability at

regulatory level was also found. A set of regulons,

defined by previous experimental work and known to be

involved in the symbiotic process (the “symbiotic panre-

gulon”), was investigated searching for the core regulon

(putative regulatory interactions present in all the

strains) and accessory regulon (regulatory interactions

present in one or two strains). Again, a surprisingly

large accessory regulon was found for most of the

selected transcriptional regulators, either because of the

absence of the target gene or because of the absence of

the predicted regulator binding site. This result suggests

that, other than gene content variation, regulons poly-

morphism could be a key determinant in the variability

of symbiotic performances among strains.

The inclusion of regulatory networks in comparative

genomic studies could represent a powerful extension of

the analysis that can uncover the evolutionary events

otherwise undetectable by gene presence comparison.

The assumption behind this approach is that genetic

modifications can occur in the structural gene and in

the cis regulatory sequences leading to the same effect

of the inactivation of the gene function. In the case of

the symbiotic regulons of S. meliloti, we found that

about 31% of the putatively missing connections

between regulator and regulated genes are due the loss

of DNA binding sites, the relative genes being still pre-

sent in the genome. It can be conjectured that the pre-

sence of genes, which have lost (or not still acquired)

the binding sites, may reflect a relatively recent evolu-

tionary divergence, such as is expected among strains of

the same species and confirmed in the case of nolR,

whose inactivation in the laboratory strain Rm1021

probably happened recently, since even its DNA-binding

sites are conserved.

In conclusion, we reported here a genomic analysis of

the symbiotic variability at the intra-specific level in the

non pathogenic a-proteobacterium S. meliloti. The ana-

lysis revealed an accessory genome fraction and regula-

tory variability large enough to shed light on the

symbiotic differences of the strains. Moreover, several

variable genes related to symbiotic diversity were clearly

identified and their occurrence and putative regulation

in the core and accessory genome was investigated.

Finally, the approach used here on symbiotic genes

could possibly be applied to other diverse phenotypes.

The methods and the database set-up in the present

work can constitute a powerful framework for the addi-

tion of other sequenced strains enabling the refinement

of the pangenome and panregulon shape, and predicting

new candidate genes responsible for symbiotic

variability.

Methods
Bacterial strains and culture conditions

BL225C, isolated in Italy in an alfalfa field and AK83,

isolated in the Aral sea region, were deposited at the

German Collection of Microorganisms and Cell Cultures

(DSMZ) with accession codes DSM23914 for strain

BL225C and DSM23913 for strain AK83. AK83 strain is

also present, as original specimen after initial isolation,

in the culture collection of All-Russia Institute of Agri-

cultural Microbiology (RIAM, St. Petersburg, Russia).

Strains were cultured on solid or liquid TY medium

[49] with 0.2 g/liter CaCO3 at 30°C.

Whole-genome shotgun sequencing and draft annotation

Total DNA was isolated from S. meliloti AK83 and

BL225C cultures with a CTAB method according to the

recommended protocols by JGI-DOE http://my.jgi.doe.

gov/general/. Genome sequencing was performed at the

Joint Genome Institute (JGI) (Walnut Creek, California,

USA) using a combination of Illumina [50] and 454

technologies [51]. The 454 Titanium standard data and

the 454 paired end data were assembled together with

Newbler, version 2.3. The Newbler consensus sequences

were computationally shredded into 2 kb overlapping

fake reads (shreds). Illumina sequencing data was

assembled with VELVET, version 0.7.63 [52], and the

consensus sequences were computationally shredded

into 1.5 kb overlapping fake reads (shreds). The 454

Newbler consensus shreds, the Illumina VELVET con-

sensus shreds and the read pairs in the 454 paired end

library were integrated using parallel phrap, version 4.24

(High Performance Software, LLC). The software

Consed [53-55] was used in the following finishing pro-

cess. Illumina data was used to correct potential base

errors and increase consensus quality using the software

Polisher developed at JGI (Alla Lapidus, unpublished).

Possible mis-assemblies were corrected using gapResolu-

tion (Cliff Han, unpublished), Dupfinisher [56], or

sequencing cloned bridging PCR fragments with sub-

cloning. The gaps between contigs in the genomes of

strain AK83 and BL225C were closed by editing in

Consed, by PCR and by Bubble PCR (J-F Cheng, unpub-

lished) primer walks. For strain AK83 a total of 968
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additional reactions and 11 shatter libraries were neces-

sary to close gaps and to raise the quality of the finished

sequence; the final assembly is based on 279.6 Mb of 454

draft data which provides an average 31.3 × coverage of

the genome and 426 Mb of Illumina draft data which pro-

vides an average 62 × coverage of the genome. For strain

BL225C a total of 801 additional reactions were necessary

to close gaps and to raise the quality of the finished

sequence. The final assembly is based on 290.2 Mb of 454

draft data which provides an average 27× coverage of the

genome and 308 Mb of Illumina draft data which provides

an average 44× coverage of the genome. For both genomes

the gene model prediction and draft annotation was gener-

ated using Prodigal [57]. Sequences and annotation can be

accessed through the JGI web site at the addresses http://

genome.jgi-psf.org/sinma/sinma.home.html for AK83 and

http://genome.jgi-psf.org/sinmb/sinmb.home.html for

BL225C; both strains are being submitted in GenBank

with the following master records [Genbank:

NZ_AEDG01000000, Genbank: NZ_AEDH01000000] for

BL225C and AK83, respectively.

Annotation

Annotation was performed again on the three genomes

using Blast+ 2.2.23 [58] and InterproScan 4.6 [59]. A

bidirectional best blast hit (BBH) approach was used to

annotate all the predicted proteins in the three genomes

using the following three databases: NCBI nr, down-

loaded on May 18, 2010, all the Rhizobase http://gen-

ome.kazusa.or.jp/rhizobase/ proteomes, downloaded on

June 1st, 2010 and the KEGG database http://www.gen-

ome.jp/kegg/, downloaded on May 26, 2010; for the first

two databases an E-value threshold of 1e-10 was

applied, while for the KEGG database a threshold of 1e-

50 was applied. For the domain scan using InterproScan

the Interpro database release 27 was used. All the

results were linked to literature using the Interpro data-

base, the UNIPROT database http://www.uniprot.org/

release 2010_06, the KEGG database, the Rhizobase Bib-

liome and the nodMutDB [5]. The number of predicted

transposases and IS was inferred with a keyword search

in the annotated protein set, while the number of puta-

tive Type III and Type IV secretion systems-related pro-

teins, two component systems and ABC transporters

was inferred searching specific interpro domains in each

strain proteome.

Structural Genomics

Genomic alignment between the complete genomes was

generated using the megablast algorithm [58] retaining

only hits of more than 10 kbp; the starting point of the

replicons was changed in order to generate a clearer

syntenic map with the Artemis Comparison Tool (ACT)

from the Artemis suite [60]. The similarity of the two

smaller plasmids of strain AK83 with other known plas-

mids was inspected using the megablast algorithm on

the entire nucleotide NCBI database and retaining only

those hits bigger than 5 kbp. The structure of the refer-

ence genome was compared to the newly sequenced

genomes using the nucleotide sequence of each protein

with a nucleotide Megablast with a 50% identity thresh-

old: results were visualized using DnaPlotter from the

Artemis suite [60].

Orthology

Since the actual magnitude of a pangenome is computa-

ble only by sequencing each strain of the desired species

[61], here we will refer to the term pangenome not as

the full gene complement of the S. meliloti species, but

only to the observable one.

The three proteomes were clustered into orthologous

groups using a BBH approach through InParanoid 4.0

[62] and MultiParanoid [63]. The BLOSUM 80 matrix

was used during the InParanoid run, while the “unique”

flag was applied in the MultiParanoid run; MultiPara-

noid could be reliably used since the three genomes are

evolutionary closely related. The pangenome size of the

species Escherichia coli, Bacillus anthracis and Strepto-

coccus pneumoniae were determined picking three com-

plete proteomes at random from the NCBI public

database and applying the same approach as S.meliloti;

ten repetitions with different genomes were performed

to calculate the average pangenome size.

Functional Enrichment

To elucidate if the accessory genome was enriched in a

particular function, the proportions of the COG cate-

gories [64] in the core and accessory genome were com-

pared; to give statistical significance to the difference an

enrichment analysis was performed, in a similar way as

in Brilli et al. [19]; one million random samplings were

performed and the COG proportions of each sample

was compared to a sample from the whole genome. P-

values below 0.05 were considered significant.

Promoter prediction

Promoter prediction was performed by taking the

nucleotide sequences in region -600 + 100 around the

predicted gene start of all protein coding sequences in

the three genomes. HMMer 3.0 [65] was used to build

the promoter box HMMs (hmmbuild program) and to

scan the promoter regions (hmmsearch program). The

input alignments that generated the HMMs were

retrieved from MEME [66] scans on sequences derived

from literature. HMM scan was performed by switching

off all the heuristic filters, collecting all the hits and cal-

culating the score mean and standard deviation; after

verification of the normality of the score distribution
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using Past [67] only those hits having a score greater

than 3 standard deviation above the mean value were

retained. For the prediction of the two FixJ DNA bind-

ing motifs, the results obtained were merged together.

Data storage and scripting

All the collect data from annotation, orthology and pro-

moter prediction were stored in a MySQL relational

database and linked together in a proteome-centric way.

All the analysis were performed using ad-hoc Python

scripts, taking advantage of the BioPython and SciPy

packages.

Additional material

Additional file 1: The list of core and accessory proteins found in S.

meliloti genomes. The ortholog group, the organism (strain), the
protein ID and its genopmic location are reported.

Additional file 2: List of COG codes. The list of COG codes as reported
at the URL: http://www.ncbi.nlm.nih.gov/COG/old/palox.cgi?fun=all is
shown.

Additional file 3: Abundance of each COG category in the different

strains. The number of proteins belonging to each COG category is
shown for Rm1021, AK83, BL225C strains.

Additional file 4: The data mining procedure followed for finding

gene involved in symbiosis. For each orthologous group having a
predicted link to a NodMutDB and/or Rhizobase member the related
literature was retrieved and analyzed to speculate its actual role in
symbiosis. This approach was also combined with other annotation
sources (such as KEGG and Interpro).

Additional file 5: Symbiosis ortholog groups. Genes known to be
involved in the symbiotic process from literature, from nodMutDB and
for orthology with members of rhizobase are reported

Additional file 6: Symbiosis-related transcription factors. The eight
transcriptional regulators retrieved with indicated the genes putatively
regulated in the three genomes are reported

Additional file 7: Percentage of hypothetical CDSs with no COG

classification in the core and accessory regulon of selected

transcriptional regulators. The eight transcriptional regulators retrieved
with indicated the percentages of hypothetical CDSs with no COG
classification in the core and accessory regulon.
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