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We describe an upper-division experiment in thermal physics where students measure the tension
of a rubber band as a function of temperature and length, and use a Maxwell relation to find the
change in internal energy and entropy for an isothermal stretch. This allows students to experimen-
tally check the predictions of the entropic spring model for elastomers and observe that the entropy
does indeed decrease as a rubber band is stretched.

I. INTRODUCTION

Rubber bands provide an appealing subject for a ther-
mal physics laboratory experiment. In contrast to most
solids and liquids, which respond weakly to small changes
in temperature, rubber’s tension noticably increases with
increasing temperature. This Gough-Joule effect—which
is contrary to student expectations—is a standard exam-
ple in courses in statistical mechanics. Combined with
low cost and familiarity to students, these factors make
the lowly rubber band an almost ideal material for a ther-
mal physics experiment.
Numerous laboratories and classroom demonstrations

address how the tension of rubber bands increases with
temperature,1–6 or to measure mechanical properties of
rubber bands at room temperature.7,8 However, few of
these experiments involve carefully measuring a rubber
band’s equation of state. The majority of the exper-
iments that demonstrate the surprising dependence of
tension on temperature make a purely qualitative demon-
stration in which the temperature is changed, but not
measured.2–5 Savarino and Fisch describe a laboratory
experiment that involves measuring the tension in a rub-
ber band as a function of temperature and extension,
using a space heater to change the temperature of the
rubber band.6 Their experiment is used to teach data
analysis methods by using multiple approaches to extract
the parameters in an equation of state for the rubber
band; however, there is no thermodynamic analysis of
the resulting values, nor do they address the applicabil-
ity of the equation of state. In this paper, we introduce
a rubber band experiment that uses Maxwell relations to
measure changes in entropy and internal energy.

II. THEORETICAL BACKGROUND

The thermodynamic identity for a rubber band is

dU = TdS + τdL, (1)

where T is the temperature, τ is the tension, U is the
internal energy of the rubber band, S is its entropy, and
L is its length. This relation follows naturally from the

First Law of Thermodynamics, combined with the defini-
tion of work as the dot product of force and displacement.
We could use the differential relation given in Eq. (1), but
since we are working at constant T , the Helmholtz free
energy F provides a more useful starting point

dF = τdL− SdT. (2)

The corresponding Maxwell relation
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tells us that we can determine how entropy changes with
length at fixed temperature by measuring how the ten-
sion changes with temperature at fixed length. At the
same time, measurement of the tension reveals how the
free energy varies with isothermal changes in length

τ =

(

∂F

∂L

)

T

. (4)

Thus, measurements of τ and (∂τ/∂T )
L
, as a function of

length, allow us to find ∆F , ∆S, and ultimately ∆U by
integration.

III. EXPERIMENTAL ARRANGEMENT

Figure 1 shows a photo and a schematic of the exper-
imental setup. Students stretch a rubber band from a
hook in a stopper at the bottom of a glass tube to a
chain connected to a force meter at the top of the tube.
This setup allows the rubber band to be completely sub-
merged when the tube is filled with water. It also allows
students to quickly alter the length of the rubber band
by changing which link of the chain is hooked onto the
force meter.
During the experiment, students adjust the tempera-

ture by pouring water into the tube. They then measure
tension as a function of rubber band length for different
water temperatures. By emptying the water out of the
top of the tube, students can efficiently replace the wa-
ter and change the temperature using water prepared by
mixing boiling water, room-temperature water, and ice.
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FIG. 1: A photograph and schematic of the experimental ap-
paratus.

Once the water is added to the system, the temperature
is monitored with an electronic thermometer while stu-
dents make their measurements; several measurements
can be made for different lengths before the temperature
has dropped (or risen) by as much as 1 ◦C.

Unfortunately, deviations from ideal elastic behavior
present a major challenge. Ideally, a rubber band should
return to its original state when released. However, rub-
ber deviates from elastic behavior in two ways. First,
rubber bands only slowly return to their original state
after being released, leading to hysteresis in tension
measurements—a different tension is measured when a
rubber band is stretched to a given length than when
it is stretched further and relaxed to the same length.
The second deviation is due to plasticity—if a rubber
band remains stretched for too long, it never returns to
its original length. Avoiding very high tensions (greater
than about 6N) and maintaining a relaxed state between
tension measurements (e.g. while changing the tempera-
ture) reduces plastic behavior.

IV. ANALYSIS

As shown in Fig. 2, students plot tension versus length
for a few different temperatures. The data in this figure
was taken starting at the shortest length (24.5 cm), mov-
ing to the longest length (38.8 cm), and returning again
to the shortest length. Solid lines show the tension as
the rubber band is stretched and dashed lines show the
tension as it is subsequently relaxed. The close proximity
of the measured curves shows that the variation of the
tension due to temperature (∼ 0.2N) is small compared
with its variation with length (∼ 2N). Figure 2 also shows
that the tension increases with increasing temperature,
contrary to student expectations.
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FIG. 2: (color online) Tension versus length at the highest
and lowest temperatures measured. The solid lines are the
tension as the rubber band is stretched and the dashed lines
are the tension as it relaxes. The difference between the two
curves is due to hysteresis.

The hysteretic behavior of the rubber band is eas-
ily visible in Fig. 2. The tension during stretching is
∼ 0.1N greater than the tension relaxing (at the maxi-
mum length there is no hysteresis because this point was
only measured once). Although this change in tension
is less than 10% of the measured value, it is comparable
to the change in tension due to temperature. By mea-
suring the tension for the same sequence of lengths—and
in the same order—students can achieve reproducible re-
sults that distinguish between the effects of temperature
and hysteresis.

Using the same data, students next plot tension versus
temperature for each of the measured lengths, as shown
in Fig. 3. The trend of increasing tension with increasing
temperature is again evident. Because we plot all tem-
peratures and lengths that were measured in this plot, it
is apparent that experimental uncertainties in tension are
significant. Some of these uncertainties come from hys-
teretic effects, which can be seen by comparing the solid
and dashed lines, which correspond respectively to ten-
sions measured while stretching and relaxing the rubber
band.

Because most errors are due to rate-dependent hys-
teretic and plastic effects—which tend to be systematic,
rather than statistical—error analysis is challenging in
this experiment. These effects depend on the time the
rubber band spends at each length before the tension
measurement is taken, which is challenging to control.
The thermal equilibrium tension should be measured af-
ter waiting for the tension to stabilize after changing the
length. However, the tension takes a long time to fully
stabilize—too long for the experiment to be completed
in a few hours—and waiting for this to happen would
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FIG. 3: (color online) Tension versus temperature for each
measured length. As in Fig. 2, the solid lines represent mea-
surements taken with increasing length, while dashed lines
correspond to decreasing length.

Potential Change (J)
T∆S −0.09
∆F 0.22
∆U 0.13

TABLE I: Results for changes in thermodynamic potentials
found by integrating the curves in Figs. 2 and 4. This data
corresponds to an isothermal stretch of 14 cm at 30 ◦C.

allow the rubber band to plastically deform. Therefore,
instead of waiting for the tension to completely stabilize,
we merely wait for it to stop changing rapidly. This leads
to hysteresis in our measurements, and errors due to the
human choice of how long is long enough to wait while
making each measurement. We avoid taking temperature
measurements in monotonic order so as to avoid any con-
fusion between temperature dependence and the effect of
plasticity.
Students complete their analysis by calculating the

change in internal energy, free energy, and entropy for
an isothermal stretch of their rubber band at a specific
temperature of their choosing. They first numerically
integrate the tension with respect to length to get the
work done on the rubber band, which is the change in
Helmholtz free energy when their rubber band is isother-
mally stretched

∆F |
T
=

∫

τdL. (5)

Next, students use the slope of each curve in Fig. 3 and
the Maxwell relation (3) to find (∂S/∂L)T as a function
of length (see Fig. 4). In principle, this derivative will
depend on temperature, but as can be seen from the lin-
earity of the curves in Fig. 3, it is essentially constant
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FIG. 4: (∂S/∂L)
T
versus length, as extracted from the slopes

found from Fig. 3. The solid and dashed lines respectively
correspond to slopes taken from the data as the rubber band
is stretched and relaxed.

over the range of temperatures studied. Once students
have created Fig. 4, they can numerically integrate with
respect to length to find the entropy change for their
isothermal stretch

∆S|
T
=

∫
(

∂S

∂L

)

T

dL. (6)

Combining this change in entropy with the change in free
energy found earlier and the definition of the Helmholtz
free energy F = U − TS, students find the change in
internal energy for the isothermal stretch. Table I gives
the results for the (student) data shown in this paper.
Finally, we ask students to compare the change in in-

ternal energy ∆U during their isothermal stretch with the
amount of energy transfered to the surroundings by heat-
ing, given by −T∆S. This is an interesting comparison
because in the entropic spring model the internal energy
will not change as the material is stretched, while in an
ordinary material the heat is negligible when compared
with the change in internal energy as it is stretched. Thus
a comparison of these two quantities provides a measure
of the applicability of the entropic spring model. Real
rubber bands lie somewhere between these two extremes,
and students typically find that the values of ∆U and
−T∆S are comparable, indicating that it would be inap-
propriate to neglect either term in a quantitative model.

V. STUDENT DIFFICULTIES

Students find a few steps in the analysis challenging,
and these aspects of the analysis provide useful and im-
portant learning experiences that are not present else-
where in our curriculum. The first challenge is that stu-
dents are forced to deal with data in multiple dimensions:
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tension is measured as a function of both length and tem-
perature and must be plotted as a function of each vari-
able. This poses a purely computational difficulty, but
also serves to highlight the multidimensional nature of
thermodynamics, which causes particular challenges in
the context of partial derivatives.9,10 Our students typ-
ically overcome this difficulty without the assistance of
specifically targeted instruction.
The second challenge that students face is to find a

derivative numerically from noisy experimental measure-
ments of tension as a function of temperature. Some stu-
dents select a small value of ∆T to perform a finite dif-
ference derivative, a natural inclination given the math-
ematical definition of a derivative. But such a procedure
can cause problems when there is noise in the data. One
way we address this problem is by asking students to
plot the entire curve so they get a sense of the big pic-
ture. In this experiment, the data is essentially linear,
which makes it easy to perform a curve fit to find the
slope. Alternatively, some students perform a finite dif-
ference calculation using two widely separated tempera-
tures to reduce the effects of noise. Dealing with such an
approach requires little beyond having students plot the
curves before trying to find the slope.
Finally, most of our students struggle when required to

numerically integrate their experimental measurements.
Before we started providing specific hints, we found that
many students would attempt to perform an analytic in-
tegral and would find themselves stymied by the lack of
a functional form. We now spend a few minutes in class
talking about what an integral really is—a summation—
and explaining that students will need to perform a nu-
merical integration.
We assign the analysis portion of this experiment in

place of a homework assignment so that students can
work at their own pace on this challenging assignment.
Although the students struggle on this assignment, they
are able to find help during office hours and by working
together. Alternatively, the analysis could be done as an
in-class activity, which would help address some of these
difficulties. Doing the analysis in class, however, would
likely require that all students use the same software to
perform the analysis, and could impose a prohibitive time
constraint.

VI. CONCLUSIONS

In our experience, rubber bands provide a useful sys-
tem for thermodynamic study. The Gough-Joule effect

is a classic demonstration of entropy in action having
an effect that is surprising to students, and the entropic
spring model is a standard example in statistical mechan-
ics. We describe an experiment that connects this sim-
plified model with real rubber bands, in which students
make measurements that not only demonstrate the qual-
itative prediction that tension increases with tempera-
ture, but also demonstrate the dependence of internal
energy on tension—in contrast to the simplistic entropic
spring model. Moreover, by using a Maxwell relation to
measure entropy we drive home to students that entropy
is a real, measurable state variable. The analysis more-
over highlights the connection between Helmholtz free
energy, internal energy, and entropy, and provides stu-
dents with a concrete application in which the Helmholtz
free energy is useful.

This experiment is practical because temperature
strongly influences the mechanical properties of rubber
bands. Unfortunately, a related (and less desirable) prop-
erty of rubber bands is their hysteretic behavior, which
makes the experiment challenging while at the same time
demonstrating to students the need for careful data ac-
quisition. This experiment also provides an opportunity
to discuss the concept of thermal equilibrium in a context
that is far more tangible than two abstracted systems in
thermal contact. In our experience, the difficulties of
working with rubber bands are well balanced by the ad-
vantages, both in the behavior that can be observed as
well as in the student experience of applying thermody-
namics to an everyday object.
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