
Noname manuscript No.
(will be inserted by the editor)

Exploring the Trade-off Between Accuracy and Observational Latency
in Action Recognition

Chris Ellis · Syed Zain Masood∗ · Marshall F. Tappen · Joseph J. LaViola Jr. ·
Rahul Sukthankar

Received: date / Accepted: date

Abstract An important aspect in designing interactive, action-
based interfaces is reliably recognizing actions with mini-
mal latency. High latency causes the system’s feedback to
lag behind user actions and thus significantly degrades the
interactivity of the user experience. This paper presents al-
gorithms for reducing latency when recognizing actions. We
use a latency-aware learning formulation to train a logis-
tic regression-based classifier that automatically determines
distinctive canonical poses from data and uses these to ro-
bustly recognize actions in the presence of ambiguous poses.
We introduce a novel (publicly released) dataset for the pur-
pose of our experiments. Comparisons of our method against
both a Bag of Words and a Conditional Random Field (CRF)
classifier show improved recognition performance for both
pre-segmented and online classification tasks. Additionally,
we employ GentleBoost to reduce our feature set and fur-
ther improve our results. We then present experiments that
explore the accuracy/latency trade-off over a varying num-
ber of actions. Finally, we evaluate our algorithm on two
existing datasets.

Keywords Action Recognition · Observational Latency ·
Computational Latency · Microsoft Kinect · Multiple
Instance Learning · Conditional Random Field · Bag of
Words

∗ S.Z. Masood and C. Ellis contributed equally towards this paper

C. Ellis · S.Z. Masood · M.F. Tappen · J.J. Laviola Jr.
Department of Computer Science, University of Central Florida
Orlando, FL 32826
Tel.: +1-407-823-3327
Fax: +1-407-823-5835
E-mail: {chris,smasood,mtappen,jjl}@eecs.ucf.edu

R. Sukthankar
Google Research and Robotics Institute, Carnegie Mellon University
E-mail: rahuls@cs.cmu.edu

1 Introduction

With the introduction of the Nintendo Wii, Playstation Move,
and Microsoft Kinect controllers, human motion is becom-
ing an increasingly important part of interactive entertain-
ment. Beyond gaming, these technologies also have the po-
tential to revolutionize how humans interact with computers.

A key component to the success of these technologies
is the ability to recognize users’ actions. A successful in-
teractive system that is intuitive and pleasant to use should
embody two fundamental characteristics:

1. High Accuracy - The system must be accurate at recog-
nizing actions.

2. Low Latency - Latency is a key issue for interactive ex-
periences. Systems that lag behind user actions feel cum-
bersome. This is particularly important for entertainment
applications, where problems with lag have resulted in
very negative reviews for some motion-based games [21].

Traditionally, accuracy has driven the design of recogni-
tion systems. This paper takes a different path by also focus-
ing on the latency in recognition. We pay particular attention
to a type of latency that we refer to as observational latency,
which is caused when the recognition system must wait for
the human to move or pose in a fashion that is clearly recog-
nizable. This is in contrast to computational latency, which
is caused by the recognition system itself. The focus of our
work is to develop a thorough understanding of the accu-
racy/latency trade-off that can be used to better design activ-
ity recognizers for interactive applications.

The contributions of this paper lie in both novel algo-
rithms and data. To make the measurement of observational
latency possible, we introduce a novel action dataset. This
set is unique in that it measures how quickly a recognition
system can overcome the ambiguity in initial poses when
performing an action.



2 Chris Ellis et al.

Rather than manually selecting key poses for each ac-
tion as in [5], we present a novel Logistic Regression learn-
ing framework that automatically finds the most discrimina-
tive canonical body pose representation of each action and
then performs classification using these extracted poses. It
should be noted that we do not assume pre-defined proto-
type key poses for each action, but instead choose the key
pose through automated learning. For reduced latency, we
introduce an additional parameter-controlled cost that forces
the system to find a discriminative action pose by observ-
ing as few frames of the video sequence as possible. This
learning strategy makes it possible to rigorously explore the
trade-off between accuracy and latency when spotting ac-
tions in an input stream. Section 6 shows how this classifier
can significantly outperform the baseline Bag of Words and
Conditional Random Field classifiers.

Additionally, we study the effects of reducing the feature
count using the GentleBoost algorithm. We find that we can
achieve similar classification accuracy by using a small sub-
set of our initial features. Furthermore, we analyze the im-
pact of reducing the number of actions in the classification
task on both the latency and the accuracy of the classifier.
We find that as actions are eliminated, the best achievable
accuracy improves at each latency range.

We also evaluate the performance of our algorithm against
both the MSRC-12 [9] and MSR Action3D [15] datasets.
We classify actions in MSRC-12 with high accuracy, along
with most of the actions in the MSR Action 3D set as well.
The failure cases in the actions in MSR Action3D set are
analyzed in Section 10.

2 Basic Approach and Assumptions

With the release of the Microsoft Kinect sensor, reasonably
accurate joint positions can be recovered in real-time. Since
we use Kinect sensor data, we assume that the user faces the
sensor and stands within its field of view. Our method could
be extended to non-depth video, but that would require some
method of estimating pose, such as [12,37].

Each video in the dataset consists of one person perform-
ing one action, from a set of 16 actions, a single time.1 Fig-
ure 1 lists the set of actions used. These actions are chosen
based on experiments in [24], which used the game Mir-
ror’s Edge to identify a set of actions which would be natu-
ral for an interactive gaming experience. Section 6.2 reports
results for simultaneously distinguishing between all 16 ac-
tions. Although the set of actions is not as extensive as [26],
it is still substantially larger than in other previous work such
as [15].

Each action is performed starting from a rest state, mak-
ing it possible to measure how quickly the action is recog-

1 See Section 5 for more details on the data gathering process.

Balance Kick
Climb Up Punch

Climb Ladder Twist Left
Duck Twist Right
Hop Step Forward
Vault Step Back
Leap Step Left
Run Step Right

Table 1 The list of actions used in constructing the dataset.

nized from this rest state. Gathering the actions in fashion is
reasonable because the vast majority of these actions, which
have been chosen through user studies in [24], require re-
turning to a rest pose before repeating the actions. In the set
of 16 actions in Table 1, the only exceptions to this are “bal-
ance” and “run” actions. In addition, beginning each action
from a rest pose makes it possible to produce a more realis-
tic estimate of latency in a system with a variety of gestures.
While modifications for special cases, such as repeated com-
binations of punches, may be able to reduce latency for spe-
cial situations, our goal is to examine latency as it would
occur over a wide variety of gestures.

We gathered a new dataset, rather than using an exist-
ing one such as the HumanEVA dataset [32], because, at the
time we began, previous datasets had not been gathered in
a fashion that makes it possible to measure the latency in
recognition from the moment the human begins performing
the actions. However, recently new datasets have become
available, and we present our results in Section 10.

2.1 Latency and Action Recognition

We define the latency of an action as the difference between
the time a user begins the action and the time the classi-
fier classifies the action. This total time has several different
components. At a high level, the latency can be broken down
into two parts:

1. Observational Latency, which is the time it takes for the
system to observe enough frames so that there is suffi-
cient information to make a good decision, and

2. Computational Latency, which is the time it takes the
system to perform the actual computation on the obser-
vations.

It should be noted that a cleverly designed system may
be able to perform the necessary computations in between
observations, effectively masking the computational latency
with the total latency being dependent on only the observa-
tional latency.

In this paper, we focus on observational latency because
reducing this latency requires examining the fundamental
recognition strategy. Once a good strategy is found, it can



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 3

often be accelerated with optimizations like classifier cas-
cades [8,34,35]. In Section 8, we show how a GentleBoost
method [10] leads to reduced computational latency and bet-
ter recognition performance.

In the worst case, the observational latency would be the
total number of frames it took for a user to perform the ac-
tion. Such a large latency significantly degrades the user’s
interactive experience because the system cannot respond to
an action until after it has completed. In the best case, the
observational latency would be just one frame (at the start
of the action), which is infeasible in practice since actions
are initially very similar. We present a computational mech-
anism for designing classifiers that reduce this latency as
much as possible, while maximizing recognition accuracy.

2.2 Defining and Measuring Observational Latency

Defining and measuring the observational latency of a sys-
tem involves subtle decisions. In previous work, such as the
Action Snippets proposed by Schindler and Van Gool [28],
and the work of Davis and Tyagi [7], the system is tested
on sequences where the action is being performed continu-
ously (no transition from a rest position), ensuring that every
subset of frames shows the action in full progress.

Evaluating data on video where the action is being per-
formed continuously eliminates the ambiguity that occurs as
the user transitions into different actions. Observations that
contain the user beginning an action can be ambiguous as
the user moves through poses that are common to several
different actions. For example, at the start of both climbing
and punching actions, the user’s hand often passes near the
head.

This introduces a different type of latency than those
measured in [7] or [28]. As shown in our experiments, even
if it is still possible to recognize the action from a small
number of frames, many more frames may be required for
the user to assume a distinctive pose that can be reliably rec-
ognized.

Our dataset is gathered with each action starting from the
initial rest state, where the participant is standing up straight
with their arms hanging loosely at their sides, ensuring that
the classifier must cope with ambiguous poses at the start
of each action. This at-rest pose also enables us to precisely
measure the observational latency and to minimize the vari-
ation due to the reaction time of the participant. The learning
method described in Section 4 is designed to find distinctive
poses within each action that can be reliably classified. The
ambiguity issues are compounded by the large number of
actions (16 actions as opposed to the 6 KTH dataset actions
used in [28]) because an increased number of actions natu-
rally increases the chance that the different actions appear
visually similar.

We argue that measuring latency in this fashion is useful
because it is quite likely that an action recognition system
will have to recognize multiple actions over the course of the
session with the system. In this situation, the lag perceived
by the user depends on how quickly the system can detect
the beginning of the action. In this dataset, this is measured
in terms of the time to move from a rest state to a defini-
tive frame in an action. As mentioned above, this is done to
simplify the data collection process.

In future work, we plan to extend this analysis to data
observing continuous streams of actions.

3 Related Work

Our work is related to general action recognition systems [1,
15,30,37]. A key, unique aspect of this work lies in our
focus on reducing observational latency. Traditionally, ac-
tion recognition systems have focused on recognizing from
temporally segmented videos after the action has been com-
pleted. This type of recognition is less applicable for interac-
tive systems as they require real-time recognition. Some sys-
tems perform temporal segmentation [4,38], but these sys-
tems also assume that the action has already been recorded
in video.

Efforts have been made in the past to try and extract key
pose frames in action video sequences [6,29] and use them
for the task of action recognition. Carlsson et al. [5] present
a recognition system that matches shape information of indi-
vidual frames to prototype key frames. Zhao et al. [39] finds
discriminative key frames that are used to weight features
in a bag-of-words classifier. However, more recent work ac-
tion recognition has found better results using simpler bag-
of-words representations [20], as discussed in Section 6.1.1.

Vahdat et al. [33] use multiple discriminative frames,
chosen in a separate learning process. In contrast, our ap-
proach chooses the optimal key frames as part of the learn-
ing process. Cheema et al. [27] propose to learn weights
for contour-based distinctive key poses and classify using
a weighted voting system. Lv et al. [18] represent actions
using a series of 2D human poses and perform silhouette
matching between input and key frames. None of the above
approaches, however, tackle the problem of observational
latency in recognizing actions. Additionally, these methods
rely on manual selection of key frames [5] or the availability
of accurate silhouette images [18,27].

Hoai and De la Torre’s concurrent work on early event
detection [13] is philosophically relevant to our research, but
approaches the problem from a different angle. They pro-
pose two key modifications to structured output SVMs in the
typical max-margin framework: 1) augmenting the training
set using partial events as positive examples; 2) enforcing
monotonicity on detection scores such that smaller partial



4 Chris Ellis et al.

events are not classified more confidently than their encom-
passing events.

Techniques exist for reducing latency in sequential data,
such as [23]. However, these focus on reducing the latency
associated with decoding hidden state sequences from ob-
served data, rather than classifying individual actions as quickly
as possible.

A popular strategy for recognizing gestures, used in [2,
7], is based on fitting Hidden Markov Models to different
states in the gesture. An advantage of the system proposed
in [2] is that it is also able to spot and temporally segment
the actions. However, this segmentation has also not been
evaluated in terms of the latency induced.

Pose information has also been incorporated into track-
ing systems, such as [25], which looks for specific poses
while tracking users performing specific actions, such as
walking.

The recent availability of commodity RGB-D sensors,
such as the Microsoft Kinect, has led to increased research
in the application of human pose data [11,31]. While this
work has resulted in a significant improvement in the ability
to estimate body pose, additional recognition steps are still
needed to translate these poses into actions. Recent work
in [26] uses data from the Kinect sensor to recognize dance
movements. While this work presents a powerful representa-
tion of skeletal data, it was evaluated using around 4 seconds
of data per test sequence. This creates a significant amount
of observational latency in the system.

A truly interactive system should have the ability to tem-
porally segment actions in the stream of observations, such
as the system in [2] that uses batch-style processing on a
complete video to spot gestures. The structure of the dataset
used here, with one action per video, leads us to focus on
just spotting the beginning of the action. This is discussed in
more detail in Section 7.

4 Finding Poses with Multiple Instance Learning

To minimize the observational latency at the outset, the clas-
sifier must be designed to require as few observations as pos-
sible, similar to [28]. Using the minimum number of frames
possible, the system is able to focus on the observational la-
tency inherent in human motion and pose, as discussed in
Section 2.2.

To minimize the number of observations necessary, this
classifier classifies actions based on pose and motion infor-
mation available from the current, the frame captured 10

frames previously, and the frame captured 30 frames previ-
ously, as discussed in Section 5. The underlying idea behind
the classifier is that the action can be reliably recognized
when the user assumes a distinctive pose that characterizes
the action. As demonstrated in Section 6.2, this strategy per-
form very well.

The virtue of automatically identifying a distinctive “canon-
ical” pose for each action is that this makes it possible to
ignore confusing intermediate poses that make classifying
similar actions difficult. For example, as shown in Figure
1, the “climb up” and “leap” actions have a similar median
pose as both involve raising the arms. However, the learning
process has automatically found canonical poses for each
action that look very different. When the system observes
the canonical pose, it can unambiguously classify the ac-
tion. This is effective because it enables the system to ig-
nore ambiguous data leading up to the canonical pose with-
out fixating on ambiguous poses that could potentially be
misclassified.

4.1 Classifying Videos by Examining Individual Frames

In our dataset, discussed in detail in Section 5, each video
consists of one individual performing one action only once.
These videos are labeled based on the similarity of a frame
in the sequence to a canonical pose associated with each ac-
tion. Thus, the labeling process can be thought of as labeling
a bag of frames according to the instances inside that bag.

Formally, the classification begins with a set of weight
vectors, θ1, . . . , θNA

, where NA is the number of actions.
The first step in classifying a video is to automatically find
the frame for each action class that exhibits a canonical pose
most similar to that class. Formally, we denote this as a max-
response for class c:

rc(x) = max
f∈F

xf · θc (1)

where F denotes the set of all frames in the bag and xf

represents the vector of features for frame f .
The probability that the label l of a video should take

the correct label T can then be computed using the soft-max
function, as in logistic regression:

P [l = T |x] = exp (rT (x))

1 +
∑
c

exp (rc(x)))

=

exp

(
max
f∈F

xf · θT
)

1 +
∑
c

exp

(
max
f∈F

xf · θc
) . (2)

Adding a 1 to the denominator of Equation 2 is differ-
ent than the typical soft-max function. In this formulation,
the addition of 1 implicitly models a null action that always
has a response of 0. In practice, this makes it possible for
the classifier to better manage uncertainty as it classifies an
action as null until the user assumes a pose that makes the
current action clear.



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 5

Balance

Median Pose Examples of Poses from Data

Punch

Median Pose Examples of Poses from Data

Duck

Median Pose Examples of Poses from Data

Run

Median Pose Examples of Poses from Data

Kick

Median Pose Examples of Poses from Data

Leap

Median Pose Examples of Poses from Data

Hop

Median Pose Examples of Poses from Data

Vault

Median Pose Examples of Poses from Data

Climb Ladder

Median Pose Examples of Poses from Data

Climb Up

Median Pose Examples of Poses from Data

Twist Left

Median Pose Examples of Poses from Data

Step Back

Median Pose Examples of Poses from Data

Fig. 1 These skeletons shows several of the poses associated with different actions. The skeleton on the left of each panel is the median of poses
associated with each action. The skeletons on the right are examples of poses considered to be most like the canonical pose in a particular video.



6 Chris Ellis et al.

As mentioned above, this formulation is similar to mul-
tiple instance learning because the video, or bag of frames,
is classified according to how one of the frames in that bag
is classified. The use of the max operator is also somewhat
similar to Felzenszwalb et al.’s latent SVM formulation for
object detection in images [8].

4.2 Smooth Approximation

While logistic regression models are typically trained using
gradient-based optimization, the introduction of the max op-
erator in Equation 2 makes the training criterion non-smooth.
This can be overcome by using the approximation to the
maximum of a set of values V = v1, . . . , vN as

max(v1, v2, . . . , vN ) ≈ log (ev1 + ev2 + . . .+ evN ) . (3)

Incorporating this approximation into Equation 1 leads to
the following expression for computing the probability of a
particular class:

P [l = T |x] =

exp

log

∑
f∈F

exp (xf · θT )


1 +

∑
c

exp

log

∑
f∈F

exp (xf · θc)



=

∑
f∈F

exp (xf · θT )

1 +
∑
c

∑
f∈F

exp (xf · θc)
. (4)

As an aside, we note that in Equation 4, the sharpness
of the max approximation could be tuned using a scaling
parameter as: max(v1, . . . , vN ) ≈ log

(
ekv1 + . . .+ ekvN

)
.

However, such a scaling is subsumed in the weights, θ, dur-
ing optimization and apart from changing the local mini-
mum that is found, has no impact on the system. We exper-
imentally verified this finding using a range of k from 1 to
100. Thus, we employ a unit scaling, k = 1.

Given training examples x1, . . . ,xNT
and training la-

bels t1, . . . , tNT
, the weights θ1, . . . , θNA

for theNA actions
can be found by optimizing the log-loss criterion created by
taking the log of Equation 4. In our implementation, we use
the non-linear conjugate gradient algorithm to optimize the
log-loss. To increase the generalization performance of the
system, a regularization term, R(θi) is summed over all en-
tries in θ and added to the final optimization criterion. To
encourage sparsity, we use a Lorentzian term:

R(θi) = α log(1 + βθ2i ), (5)

where α and β are chosen to be 1/4 and 1 through cross-
validation.

Replacing the max with the soft approximation causes
the system to consider all of the observed frames when com-
puting the label, though the greatest weight is assigned to the
frames with the highest response.

In our experiments, the weights are initialized randomly
with the initial weights drawn from a zero-mean, unit-variance
Gaussian distribution.

5 Dataset and Features

Our dataset was gathered from 16 individuals (13 males and
3 females, all ranging between ages 20 to 35) using a Mi-
crosoft Kinect sensor and the OpenNI platform to estimate
skeletons. Each individual performs all 16 actions 5 times
for a total of 1280 action samples.2 In each frame, the 3-
dimensional coordinates of 15 joints are available. Orienta-
tion and binary confidence values are also available for each
joint, but are not used in this work. It may prove useful to
make use of confidence values in future algorithms to aid the
selection of canonical poses, however, in practice we have
found that our system is not particularly sensitive to noisy
joint data. By allowing our system to learn the weights of
each feature, it can automatically reduce the importance of
features with high amounts of noise or low information gain.

When gathering the data for each action, we asked the
individuals to stand in a relaxed posture with their arms
hanging down loosely at their sides. They were then told the
action they were to perform and if requested, given a demon-
stration of the action. A countdown was given at the end of
which recording began and the individual performed the ac-
tion. The recording was manually stopped upon completion
of the action. Gathering the data in this fashion simulates
a gaming scenario where the user performs a variety of ac-
tions, such as punches and kicks, and returns to a resting
pose between actions.

We chose a set of features that can be computed quickly
and easily from a set of frames. For each given frame of data,
we construct a feature set from information in three frames:
the current frame xt, the frame captured 10 frames previ-
ously, xt−10, and the frame captured 30 frames previously,
xt−30. While including data from xt−10 and xt−30 makes
our features not precisely a “pose”, we consider it a more
intuitive term, as we do not use fine-grained sequence data,
nor do we delay classification by looking further ahead in
the data stream.

The first set of features is computed by calculating the
Euclidean distance between every pair of points in the xt.
From the skeletons computed by the OpenNI software, the
15 joint positions are used to calculate 105 distances.

2 The dataset has been made publicly available at http://www.
cs.ucf.edu/~smasood/datasets/UCFKinect.zip



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 7

To capture motion information, the Euclidean distance
for all joint location pairs between frame xt and frame xt−10
are computed, resulting in an additional 225 distance pairs.

To capture the overall dynamics of body movement, sim-
ilar distances are computed between frame xt and a generic
skeleton that simulates a typical pose of a person at rest.
The features are computed by translating the center-of-mass
of the generic skeleton to the same location of the center of
mass of the user’s skeleton at frame xt−30. In the case that
previous frames are not available, such as when t is less than
30, center of mass of the the first frame is used as a substi-
tute. The feature values are the distance between every pos-
sible pairs of points in the user’s skeleton at frame t and the
generic skeleton translated to the user’s center-of-mass at
frame t− 30. This brings the total number of distance pairs
up to 555. The generic skeleton is computed by averaging
the skeleton in the first frame of the training set. Outside of
translation, we did not find it necessary to scale or warp the
generic skeleton to match the user’s pose.

Each feature vector computed at a particular time instant
is independently normalized by dividing the vector by the
standard deviation of the vector.

The time required for training the system was signifi-
cantly reduced by transforming these features into a binary,
cluster-based representation. Each individual feature value
was clustered into one of 5 groups via k-means and replaced
with a 5 bit vector containing a 1 at the cluster index of the
value, and a 0 for all other bits. Each of these vectors are
concatenated to create a new discretized binary feature vec-
tor. We add one additional bias term which always has the
value 1. The final feature size is thus 555 × 5 + 1 = 2776.
This transformation leads to a small increase in recognition
performance and a significant reduction in training time.

6 Experiments on Temporally Segmented Actions

First, the classifiers are trained on data where the temporal
segmentation of actions is available. The goal of the training
process is to find the weight vector θ such that a classifier
that computes class probabilities using Equation 4 classifies
each video as accurately as possible. This is done by auto-
matically finding the frame with the discriminative canoni-
cal pose for each action class. For each classifier, this pro-
cess involves the following steps:

1. Processing the frames in the video to create a bag of fea-
ture vectors. A feature vector is computed for each frame
after the initial frame in the video. As described in Sec-
tion 5, the vector for a particular frame is computed from
the frame, the preceding frame, and the first frame in the
video.

2. Learn the weight parameters θ1, . . . , θNa according to
the method described in Section 4.1.

3. For each action class, c ∈ {1, . . . , NA}, find the feature
vector xf∗

c
such that xf∗

c
· θc has the highest value. At a

high-level, this is equivalent to finding the frame in each
video that most resembles the action class c. Notice that
f∗c is unique for each class.

4. Label the video with class c∗, where

c∗ = arg max
c

xf∗
c
· θc. (6)

For evaluation, we used a set of data gathered from 16

people (as discussed in Section 5). All of our experiments
are implemented using 4-fold cross-validation.

Figure 1 shows visualizations of the best poses learned
by the classifier. For each video in the training set, we auto-
matically found the frame corresponding to f∗c for the action
contained in the video. The skeleton on the left of each panel
in Figure 1 shows the skeleton created by taking the median
of each joint location across the best frames from each ac-
tion video. The skeletons on the right of each panel show
examples of the best frame skeletons. As can be seen in this
figure, these skeletons are visually intuitive.

6.1 Baseline Models

Our experiments employ two different models for baseline
comparisons: The first is Bag-of-Words (BoW), chosen for
its popularity and simplicity of implementation; the second
is a Linear Chain Conditional Random Field (CRF), which
is a natural choice for a model that can exploit the temporal
sequence of hidden state information.

For both these baseline approaches we use the same fea-
ture size and training procedure as our proposed method. For
the CRF baseline we employ the same regularization term as
in Equation 5.

6.1.1 Bag of Words Model

Bag-of-Words (BoW) is a straightforward approach that is
known to consistently perform well on a wide variety of ac-
tion datasets, such as [16]. While Zhao et al. [39] propose
extensions for the BoW model that use key frames, we use
the original BoW model because recent work [20] has shown
that in direct comparisons on KTH, the original BoW out-
performs the variant proposed in [39].

In our baseline, the BoW employs the same distances
described in Section 5, discretized to 1000 clusters using k-
means. Each video is represented by a histogram describing
the frequency of each cluster center. Histograms are normal-
ized to avoid bias based on the length of the video. Classifi-
cation is performed using an SVM with histogram intersec-
tion kernel.



8 Chris Ellis et al.

Frames
10 15 20 25 30 40 60

Ours 13.91 36.95 64.77 81.56 90.55 95.16 95.94
CRF 14.53 25.46 46.88 67.27 80.70 91.41 94.29
BoW 10.70 21.17 43.52 67.58 83.20 91.88 94.06

Table 2 A tabular representation of the data from Figure 2. Note that
our proposed method outperforms baselines even when they have ac-
cess to more frames of pose information.

6.1.2 Linear Chain CRF Model

The Conditional Random Field (CRF) model [14] has demon-
strated strong performance in classifying time sequence data
across several application domains and is thus a natural choice
for a strong second baseline. The CRF-based classification
strategy is similar to Equations 2 and 4. However, in this
case, the probability is computed using a function Ck(y;x)

that expresses the cost of a sequence of hidden states, ex-
pressed in the vector y, given the observation x.

Following Section 4.2, the probability of a particular class
is expressed as

p[l = T |x] =
exp

{
min
y

(−CT (y;x))

}
∑

k exp

{
min
y

(−Ck(y;x))

} (7)

≈
exp

{
− log

∑
y exp (CT (y;x))

}
exp

{
− log

∑
k

∑
y exp (Ck(y;x))

} . (8)

The functionCk(y;x) is constructed to be a typical chain-
structured CRF model, with pairwise Potts model poten-
tials [3] and the terms relating the observations to states be-
ing linear functions of the observations.

The primary difference between the CRF model and our
approach is that the CRF model attempts to model the en-
tire sequences of body poses, while our approach seeks the
most informative poses. While it could be expected that the
more detailed CRF model could lead to better recognition
performance, our results clearly demonstrate the advantages
of focusing on a single, reliably occurring, highly discrimi-
native pose.

6.2 Results for Temporally Segmented Actions

To understand the time required for humans to make eas-
ily identifiable movements or poses, both the proposed sys-
tem and the baseline BoW and CRF systems were trained
and evaluated on videos of varying lengths. From the base
dataset, new datasets were created by varying a parameter
termed maxFrames. Each new dataset was created by se-
lecting only the first maxFrames frames from the video. For
videos shorter than maxFrames, the entire video was used.

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

Maximum frames

A
c
c
u
ra

c
y
 (

%
)

Accuracy vs. Baselines with cropped training samples

 

 

Our method

CRF

BoW

Fig. 2 Accuracy vs. Bag of Words and CRF over videos truncated
at varying maximum lengths. The pose-based classifier proposed here
achieves higher accuracy with fewer observations.

Varying maxFrames makes it possible to measure how
much information is available in a specific time span. It should
be noted that our classifier operates by finding the best fea-
ture vector in the first maxFrames frames, but that this vector
is itself only based on three frames. On the other hand, the
BoW and CRF classifiers use the feature vectors from all
maxFrames frames.

As shown in Figure 2, our classifier clearly outperforms
both BoW and CRF classifiers. Each point on a curve in this
figure shows the accuracy achieved by the classifier given
only the number of frames shown on the horizontal axis.
Thus, given only 30 frames of input, our system achieves
90.6% accuracy, while BoW and CRF classifiers are only
able to achieve accuracy rates of 83.2% and 80.7%, respec-
tively. Table 2 shows numerical results at several points along
the curves in Figure 2. As these curves show, all of the sys-
tems perform poorly given a small number of frames be-
cause users have not had enough time to form distinctive
poses. Likewise, all of the methods perform similarly well
when a large number of frames can be observed. However, in
the important middle range, our approach achieves a much
higher accuracy given the same number of frames. This shows
that our approach improves accuracy for a given latency re-
quirement and can recognize actions at the desired accuracy
with a much lower latency.

Figure 3 shows recognition results of our method with
respect to each action in the dataset. We can observe that
the twistleft and twistright actions are confused with each
other as well as the vault action. Since our feature set is the
difference between skeleton joint positions, the limb config-
urations in twistleft and twistright are found to be similar to
arm and leg positions in each other, as well as vault.



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 9

97.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5

0.0 93.8 2.5 0.0 0.0 0.0 0.0 2.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 98.8 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.2 0.0 0.0 96.2 0.0 1.2 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 98.8 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.2 0.0 0.0 0.0 0.0 0.0 95.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 1.2

0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 97.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 97.5 1.2 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 97.5 0.0 1.2 0.0 0.0 0.0

0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.2 1.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 98.8 0.0 0.0 0.0

0.0 1.2 0.0 0.0 0.0 2.5 0.0 1.2 0.0 0.0 0.0 0.0 0.0 88.8 2.5 3.8

0.0 1.2 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 6.2 86.2 3.8

0.0 0.0 0.0 0.0 3.8 0.0 0.0 1.2 0.0 0.0 2.5 0.0 0.0 0.0 0.0 92.5

balance

cli
mbladder

cli
mbup

duck hop
kic

k
leap

punch ru
n

ste
pback

ste
pfro

nt

ste
pleft

ste
prig

ht

tw
ist

left

tw
ist

rig
ht

va
ult

Full Video Temporally Segmented Classifier confusion matrix

balance

climbladder

climbup

duck

hop

kick

leap

punch

run

stepback

stepfront

stepleft

stepright

twistleft

twistright

vault

Fig. 3 Confusion matrix for full video temporally segmented classification. Results shown are from uncropped action data. Overall accuracy
achieved is 95.94%.

This result validates our strategy of looking for “canon-
ical” poses instead of trying to aggregate pose information
over time. The BoW and CRF classifiers can be thought of
as trying to aggregate weaker pose information over time
to get an estimate of the action, but these classifiers do not
outperform our method at any frame window size.

Figure 2 also shows that with fewer than 15 frames each
classifier performed poorly, but with more than 15 frames
the performance of our system rises appreciably. This can
be understood by considering the range of movements ob-
served in the beginning frames of the actions. Figure 4 de-
picts the variation in feature vectors over time. Each point
on the graph is created by computing the standard deviation
of each feature across all feature vectors at that time. It is
clear that the variation in pose and movement at frame 10

is very similar to that at frame 2, indicating that the users
have not had the time to assume poses or movement that are
significantly different. The peak in variation occurs around
frame 30, but our classifier does benefit from having more
frames available because these extra frames give more op-
portunity for the user to assume an easily identifiable pose.
By frame 40, our system performs as well as when trained
on the full video. The drop-off for larger frames is explained
by the low number of videos that have such a large number
of frames.

0 10 20 30 40 50 60

0.2

0.25

0.3

0.35

0.4
Average Standard Deviation of Features by Frames

A
v
e
ra

g
e
 S

td
d
e
v

Frame

Fig. 4 The standard deviation aggregated over all features per frame.
On average, the most informative frame is 30 frames into the action.
Our online classifier can accurately recognize actions an average of 10
frames before this peak.

Figure 2 also shows that the data gathering procedure,
where the user begins from a relaxed pose, does not simplify
the recognition task. The improvement in classification ac-
curacy as more frames become available indicates that the
system prefers to use later frames; the improved accuracy
comes directly from the benefits of observing the distinctive
features that are visible only in these later frames.



10 Chris Ellis et al.

6.3 Benefits of Soft Approximation

The choice of the frame used for classifying the action is
treated as a latent variable during the training process, much
like the location of parts in the object detection model in [8].
In this work, we use a soft approximation of the max oper-
ator during the training process while the training system
in [8] uses a coordinate descent optimization that involves
two alternating steps. The first step fixes the location of the
parts. This results in a standard margin-based criterion that
is optimized using sub-gradient descent.

To measure the influence of the soft approach taken in
Section 4, we also implemented a coordinate descent ap-
proach, similar to [8], with two steps. In the first step, the
frames are selected to calculate the score of the different ac-
tion classifications. For a task with 16 different actions, this
means that 16 different frames are chosen for each training
video. The frame chosen for a particular action is the frame
with the highest score.

Once these frames are fixed, the parameters can be opti-
mized with a negative log-loss criterion similar to Equation
4. As mentioned above, this criterion is based on one frame
per action category. The indices of the frames chosen for
each action will be denoted as f1, . . . , fNA

, whereNA is the
number of actions. With these frames, the negative log-loss
learning criterion becomes

L = −x · θT + log

(
1 +

∑
c

exp(xfc · θc)

)
. (9)

This can be optimized with standard minimization tech-
niques. In our implementation, this second step was imple-
mented with a fixed number of iterations of non-linear con-
jugate gradient descent. We then return to step 1, taking the
learned parameters from the second step, and reselect the
maximum scoring frames. This process iterates until the sum
of squared differences of the learned parameters converge.

To measure the effect of the soft approximation, we per-
formed the same experiment described by Section 6.2, with
whole videos and four-fold cross-validation. We found the
behavior of the coordinate descent approach, with a hard
choice of frames, to be sensitive to the initialization of the
optimization. As mentioned at the end of Section 4.2, a ran-
dom initialization is used to learn the weights using the soft
approximation. If coordinate descent optimization is started
with the same type of random initialization, then the average
classification accuracy was 73.1%. This compares poorly
with the 95.94% accuracy achieved using the soft approx-
imation.

However, if we take advantage of the observation that
later frames in the video tend to be more indicative, the ac-
curacy can be significantly improved. In a second experi-
ment, we initialized the coordinate descent optimization by
fixing the frame used for each action to the 35th frame,

or final frame for short videos. This frame was chosen be-
cause, on average, this frame was one of the most distinct
between different actions. With this initialization, the classi-
fication accuracy increases significantly to 92.7%, which is
still slightly worse than the accuracy of our soft approach.

Our conclusion from this experiment is that using a co-
ordinate descent approach, similar to [8], can perform sim-
ilarly to the soft approach used in this paper, but is much
more sensitive to the initialization used.

7 Experiments with Online Detection of Actions

While the temporally segmented results are useful for un-
derstanding baseline performance, in real-world scenarios,
the system must identify actions in real-time. We focus on a
particular sub-problem of the general online action spotting
task by focusing on spotting the beginning of each action.
This is in line with our goal of characterizing and reducing
the observational latency of the recognition system.

The spotting is implemented using the probabilities com-
puted with the soft-max probability, similar to Equation 4.
The weights, θ, are the identical weights learned for the ex-
periments in Section 6. The key difference is that they are
applied to every frame.

An action is spotted by computing the probability for
each class on each frame in the video and comparing each
probability to a threshold T , which is optimized on the train-
ing set by linear search. Once any class probability exceeds
T , that probability is used to classify the action in the whole
video. This simulates the task of detecting actions from a
stream of real-time sensor input, as the classifier does not
know a priori when the action begins or ends.

This process can be thought of as scanning the video un-
til one of the classifiers fires strongly enough, then using that
result to classify the whole video. If no probability exceeds
T , the video is considered a missed detection and an error.

7.1 Modifying the Learning Criterion to Improve Online
Detection Performance

A weakness of the approach described in the previous sec-
tion is that the classification weights have been trained for
the situation where the classifier can view all of the frames
to make a decision. This is quite different from the online
detection task described above and the weights may not be
suitably adapted to this different task.

To better adapt the weights, the learning criterion can be
modified to reflect the online detection task more purpose-
fully. This can be done by introducing a new loss Lm that is
basically identical to the original training loss, but is com-
puted on videos that have been cropped to m frames, simi-
lar to the procedure in Section 6.2 with maxFrames. This is



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 11

−6 −5 −4 −3 −2 −1 0 1
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

log γ

Online Classifier Latency vs. Accuracy over a range of γ

 

 

−6 −5 −4 −3 −2 −1 0 1
0

4

8

12

16

20

24

28

32

36

40

L
a

te
n

c
y
 (

fr
a

m
e

s
)

Accuracy

Latency

Fig. 5 Latency compared with accuracy, evaluated on the testing set,
for different values of γ. The optimal threshold value T was deter-
mined by linear search to be 0.9999. Action accuracy is maximal at
the 26th frame on average. As γ increases, latency is reduced at the
cost of decreased accuracy.

combined with the original loss to create the learning crite-
rion for online detection, denoted as LOnline(·),

LOnline(θ) = LFull(θ) + γ
∑
m∈M

mLM (θ) +R(θ), (10)

where R(θ) is the regularization term from Equation 5.
In this criterion, the loss computed over smaller time

scales is added to the overall loss thus providing an incen-
tive for detecting the action in as few frames as possible. The
set M contains the time scales used in the training process.
In our experiments, we use the set M = {10, 15, 20}. The
term γ ·m is a scaling factor. Incorporating m into the scal-
ing factor places more weight on correctly classifying longer
timescales. This is to avoid over-fitting noise in videos with
fewer frames.

7.2 Measuring Latency and Accuracy

It is possible to measure the observational latency of the sys-
tem directly because the system waits until it is confident
enough to make a classification. Figure 5 shows the relation-
ship between the observational latency and system accuracy
on the testing set for different values of γ in Equation 10.3

Figure 5 shows that as γ rises, the accuracy of the online
detection system decreases along with the latency. This indi-
cates that the learning criterion in Equation 10 provides a pa-
rameter to tune the classifier between accuracy and latency.
At the optimal γ, the system has an accuracy of 85.78%.
This compares well with the result from Section 6.2 as this

3 The optimal value of the threshold T was found for each value of
γ using the training set.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

F
ra

m
e
 o

f 
c
la

s
s
if
ic

a
ti
o
n

balance

cli
mbladder

cli
mbup

duck hop
kic

k
leap

punch ru
n

ste
pback

ste
pfro

nt

ste
pleft

ste
prig

ht

turn
left

turn
rig

ht
va

ult

Temporally segmented vs. Online classification frame

 

 

TS

OL

Fig. 6 Comparison of frame of highest response from full video TS
classifier with frame of classification from OL classifier. The value of
γ for the results shown is 0. The error bars depict the std. deviation of
the frame of classification. Recall that the TS classifier must look at the
entire pre-segmented action to classify, so its frames correspond to the
frames with the highest probability of being the correct action. The OL
classifier frame is the earliest point that the probability of the correct
action passes the threshold.

task is much harder. It should also be pointed out that the on-
line detector still outperforms the baseline classifiers, even
though they do not have the burden of detecting the action
in the stream. The classifier is able to achieve this accuracy
by the 26th frame of the action on average, even though the
standard deviation over all features does not peak until after
the 30th frame.

The reason for the drop in classification accuracy can be
seen in Figure 6, which compares the median frame, per ac-
tion class, chosen by the classifier for temporally segmented
videos against that chosen by the online detection system.
As can be seen in this figure, the online detection system typ-
ically chooses a frame earlier than would be chosen if the en-
tire video could be viewed prior to classification. However,
for a 66% average reduction in classification time, accuracy
only drops approximately 8%.

Figure 7 shows the confusion matrix in the online de-
tection system. A column has been added for those actions
where video has been mistakenly labeled as having no ac-
tion.

7.3 Reducing Latency

Figure 5 also shows that this learning criterion can reduce
the latency significantly, but that comes at the cost of signif-
icant reductions in accuracy. As γ increases, temporal seg-
mentation classification accuracy decreases gradually. The
online classifier also degrades in performance gradually un-



12 Chris Ellis et al.

97.5 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0

0.0 73.8 5.0 0.0 0.0 0.0 0.0 20.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.2 0.0 96.2 0.0 0.0 0.0 0.0 1.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.2 1.2 0.0 93.8 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5

0.0 1.2 0.0 0.0 88.8 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5

0.0 0.0 0.0 0.0 0.0 92.5 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8

1.2 0.0 13.8 8.8 0.0 0.0 71.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0

0.0 1.2 0.0 0.0 1.2 0.0 0.0 85.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 2.5 6.2

0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 98.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 93.8 2.5 0.0 0.0 0.0 0.0 0.0 2.5

0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.5 0.0 0.0 0.0 0.0 0.0 6.2

0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 95.0 1.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 98.8 0.0 0.0 0.0 0.0

0.0 1.2 0.0 0.0 2.5 0.0 0.0 1.2 1.2 0.0 0.0 3.8 0.0 45.0 0.0 0.0 45.0

0.0 0.0 0.0 0.0 5.0 0.0 0.0 1.2 0.0 0.0 3.8 0.0 3.8 1.2 55.0 0.0 30.0

1.2 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 95.0 0.0

balance

cli
mbladder

cli
mbup

duck hop
kic

k
leap

punch ru
n

ste
pback

ste
pfro

nt

ste
pleft

ste
prig

ht

turn
left

turn
rig

ht
va

ult

unass
igned

Online Classifier confusion matrix

balance

climbladder

climbup

duck

hop

kick

leap

punch

run

stepback

stepfront

stepleft

stepright

turnleft

turnright

vault

Fig. 7 Confusion matrix for online classification with optimal γ. Due to the added constraint of recognizing actions as soon as possible, we see
more confusion between the actions. However, by sacrificing a small drop of approximately 8% in recognition performance (from 95.94% in
Figure 3 to 85.78% above), we are able to achieve a significant drop (approx 66%) in classification latency.

GentleBoost Features (TS) All Features (TS)
Features 100 200 300 2776
Accuracy 92.11% 93.52% 94.06% 95.94%

Table 3 GentleBoost recognition performance for different number of
best selected features against our temporally segmented (TS) results.
By using only 300 best features out of a total of 2776, we can achieve
recognition performance within 2% of our best temporally segmented
result.

til the classifier begins firing too early, after which accuracy
drops off sharply.

From these results, the accuracy and latency of the sys-
tem appear strongly correlated. When γ is small, accuracy is
high and the system classifies only when it is highly proba-
ble to be correct. With large γ, too much emphasis is placed
on early classification. Since the amount of variance in the
early frames of the data is negligible for accurate classifica-
tion, we see a drop in both accuracy and latency.

8 Reducing Computational Latency

While our focus is on reducing the observational latency,
real-time applications may also face issues with computa-

GentleBoost Features (OL) All Features (OL)

γ = 1e− 5 83.08% 85.78%

Table 4 GentleBoost vs. All Features for online (OL) classification.
We see the same trend as observed for the temporally segmented videos
in Table 3. For the best possible value of γ, the boosted feature online
classification system is within 1.7% of our original online result.

tional latency. To improve this type of latency, we use a
boosting approach to find a subset of features that perform as
well. This makes it possible to greatly improve the efficiency
of our system with negligible reduction in recognition per-
formance.

For selecting the best features, we used a GentleBoost [10]
technique to greedily select a set of features. This algorithm
operates through a stage-wise minimization of the negative
log-likelihood of Equation 4. At each iteration, the system
chooses a feature and parameter value by minimizing a quadratic
approximation to the criterion.

When testing our algorithm, we evaluated the system at
multiples of 100 features up to a maximum of 300. Table 3
shows our results achieved on temporally segmented videos.
We can see that this approach is able to achieve an overall



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 13

recognition accuracy of 94.06% by only using less than one-
third of the original features. This is negligibly lower than
our original best result of 95.94% (as shown in Table 3) but
with greatly improved efficiency. The same trend is observed
for online classification for the best possible γ value (refer
to Table 4).

8.1 Examining the Boosted Features

When examining the features chosen by the boosting algo-
rithm, we can gain insight as to which features are more
useful for classification. As described in Section 5, the fea-
tures for each frame are constructed from pairwise distances
between joints in the current, the frame captured 10 frames
previously and the frame captured 30 frames previously. Of
the 300 features selected by the boosting algorithm, 18 con-
tained two joints from the current frame, 88 contained a joint
from the current frame paired with a joint from the frame
captured 10 frames previously, and 194 contained joints paired
between the current frame and the frame captured 30 frames
previously. As nearly two-thirds of the features were se-
lected from the latter category, we can infer that pairwise
distances between the current frame and frame captured 30

frames previously yield the most useful information toward
classification. In other words, our most informative features
are those that show how different the user’s pose is from
their “at rest” reference pose. On the other hand, the least
useful features simply measure distances between joints within
a single frame.

Now that we know which frames are the most interest-
ing, we should examine which joints are the most informa-
tive. Figure 8 shows the occurrence of each joint in the 300

boosted features. The right and left hands are the most com-
mon, with the right hand in the lead, most likely owing to
the right-handedness of the majority of the training subjects.
Less articulate and less used joints, such as the head, torso,
and feet, are much less commonly used.

By eliminating less important features, we can reduce
the computational latency commonly associated with large
sparse feature vectors such as the one used in our classi-
fication system. This is especially useful in systems where
classification must be done on inexpensive commodity hard-
ware alongside other computational tasks, such as in PCs
and game consoles. Further reduction in computational la-
tency can be achieved by tracking fewer joints, especially
from the central and lower body regions, as these joints were
less commonly selected by the boosting algorithm and are
likely to be less informative.

0

10

20

30

40

50

60

70

R
H
N
D

LH
N
D

LE
LB

R
S
H
O

R
K
N
E

R
H
IP

LH
IP

LS
H
O

LK
N
E

N
E
C
K

R
FO

T
H
E
A
D

R
E
LB

TO
R
S

LF
O

T

O
c
c
u
rr

e
n
c
e
s

Occurrences of joints in boosted reduced feature set

Fig. 8 List of joints by occurrence in the 300 feature set found by
boosting. Notice that the right and left hands are the two most com-
monly used joints. Less articulate joints, such as the head and torso,
as well as less used joints, such as the left and right foot, are used less
often.

0 5 10 15 20 25
20

30

40

50

60

70

80

90

100

Latency

A
c
c
u

ra
c
y
 (

%
)

Best accuracy per Observational Latency for different numbers of actions

 

 

16

12

8

4

Fig. 9 These curves show how the accuracy and latency in recognition
changes as actions are eliminated. As actions that are difficult to rec-
ognize are greedily eliminated, the recognition rate at different laten-
cies rises. The accuracies shown are the maximum over the evaluated
threshold values.

9 Managing Accuracy and Latency by Reducing
Possible Actions

While the focus of this paper is on minimizing latency for a
fixed set of actions, some applications could allow for flexi-
bility in the specification of which actions must be detected.
To study the effect of the choice of actions, we measured
how accuracy and latency changed as we iteratively elimi-
nated actions. The set of actions were reduced by greedily
removing an action from the set of actions one at a time per
value of γ. After training the system across the same set of
values of γ used in Figure 5, the action that was most often



14 Chris Ellis et al.

γ 102 101 100 10−1 10−2 10−3 10−4 10−5 0

4 actions

balance balance balance balance balance balance balance duck balance
hop hop climbladder climbup leap leap leap leap duck

stepleft stepleft stepleft stepfront stepfront stepfront run run leap
stepright stepright stepright stepright stepright stepright stepfront stepfront run

8 actions

climbup climbup climbup duck duck duck duck balance climbup
kick kick leap kick run kick stepback climbup stepback

twistright twistright twistright stepback stepback stepback stepleft stepleft stepfront
vault vault vault stepleft stepleft stepleft stepright stepright stepright

12 actions

duck duck hop hop climbladder climbup climbup hop hop
leap leap run leap climbup hop hop kick kick

stepback stepback stepback twistright hop run kick punch punch
twistleft twistleft twistleft vault kick vault vault stepback stepleft

16 actions

climbladder climbladder duck climbladder punch climbladder climbladder climbladder climbladder
punch punch kick punch twistleft punch punch twistleft twistleft

run run punch run twistright twistleft twistleft twistright twistright
stepfront stepfront stepfront twistleft vault twistright twistright vault vault

Table 5 This figure shows the action sets chosen per γ at 16, 12, 8, and 4 actions. Note that for each given γ, at 8 actions, the action set includes
the actions from both the 8 and 4 action rows. Likewise, the 12 action set includes the actions from the 12, 8, and 4 action rows, and 16 actions
includes the entire column.

confused with other actions was removed. The action sets
chosen are shown in Table 5. In this problem, different val-
ues of γ affect the actions chosen because higher values of
γ encourage the use of actions that can be recognized early.

Figure 9 shows curves representing achievable accuracy
and latency results for problems with action sets of different
sizes. Each of these curves was created by first training our
system across the sets created by different values of γ. Us-
ing the online classification strategy described in Section 7,
we then evaluated the system across variety of thresholds,
T in Section 7. Figure 9 shows the best accuracies achieved
for different latency values. All accuracies are averaged in
the same four-fold cross-validation framework described in
Section 6.

As Figure 9 shows, reducing the number of actions gen-
erally increases accuracy. The difference is most significant
for lower levels of latency because less information is avail-
able to the classifier, making the reduction in the number
of possible actions more beneficial. Once only four actions
remain, recognition rates rise rapidly, though it should be
remembered that these four actions are chosen to make dis-
crimination easy. These actions tend to be easier for the clas-
sifier to distinguish from one another, such as balance and
step right.

10 Accuracy Results on Additional Datasets

We also validated our system in terms of recognition accu-
racy using two additional datasets — the MSR Action3D
dataset from [15] and the MSRC-12 Kinect Gesture dataset
[9]. Both of these datasets were gathered with Kinect or
Kinect-like devices. Similar to our work, the MSRC-12 dataset
chooses gestures inspired by interactive games. The MSR
Action3D dataset predates the release of the Kinect device

and focuses on a mix of sports-based and interaction-based
gestures.

10.1 Results on MSRC-12 Kinect Gesture Dataset

The MSRC-12 Kinect Gesture dataset was constructed to
both measure the performance of recognition systems and
evaluate various methods of teaching human subjects how
to perform the different actions [9]. Thus, the dataset is par-
titioned along different methods of instruction, such as text-
only or text and video. Similar to our work, this dataset is
designed to make the consideration of latency possible. An
action point is identified in the data stream that captures a
unique pose, similar to the idea of the canonical pose pro-
posed in this work. However, latency is considered differ-
ently. Rather than directly minimizing latency, the experi-
ments in [9] measure whether the system can correctly rec-
ognize the gesture within a window 333 milliseconds before
and after the gesture’s action point.

To replicate the experimental setup described in Sec-
tion 6, we used the action point to divide the videos in this
dataset into temporally-segmented examples of each action.
The different instruction types were ignored and videos from
all instruction types were combined together. Following the
protocol in Section 6, our system achieved a recognition ac-
curacy of 88.7%. This is similar to the performance on our
dataset and shows that our method can be applied to a wide
variety of gestures.

We followed the protocol from Section 6 to balance lim-
itations in both our methodology and the protocol in [9].
While the experiments in [9] can only measure detections
within a fixed window of latency, our experimental method
can directly measure latency in recognition. The disadvan-
tage of this methodology is that focusing on time-segmented



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 15

Method Accuracy(%)
Recurrent Neural Network [19] 42.5%
Dynamic Temporal Warping [22] 54%
Hidden Markov Model [17] 63%
Our Approach 65.7%
Action Graph on Bag of 3D Points [15] 74.7%
Actionlet Ensemble [36] 88.2%

Table 6 This table compares the recognition achieved with our sys-
tem against previous work on the MSR Action3D dataset from [15].
Our approach outperforms a number of previous approaches in terms
of accuracy. The methods that outperform our system require that the
complete action be viewed before recognition is possible. As we have
argued earlier, low-latency, interactive recognition is impossible if the
whole gesture must be seen before it can be recognized.

examples can make the system prone to false-firing in streams
of data.

10.2 Results of MSR Action3D Dataset

The MSR Action3D dataset from [15] consists of a set of
temporally segmented actions, so we followed the experi-
mental methods outlined in [15]. Table 6 compares the recog-
nition accuracy produced using our method against previ-
ous systems. As this table shows, our method outperforms
a number of time-series based methods, including dynamic
time warping and a Hidden Markov Model. Our approach is
outperformed by two recently proposed methods, but this re-
sult should be viewed in the context of the accuracy/latency
trade-off. The two approaches that outperform our approach
require that the entire action be viewed before recognition
can occur.

Insight into our system’s performance can be gained by
examining recognition accuracy for specific action classes.
Table 7 shows the accuracy on the five worst-performing ac-
tions and five best-performing classes. Our system is able to
easily distinguish between actions that have different body
poses, such as a golf swing and wave motions. However, our
method has difficulty distinguishing between actions that
have a similar body pose and differ primarily in motion, such
as a hammering motion and a high throwing motion.

Our system has a difficult time distinguishing between
the three types of Draw actions in the dataset: the Draw X,
Draw Circle, and Draw Tick actions. These actions in partic-
ular do not have a single canonical pose, instead needing a
temporally aligned series of poses for classification. Due to
the temporal nature of these actions, the entire action must
be observed before classification is possible, and thus our
low-latency driven approach is not as appropriate. Further
study is needed to determine precisely how important low
latency is in these types of abstract actions.

Action Accuracy Action Accuracy
Hammer 0% Hand Clap 100%
Hand Catch 0% Two Hand Wave 100%
High Throw 14.3% Forward Kick 100%
Draw Circle 20% Golf Swing 100%
Draw X 35.7% Tennis Serve 100%

Table 7 This table shows the accuracy of the five least-recognized ac-
tions in the MSR Action3D dataset [15] and the five best-recognized
actions. Our system performs the worst when the gestures have similar
body poses and the motion between gestures is the primary differenti-
ating factor. However, when the actions have different body poses, our
system performs quite well.

11 Conclusions

Human motion is fast becoming a new paradigm in user in-
terfaces, particularly in entertainment. These systems need
to be accurate and have low latency if they are to become
widespread. We have proposed a novel system for online
action classification that addresses both of these concerns.

Our proposed method converts skeleton data from the
Microsoft Kinect to a feature vector comprised of clustered
pairwise joint distances between the current, frame captured
10 frames previously, and frame captured 30 frames previ-
ously in an action video. In this sense our classifier identifies
actions based on canonical body poses. We evaluated a tem-
porally segmented version of the classifier against baseline
Bag of Words and Conditional Random Field implementa-
tions and found our model to be superior, yielding 95.94%

accuracy.
We then adapted our model to an online variant, and

evaluated two schemes to drive down the latency due to clas-
sification. We found that we were capable of classifying a
large set of actions with a high degree of accuracy and low
latency. We additionally introduced a parameter which can
be used to fine-tune the trade off between high accuracy and
low latency. With this variant we achieved an overall accu-
racy of 85.78%.

To address computational latency, we used GentleBoost
to select a reduced set of best features. We then examined
this set of features and found that the most informative joints
were the upper extremities, and the most informative joint
pairwise distances were between the current and the generic
reference pose. Using these boosted features, we were able
to achieve greater efficiency with a negligible drop in recog-
nition performance (94.06% and 83.08% for temporally seg-
mented and online classification, respectively).

We further explored the trade-off between accuracy and
latency in domains where the number of actions being clas-
sified is flexible. We then demonstrated that as the num-
ber of actions being classified is reduced, higher accuracy
is achievable at lower latency.

Finally, we evaluated our approach on two additional
datasets. We achieve high accuracy on the MSRC-12 dataset,



16 Chris Ellis et al.

and most of the MSR Action3D dataset, and identify a class
of actions which are not appropriate for canonical pose tech-
niques.

Acknowledgements Marshall F. Tappen, Syed Z. Masood and
Chris Ellis were supported by NSF grants IIS-0905387 and
IIS-0916868. Joseph J. LaViola Jr. was supported by NSF
CAREER award IIS-0845921 and NSF awards IIS-0856045
and CCF-1012056.

References

1. Ali, S., Shah, M.: Human action recognition in videos using kine-
matic features and multiple instance learning. IEEE Transactions
of Pattern Analysis and Machine Intelligence 32, 288–303 (2010)

2. Alon, J., Athitsos, V., Yuan, Q., Sclaroff, S.: A unified framework
for gesture recognition and spatiotemporal gesture segmentation.
IEEE Transactions of Pattern Analysis and Machine Intelligence
31(9), 1685–1699 (2009)

3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy min-
imization via graph cuts. IEEE Transactions of Pattern Analysis
and Machine Intelligence 23(11), 1222–1239 (2001)

4. Cao, L., Liu, Z., Huang, T.: Cross-dataset action detection. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1998–2005 (2010)

5. Carlsson, S., Sullivan, J.: Action recognition by shape matching to
key frames. In: Workshop on Models versus Exemplars in Com-
puter Vision (2001)

6. Cuntoor, N., Chellappa, R.: Key frame-based activity representa-
tion using antieigenvalues. In: ACCV (2006)

7. Davis, J.W., Tyagi, A.: Minimal-latency human action recognition
using reliable-inference. Image Vision Computing 24(5), 455–472
(2006)

8. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D.: Cascade object
detection with deformable part models. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2241–2248 (2010)

9. Fothergill, S., Mentis, H.M., Kohli, P., Nowozin, S.: Instructing
people for training gestural interactive systems. In: J.A. Konstan,
E.H. Chi, K. Höök (eds.) CHI, pp. 1737–1746. ACM (2012)

10. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regres-
sion: a Statistical View of Boosting. The Annals of Statistics 38(2)
(2000)

11. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.:
Efficient regression of general-activity human poses from depth
images. In: Proceedings of the IEEE International Conference on
Computer Vision (2011)

12. Guan, P., Weiss, A., Bălan, A.O., Black, M.J.: Estimating hu-
man shape and pose from a single image. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 1381–
1388 (2009)

13. Hoai, M., De la Torre, F.: Max-margin early event detectors. In:
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (2012)

14. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields:
Probabilistic models for segmenting and labeling sequence data.
In: International Conference on Machine Learning (2001)

15. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of
3D points. In: IEEE International Workshop on CVPR for Human
Communicative Behavior Analysis, pp. 9–14 (2010)

16. Liu, J., Shah, M.: Learning human actions via information maxi-
mization. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2008)

17. Lv, F., Nevatia, R.: Recognition and segmentation of 3-d human
action using hmm and multi-class adaboost. In: Proc. ECCV
(2006)

18. Lv, F., Nevatia, R.: Single view human action recognition using
key pose matching and viterbi path searching. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(2007)

19. Martens, J., Sutskever, I.: Learning recurrent neural networks with
hessian-free optimization. In: International Conference on Ma-
chine Learning (2011)

20. Masood, S., Nagaraja, A., Khan, N., Zhu, J., Tappen, M.: Correct-
ing cuboid corruption for action recognition in complex environ-
ment. In: The 3rd IEEE Workshop on Video Event Categoriza-
tion, Tagging and Retrieval for Real-World Applications (VEC-
TaR2011), ICCV Workshops (2011)

21. metacritic: Fighters uncaged critic reviews. http:
//www.metacritic.com/game/xbox-360/
fighters-uncaged/critic-reviews (2011)

22. Müller, M., Röder, T.: Motion templates for automatic classifica-
tion and retrieval of motion capture data. In: Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation, SCA ’06, pp. 137–146. Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland (2006). URL http://
dl.acm.org/citation.cfm?id=1218064.1218083

23. Narasimhan, M., Viola, P.A., Shilman, M.: Online decoding of
markov models under latency constraints. In: International Con-
ference on Machine Learning, pp. 657–664 (2006)

24. Norton, J., Wingrave, C., LaViola, J.: Exploring strategies and
guidelines for developing full body video game interfaces. In: Pro-
ceedings of the Fifth International Conference on the Foundations
of Digital Games, pp. 155–162 (2010)

25. Ramanan, D., Forsyth, D.A., Zisserman, A.: Strike a pose: Track-
ing people by finding stylized poses. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 271–278 (2005)

26. Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of
dance gesturesfrom skeleton animation. In: Symposium on Com-
puter Animation, pp. 147–156 (2011)

27. S. Cheema A. Eweiwi, C.T., Bauckhage, C.: Action recognition by
learning discriminative key poses. In: ICCV Workshops (2011)

28. Schindler, K., Van Gool, L.J.: Action snippets: How many frames
does human action recognition require? In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(2008)

29. Shao, L., Ji, L.: Motion histogram analysis based key frame ex-
traction for human action/activity representation. In: CRV (2009)

30. Shen, Y., Foroosh, H.: View-invariant action recognition from
point triplets. IEEE Transactions of Pattern Analysis and Machine
Intelligence 31, 1898–1905 (2009)

31. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., Blake, A.: Real-time human pose recog-
nition in parts from a single depth image. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(2011)

32. Sigal, L., Balan, A., Black, M.J.: HumanEva: Synchronized video
and motion capture dataset and baseline algorithm for evaluation
of articulated human motion. International Journal of Computer
Vision 87(1-2) (2010)

33. Vahdat, A., Gao, B., Ranjbar, M., Mori, G.: A discriminative key
pose sequence model for recognizing human interactions. In:
Eleventh IEEE International Workshop on Visual Surveillance, pp.
1729–1736 (2011)

34. Viola, P., Jones, M.: Rapid object detection using a boosted cas-
cade of simple features. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, p. 511 (2001)

35. Viola, P., Jones, M.: Robust real-time object detection. Interna-
tional Journal of Computer Vision 57(2), 137–154 (2001)



Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition 17

36. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for
action recognition with depth cameras. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2012)

37. Yang, W., Wang, Y., Mori, G.: Recognizing human actions from
still images with latent poses. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 2030–2037
(2010)

38. Yuan, J., Liu, Z., Wu, Y.: Discriminative subvolume search for effi-
cient action detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2442–2449 (2009)

39. Zhao, Z., Elgammal, A.: Information theoretic key frame selection
for action recognition. In: Proceedings of the British Machine
Vision Conference, pp. 109.1–109.10. BMVA Press (2008)


