
Exploring the use of Intel SGX for

Secure Many-Party Applications

Kubilay Ahmet Küçük
1
, Andrew Paverd

w
, Andrew Martin

1
,

N. Asokan
2
, Andrew Simpson

1
, Robin Ankele

1

1
University of Oxford, United Kingdom

{kucuk, andrew.martin, andrew.simpson, robin.ankele}@cs.ox.ac.uk
2
Aalto University, Finland

andrew.paverd@aalto.fi, asokan@acm.org

Abstract

The theoretical construct of a Trusted Third Party (TTP) has the
potential to solve many security and privacy challenges. In particu-
lar, a TTP is an ideal way to achieve secure multiparty computation
— a privacy-enhancing technique in which mutually distrusting par-
ticipants jointly compute a function over their private inputs without
revealing these inputs. Although there exist cryptographic protocols to
achieve this, their performance often limits them to the two-party case,
or to a small number of participants. However, many real-world appli-
cations involve thousands or tens of thousands of participants. Exam-
ples of this type of many-party application include privacy-preserving
energy metering, location-based services, and mobile network roaming.

Challenging the notion that a trustworthy TTP does not exist, re-
cent research has shown how trusted hardware and remote attestation
can be used to establish a sufficient level of assurance in a real system
such that it can serve as a trustworthy remote entity (TRE). We ex-
plore the use of Intel SGX, the most recent and arguably most promis-
ing trusted hardware technology, as the basis for a TRE for many-party
applications.

Using privacy-preserving energy metering as a case study, we design
and implement a prototype TRE using SGX, and compare its perfor-
mance to a previous system based on the Trusted Platform Module
(TPM). Our results show that even without specialized optimizations,
SGX provides comparable performance to the optimized TPM system,
and therefore has significant potential for large-scale many-party ap-
plications.

http://dx.doi.org/10.1145/3007788.3007793

1



1 Introduction

An ideal Trusted Third Party (TTP) is a theoretical construct used to de-
scribe the ideal solution to many types of security and privacy challenges.
It is assumed to be an entity that is universally trusted by all participants,
without having to provide any evidence of its trustworthiness. A well-known
example of a class of problems that could be solved using a TTP is secure
multiparty computation (SMPC). As introduced by Yao [23], a multiparty
computation problem consists of two or more participants, each holding some
individual input, who wish to jointly compute some function over their in-
puts. However, since the participants are mutually distrusting, they do not
want to reveal their private inputs to one another.

The ideal solution to this problem is for each participant to send their
individual input to TTP, which can compute the function. Although the
use of TTPs is inevitable in some real-world applications (e.g. certificate
authorities), conventional wisdom calls for solutions that avoid them, since
they are assumed to be difficult to realize. Consequently, researchers have
proposed numerous protocols for achieving different types of SMPC based
cryptographic primitives such as oblivious transfer [19] and homomorphic
encryption [9]. With current techniques, these protocols have significantly
worse performance (due to computational and network overheads) than the
ideal case using a TTP. In particular, these performance constraints often
limit these protocols to the two-party case, or to some small number of
participants. However, a large class of real-world applications involve thou-
sands or tens of thousands of participants. We refer to these as many-party
applications.

Many-party applications. Many-party applications can often be mod-
elled as communication systems, in which many mutually distrusting par-
ticipants [2] wish to communicate with each other without diminishing their
privacy. For example, users of a location-based service (LBS) may send their
locations to a service to receive location-relevant information, but this di-
minishes their privacy. Similarly, in the smart energy grid, the fine-grained
energy consumption measurements from smart meters could be used to infer
personal information about consumers and profile their behaviour. Commu-
nicating this information to the service provider is necessary for the smart
grid to function, but also diminishes users’ privacy [4, 5]. In both cases,
privacy-preserving operations could be performed on the communicated in-
formation to hide individuals within a group: in the smart grid, measure-
ments could be aggregated over multiple consumers [18, 4], and in LBS,
the user’s location could instead be reported as an area containing multiple
other users (i.e. location cloaking [7]). In both of these cases, these groups
could contain many participants (e.g. thousands or tens of thousands). The
fundamental question is therefore how to perform these privacy-preserving
operations securely at the required scale. Current cryptographic approaches

2



do not provide sufficient performance for these many-party applications.
Trustworthy Remote Entities. Challenging the conventional wisdom

regarding TTPs, various research efforts have shown how trusted hardware
and remote attestation can be used to establish the trustworthiness of a re-
mote system, to the extent that it could serve as a TTP. Paverd et al. [17, 18]
proposed the concept of a trustworthy remote entity (TRE). The TRE is es-
sentially a TTP that provides a very high level of assurance of its state
and behaviour, thus making it trustworthy rather than simply trusted. In
a many-party application, the TRE is situated as an intermediary in the
communication paths between participants and performs privacy-enhancing
operations on the communicated information. For example, in the energy
metering scenario described above, the smart meters communicate directly
with the TRE, which performs privacy-preserving operations (e.g. aggrega-
tion [15, 20]) on the sensitive energy measurements. Any participant who
individually trusts the TRE can take part in the communication without
loss of privacy. The principal requirement is therefore to provide all partici-
pants with sufficient evidence of the TRE’s state and behaviour for them to
make informed trust decisions. This is achieved using remote attestation. In
their implementation of the TRE, Paverd et al. [17, 18] used Intel Trusted
Execution Technology (TXT) and the Trusted Platform Module (TPM) as
the basis for this remote attestation.

Using Intel SGX.
In this paper, we explore the use of Intel Software Guard Extensions

(SGX) to implement a TRE for many-party applications. In particular,
we consider attestation performance in terms of the time required to per-
form a single attestation operation and the overall rate at which a platform
can perform attestations. We designed and implemented the equivalent of
Paverd’s TRE using SGX for the smart grid use case. Due to the fundamen-
tal differences in architecture, this was far from a straightforward porting
task, and required a complete redesign of the system. Thanks to the SGX
architecture, our implementation requires significantly fewer lines of code,
which both reduces the burden on the developer, decreases the likelihood of
code defects, and minimizes the amount of code that must be trusted by the
verifier. Although our implementation targets a specific application domain,
we argue that its core features are common to all many-party applications,
and could thus serve as an architectural template for such applications. Us-
ing the smart grid as a case study, we performed a comparative evaluation
of the performance of our SGX implementation (SGX-TRE ) against the
previous TPM-based implementation (TPM-TRE ). Our results show that
even an unoptimized SGX implementation exhibits comparable performance
to the optimized TPM-TRE, whilst providing stronger security guarantees.
Therefore, our principal contributions are:

• Empirical performance measurements of basic SGX operations that

3



are used in many-party applications (Section 4).

• An architectural design and prototype implementation of a represen-
tative real-world application, which could serve as a template for other
such many-party applications (Section 5).

• A systematic comparison of an SGX-TRE against a TPM-TRE, in the
context of many-party applications (Section 6).

2 Background

2.1 Remote Attestation

A longstanding challenge in distributed computing is that communicating
entities have little or no guarantee of what software is running at the remote
computer. This may be problematic for many reasons, but in particular
it means that one party has no assurance that the other will implement
a security policy as expected. Remote attestation attempts to solve this
problem by providing a precise account of the state of the remote system
— and hence of the software which has been loaded and executed on that
platform. Typically, this is achieved by providing some type of attestation
evidence (e.g. a cryptographic hash) of the binary software that has been
loaded on the remote platform. The authenticity of this evidence must be
guaranteed by some root of trust on the platform, which is usually provided
by trusted hardware.

In general, the system being attested is called the prover, whilst the
system evaluating the attestation is called the verifier. In all cases, the
verifier is required to decide whether or not the attested system is trustwor-
thy. This becomes exponentially more difficult as the size of the attested
component (e.g. the number of lines of code) increases. In order to use
attestation successfully, it is therefore critical to minimize the size of the
attested component.

2.2 Intel SGX

Intel SGX is a set of CPU extensions that allow applications to create iso-
lated execution environments, called enclaves, that protect the confidential-
ity and integrity of their contents from all other software on the platform,
including a potentially untrusted OS [16]. Since the platform’s main memory
may be under the adversary’s control, SGX ensures that an enclave’s data is
encrypted and integrity protected before it leaves the boundary of the CPU.
Enclaves also provide secure storage by allowing data to be sealed such that
it can only be decrypted by a specific enclave [1]. SGX supports both local
and remote attestation: enclaves can be attested by other enclaves on the
same platform, or by remote verifiers.

4



The SIGMA protocol [14] is used to establish secure channels and bind
these to the enclave’s attestation. In contrast to discrete trusted hardware
(e.g. TPMs as a discrete IC), all SGX computation is performed by the
main CPU, resulting in significant performance improvements. The typical
SGX use case is to isolate and protect security-sensitive components of an
application. Minimizing the size of these trusted components reduces the
risk of security vulnerabilities, and reduces the burden on the verifier during
remote attestation.

3 System Model & Requirements

3.1 System Model

Fundamentally, a many-party application consists of a set of participants
P = {p1, p2, ... pn} each of whom holds some sensitive information sp. The
overall objective is to compute some function over all participants’ private
inputs f(sp1, sp2, ... spn). In the most challenging case, these participants
may be mutually distrusting of one another, and thus do not wish to reveal
their sensitive information to one another.

All participants use remote attestation to ascertain the current state and
behaviour of a common TRE. The exact mechanisms used by the partici-
pants to verify the attestation are beyond the scope of this work, but could
include security audits or formal analysis of the attested software, either un-
dertaken by the participants themselves or by an entity they trust. Having
received this strong assurance that the TRE will not divulge or misuse their
information, participants send their information directly to the TRE. The
TRE can then compute the required function securely and efficiently.

3.2 Adversary Model

In the above system model, the aim of the adversary A is to learn the secret
information sp of any of the participants. We assume A has full control over
the TRE’s platform. This means that A is capable of loading and execut-
ing arbitrary software, modifying the OS and other system software, and/or
modifying the pre-OS components (e.g. bootloader) of this platform. Since
A also has physical access, he may add or remove hardware components,
reset the platform, and exploit any software or hardware side-channel at-
tacks. We assume that A has full control of all communication channels,
and thus also has all the capabilities of the classical Dolev-Yao network ad-
versary. In other words, we intend the TRE to be trustworthy even if the
TRE’s operator is malicious. In many-party protocols, the correctness of the
TRE’s output naturally depends on the correctness of the inputs provided
by the participants (or if the TRE has mechanisms for detecting invalid in-
puts). Although this is an important consideration, it mainly depends on

5



the specific applications and protocols, and is thus beyond the scope of this
work.

3.3 Security Requirements

Although many-party applications may have various security requirements,
the following are applicable to the TRE itself:

• Secure Computation: No external entity should be able to observe
or interfere with the computation performed by the TRE. Since the
adversary has physical access to the platform, the confidentiality and
integrity must be protected from untrusted software on the same plat-
form.

• Secure Communication: Communication between the TRE and
other parties must be confidential and integrity-protected.

• Strong Attestation: The root of trust used for attestation must be
trusted by all parties. The attestation must be unambiguously linked
to the communicating entity (authenticity) to avoid masquerading at-
tacks, and must convey the current state of the system (freshness) to
prevent replay attacks.

Since the TRE’s role is to perform privacy-preserving operations, various pri-
vacy requirements apply. However, these have been discussed previously [2],
and are beyond the scope of this paper, since they apply to the specific
operations performed by the TRE.

3.4 Performance Requirements

As an intermediary in the communication between participants, the follow-
ing performance metrics are applicable to the TRE:

• Scalability: The overall rate at which the TRE performs privacy-
preserving operations should be maximized.

• Latency: The time taken for each individual operation should be
minimized.

In some cases, the application domain places hard constraints on these per-
formance parameters. For example, in the smart energy grid, each smart
meter produces a measurement every 30 minutes [18], so the overall rate at
which the TRE can receive and process these measurements determines the
number of smart meters that can be supported by a single TRE (i.e. the
TRE’s scalability).

6



Table 1: Measurements of basic SGX operations
(average and variance over 100 runs)

Operation Stack+Heap Mean (ms) Std Dev (ms)

Create Enclave
20 kB 9.986 0.488

5 MB 24.558 2.154

Initialize
Remote
Attestation

20 kB 0.040 0.004

5 MB 0.055 0.012

Initialize
Secure
Channel

20 kB 0.511 0.056

5 MB 0.611 0.083

Quote &
SIGMA
Protocol

20 kB 33.059 1.968

5 MB 31.764 1.250

Destroy Enclave
20 kB 0.116 0.060

5 MB 1.158 0.103

4 Benchmarking SGX

As SGX appears to be the most suitable of the current trusted hardware
technologies, we performed a series of micro-benchmarks to establish the
baseline performance of the basic SGX operations required for the TRE.

The results of these benchmarks are shown in Table 1. For each operation
we varied the combined enclave stack and heap size, since our preliminary
experiments indicated that it is this overall size that has an impact on per-
formance. All benchmarks were performed on an SGX-enabled Dell Latitude
E5570 laptop, with an Intel Skylake Core i7-6600U 2.60 GHz CPU, running
Ubuntu 14.04 with the 2016-06 public SGX SDK. The platform’s Enclave
Page Cache (EPC) was set to 128 MB.

The first measurement shows the cost of creating an enclave using either
20 kB or 5 MB of memory. This operation would only be performed very in-
frequently, and will not have a significant impact on the TRE’s performance.
As expected, enclave creation time increases as the size of the enclave’s mem-
ory increases, due to the fact that the enclave’s pages are measured during
initialization. The second, third, and fourth measurements show the cost
of various steps in establishing a secure connection between the TRE and
a relying party, and attesting the TRE. These must be performed at least
once per relying party, but, depending on the application protocol, may be
performed more frequently (e.g. in cases where it is infeasible for the TRE
to maintain concurrent connections with all relying parties, or where rely-
ing parties may be periodically reset). The second measurement shows the

7



cost of initializing a remote attestation session with a single relying party.
The third measurement shows the cost of generating the first message of the
Diffie-Hellmann key exchange. The fourth measurement shows the longest
operation, which includes both quoting and key exchange operations for the
SIGMA protocol.

For completeness, the final measurement shows the cost of destroying an
enclave, although this is not a frequent operation.

5 Implementing the TRE on SGX

In this section we describe our design and prototype implementation of the
TRE using Intel SGX. Although our system is designed for a particular
application, the majority of the design would be common to many other
application domains, and could therefore serve as a template for using Intel
SGX to implement TREs or similar types of trustworthy systems for many-
party applications.

5.1 Smart Grid Use Case

The smart grid scenario consists of a service provider (SP) e.g. the energy
supplier, and multiple smart metering devices (SMDs). Each SMD performs
frequent measurements of energy consumption (e.g. every 30 minutes) and
sends these to the SP. These fine-grained consumption measurements allow
the SP to monitor the energy distribution network and enable time-of-use
(ToU) billing. However, it has been shown that such detailed energy con-
sumption traces can be used to infer private information about the consumer,
leading to privacy concerns [4, 5]. In this context, each SMD is a partici-
pant p ∈ P, and the energy consumption measurements are the participant’s
private input sp. The objective of the TRE is to protect the privacy of indi-
vidual consumers whilst still enabling the overall functionality of the smart
grid.

Figure 1 shows the core components of the TRE and interactions be-
tween the TRE and other participants in the smart grid. In this scenario,
the SP and SMDs are assumed to be mutually distrusting of one another.
Following the design of Paverd et al. [18], the TRE is therefore placed as
an intermediary in the communication path between these entities. The
arrows in the figure show the sequence of communication between the SP
and SMDs. The SP send requests to the SMDs via the TRE, and the SMDs
respond via the TRE.

The TRE can thus perform various types of privacy-preserving opera-
tions on the SMDs’ consumption measurements, including spatial and tem-
poral aggregation as explained below.

8



Figure 1: System overview of a TRE in the smart grid

5.1.1 Spatial Aggregation

To monitor overall consumption in an area, it is sufficient for the SP to
receive the sum (S) of the private consumption values from all SMDs in that
area. This protects privacy by hiding each individual’s contribution within
the total. Although S could be computed using cryptographic techniques,
the performance overhead would be infeasibly high due to the large number
of participants. In contrast, the TRE can compute S very efficiently, and
can scale linearly as the number of participants increases. However, the
SP must trust the TRE to perform the aggregation correctly, and the SMDs
must trust the TRE not to disclose their individual measurements. Although
not included in our prototype, this spatial aggregation could also make use
of differential privacy [8].

5.1.2 Temporal aggregation

In ToU billing, each participant’s bill is computed by multiplying the partic-
ipant’s consumption values for each time period by the prevailing cost per
unit of energy for that time period. In this case, spatial aggregation cannot
be used because each consumer must receive an individual bill. Instead the
TRE performs temporal aggregation, by keeping a running total for each
consumer within the TRE, and forwarding these totals to the SP at the end
of the month. This facilitates ToU billing whilst protecting privacy because
SP is unable to infer fine-grained consumption details from the total bill,
but again requires the SP and SMDs to trust the TRE.

5.2 TRE Operation

As shown above, the TRE can be used to enhance privacy in the smart grid
if it is trusted by the SP and the SMDs. The SP and SMDs are therefore

9



the relying parties. By implementing the TRE using trusted hardware (e.g.
Intel SGX), the relying parties can use remote attestation to establish the
trustworthiness of the TRE.

Before any relying party communicates with the TRE, the relying party
runs a remote attestation protocol with the TRE to ascertain the precise
software running in the TRE enclave. In theory it is only necessary for each
relying party to attest the TRE enclave once. However, this results in long-
lived connections, which may be infeasible if the TRE has to maintain too
many connections or if the relying parties are reset during the connection.
In our implementation, we take the most conservative approach and assume
that relying parties perform a new attestation and establish secure channel
for each message sent to the TRE (e.g. once per 30 minutes). In reality,
the performance of the TRE would improve if longer-lived connections are
possible.

However, remote attestation is only useful if the relying parties can de-
cide whether to trust the software in the TRE enclave. This means that the
design of the TRE should aim to facilitate remote attestation and minimize
the effort required to verify this attestation. Concretely, this calls for mini-
mizing the software Trusted Computing Base (TCB) of the TRE, since this
minimizes the likelihood of software defects, and makes the software more
amenable to security audits or even formal analysis. The TRE’s software
must also be available to all relying parties, and must support reproducible
builds in order to verify that the source matches the attestation. Intel SGX
is therefore an ideal trusted hardware technology for the TRE due to its
hardware-enforced trusted execution environment and remote attestation
capabilities.

5.3 TRE Components

This subsection describes the specific components of our prototype imple-
mentation of the TRE, as shown in Figure1.

5.3.1 Untrusted Components

The TRE consists of an SGX enclave running on a (potentially untrusted)
host platform. The host is responsible for establishing network connections
and marshalling encrypted data between the relying parties and the trusted
components of the TRE. The untrusted components therefore include the
platform’s hardware drivers, network communication library, and SGX in-
terface driver. None of these components handle sensitive information in
the clear.

10



5.3.2 Remote Attestation & Secure Channels

One of the main trusted components of the TRE is the subsystem responsi-
ble for establishing secure channels and attesting the TRE to relying parties.
Our implementation follows the recommended SGX design patterns for re-
mote attestation and secure channel establishment. Specifically, the TRE
enclave performs a location attestation to the quoting enclave (QE), which
verifies that the TRE enclave is a legitimate SGX enclave running on the
same platform, and produces a quote. Using the functionality provided by
the SGX SDK, the TRE enclave uses the SIGMA protocol to establish a se-
cure channel with a relying party and bind this channel to the quote. This
component therefore consists of the trusted cryptography and key exchange
libraries. Compared to Paverd’s TPM-based implementation [17, 18], this
component was significantly easier to implement due to the inclusion of this
functionality in the SGX SDK.

5.3.3 Application-Specific Components

Every TRE includes trusted components that are specific to the application
domain in which the TRE is used. In this use case, the application-specific
components consists of the application logic for parsing the messages from
the SP and SMDs. In our implementation, the TRE communicates with
SMDs using the IEC 62056 (DLMS-COSEM ) message specification, which
has been mandated as the communication format for all SMDs in the UK.
DLMS-COSEM supports a request-response model, in which messages are
encoded as binary data, with typical message lengths in the range of 20 to
30 bytes. In addition to the DLMS-COSEM parser, the TRE also includes
the specific privacy-preserving algorithms used in this scenario (e.g. spatial
and temporal aggregation).

5.3.4 Privacy-Enhancing Algorithms

In addition to the application-specific functionality, the TRE can include a
library of standard privacy-enhancing algorithms, which can be re-used as
necessary for different applications. For example, the functionality required
to enforce differential privacy [8] could be included in this component. Al-
though not used in our prototype, differential privacy guarantees could be
applied to both spatial and temporal aggregation algorithms.

5.3.5 TRE Core

The role of the TRE core is to bring together the above functional building
blocks, and to provide the trusted side of the interface between the TRE
enclave and the host platform. This component therefore includes the SGX
trusted interface libraries, as well as the trusted runtime libraries, such as

11



Table 2: TCB Sizes of different TREs
TPM-TRE SGX-TRE

Crypto Libraries 14,408 2,529

Communication 5,969 858

Memory Management 1,035 774

C/C++ Library 854 7,528

Core TRE 720 229

Application Specific 507 507

Attestation 221 364

Drivers 1,005 -

SGX Trusted - 2,968

Total 24,719 15,757

the C/C++ standard library, and the trusted memory management subsys-
tem. Again, compared to the TPM-TRE, the majority of these libraries are
already available through the SGX SDK.

6 Evaluation

We measured the TCB size of our SGX-TRE and benchmarked its perfor-
mance in a simulated smart grid scenario.

6.1 Software TCB Size

Table 2 shows the sizes of the software TCBs in the TPM-TRE [17, 18],
compared to our SGX-TRE. All code was formatted using the same coding
conventions and counted using SLOCCount.1 In the SGX-TRE, the TCB
measurements include both the third-party code, and the trusted library
code (which was counted from the published library sources), since both are
part of the TCB. This is a conservative worst-case TCB size, since it could
be argued that the trusted libraries are common to all enclaves, and so will
be audited/verified to a greater extent than third-party code.

The most notable differences are the cryptographic library and commu-
nication subsystems. The TPM-TRE requires a full TCP/IP stack, network
interface driver, and TLS library In contrast, the SGX-TRE can outsource
network connectivity to the untrusted host and only requires a small set of
interface functions and cryptographic primitives provided by the tCrypto

and tKeyExchange trusted libraries (i.e. to support the SIGMA protocol
and send and receive encrypted messages). Furthermore, the SGX tcrypto

1http://www.dwheeler.com/sloccount/

12

http://www.dwheeler.com/sloccount/


0 200 600 1000
0
10
20
30
40
50
60

DLMS-COSEM Request and Response Operations

T
im

e
[s
]

17.8 operations/second

Figure 2: Overall Performance of TRE on SGX

library makes use of AES-NI. The TPM-TRE also includes the TPM hard-
ware driver and library, but, in SGX, the drivers used to set-up and call the
enclave are part of the untrusted host platform.

On the other hand, the SGX-TRE includes a significantly larger set of
C/C++ standard library functions, since the TPM-TRE contains only a
small customized subset of standard C library functions. The SGX-TRE
also includes other SGX trusted libraries, such as tservice (incl. selib,
tseal and tae service) and trts, which are not present in the TPM-TRE.

The relative TCB sizes definitively show that even with our conservative
posture of counting the SGX trusted libraries as part of the TCB, the SGX-
TRE has a smaller TCB and is thus easier to attest than the TPM-TRE.
The absolute size of the TCB is within the same order of magnitude as
fully-verified systems such as seL4 [12].

6.2 End-to-End Performance Evaluation

To measure performance, we deployed our prototype SGX-TRE on the same
hardware used in our initial benchmarks. We simulated the SP and SMDs
using a second platform connected via a local ethernet network including a
single network switch. Interaction with the Intel Attestation Server (IAS)
is necessary to verify an attestation; however, since this is performed by
the relying party, it does not affect the scalability of the TRE, and is thus
excluded from our performance measurements.

The overall objective of this experiment was to determine how many
clients a single TRE can support in a many party application. This is an
important metric because it determines the total number of TREs required
for the application (e.g. to handle communication with all smart meters in
a country such as UK). Our test suite measured the time taken to perform
the following sequence of operations for a single relying party: 1) create the
TRE enclave, 2) establish a secure channel to an SMD over the network, 3)
perform remote attestation, 4) encrypt, send, decrypt, and process messages,
and 5) destroy the enclave. In Figure 2, the average time required for this
sequence was 56.05 ms with a standard deviation of 2.653 ms (measured over

13



100 samples). Repeating this test for a batch of participants confirmed that
this time scales linearly in the number of relying parties, as expected. In
practice, the TRE enclave would not be created and destroyed between every
interaction. This would reduce the time per interaction by approximately
10 ms (based on Table 1), bringing the average latency to approximately
46 ms. In the smart grid scenario, the TRE must perform two interactions
with each SMD in every 30 minute period [18], and thus a single SGX-TRE
can support approximately 20,000 relying parties. This is the same number
of participants as the TPM-TRE, which enjoys the performance benefits of
various optimizations, including a highly scalable attestation protocol [17].
We plan to investigate similar optimizations for the SGX-TRE.

In this case study, the processing performed by the TRE is not com-
putationally intensive. As a result of this, a significant percentage of the
time per interaction is spent establishing the secure channel and performing
remote attestation. Although this may not always be the case, we argue
that there is a large class of TRE applications for which this will apply, and
therefore that it is beneficial to optimize these processes.

6.3 Security Evaluation

SGX does not protect against side-channel attacks and does not provide
oblivious memory. If the control flow or data memory access pattern of the
enclave depend on secret data, this secret information could potentially be
leaked to the adversary through side-channel attacks [22] (since the adver-
sary may control the host platform). However, by design neither the control
flow nor the memory access pattern of our SGX-TRE depend on any secret
data. The number of participants communicating with the TRE is not se-
cret information, since this can be inferred from analysis of network traffic.
Furthermore, our TRE implementation does not perform any OCALLs, and
thus is not vulnerable to Iago attacks [6]. Since the TRE is event-driven [17],
the SGX enclave is invoked in response to commands or messages originating
from the relying parties. The enclave uses the return values of the ECALLs
to issue commands to the host platform (e.g. to initiate new connections and
send messages). While the TPM-TRE does not protect against hardware
attacks on the platform’s memory, the memory-encryption functionality of
SGX ensures that the SGX-TRE’s secrets are protected even against an
adversary with the capability to read the platform’s memory.

7 Related Work

In addition to Paverd’s TRE [17], similar approaches using trusted hardware
have been suggested. Koeberl et al. [13] propose a conceptual approach in
which a generic compute provider, supported by a TEE, provides trust bro-
kerage between different data providers. In particular, the TEE can apply

14



privacy-preserving operations on the intermediate data. Similarly, Kim et
al. [11] implemented network applications with OpenSGX [10], demonstrat-
ing the use of TEEs as a middlebox. Their work includes several case studies
related to secure code execution. Moat [21], a tool to formally verify the
confidentiality properties of SGX applications, could be used to verify prop-
erties of the TRE.

Atamli-Reineh and Martin [3] explored different schemes for partitioning
a trusted application into multiple TEEs, and showed that the choice of
partitioning scheme has an impact on security and performance.

8 Conclusion and Future Work

Overall, our results show that Intel SGX can be used to build a trustwor-
thy remote entity (TRE) for use in many-party applications. Compared to
the previous TPM-based design, our SGX-TRE has two main advantages.
First, it requires significantly fewer lines of code, which reduces the burden
on the developer, decreases the likelihood of code defects, and minimizes
the amount of code that must be trusted by a relying party. Secondly, SGX
memory protection enables the TRE to resist a stronger adversary, who has
physical access to the platform’s memory. Our initial SGX-based implemen-
tation provides the same performance (and thus scalability) as the highly
optimized TPM-TRE. However, we identified that improving the perfor-
mance the SGX remote attestation protocol could benefit the SGX-TRE.

As future work, we plan to optimize the design and implementation of
our SGX-TRE and explore the use of multiple enclaves and different enclave
structures for the TRE.

9 Acknowledgment

We acknowledge with gratitude a research grant from Intel Corporation,
which supports some of the authors. We thank the reviewers for their helpful
comments and we thank Çağlayan Aras for help with measurements.

References

[1] I. Anati et al. Innovative Technology for CPU based Attestation and
Sealing. In HASP@ ISCA, 2013.

[2] R. Ankele et al. Applying the Trustworthy Remote Entity to Privacy-
Preserving Multiparty Computation: Requirements and Criteria for
Large-Scale Applications. In IEEE International Conference on ATC,
2016.

15



[3] A. Atamli-Reineh and A. Martin. Securing Application with Software
Partitioning: A Case Study Using SGX. In Security and Privacy in
Communication Networks. 2015.

[4] A. Bartoli et al. Secure Lossless Aggregation for Smart Grid M2M
Networks. In IEEE SmartGridComm, 2010.

[5] J.-M. Bohli, C. Sorge, and O. Ugus. A Privacy Model for Smart Meter-
ing. In IEEE International Conference on Communications Workshops,
2010.

[6] S. Checkoway and H. Shacham. Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface. In Eighteenth International
Conference on ASPLOS, 2013.

[7] C.-Y. Chow et al. A Peer-to-Peer Spatial Cloaking Algorithm for
Anonymous Location-Based Service. In ACM symposium on Advances
in Geographic Information Systems, 2006.

[8] C. Dwork. Differential Privacy. In Automata, Languages and Program-
ming. 2006.

[9] C. Gentry et al. Fully Homomorphic Encryption using Ideal Lattices.
In STOC, volume 9, 2009.

[10] P. Jain et al. OpenSGX: An Open Platform for SGX Research. In
NDSS, 2016.

[11] S. Kim et al. A First Step Towards Leveraging Commodity Trusted
Execution Environments for Network Applications. In ACM Workshop
on Hot Topics in Networks, 2015.

[12] G. Klein et al. seL4: Formal Verification of an OS Kernel. In ACM
SIGOPS 22nd SOSP, 2009.

[13] P. Koeberl et al. Time to Rethink: Trust Brokerage Using Trusted
Execution Environments. In TRUST. 2015.

[14] H. Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenti-
cated Diffie-Hellman and its use in the IKE Protocols. In CRYPTO.
2003.

[15] K. Kursawe et al. Privacy-Friendly Aggregation for the Smart-Grid. In
PETS, 2011.

[16] F. McKeen et al. Innovative Instructions and Software Model for Iso-
lated Execution. In HASP@ ISCA, 2013.

16



[17] A. Paverd. Enhancing Communication Privacy Using Trustworhy Re-
mote Entities. DPhil Thesis, University of Oxford, 2016.

[18] A. Paverd, A. Martin, and I. Brown. Privacy-Enhanced Bi-Directional
Communication in the Smart Grid using Trusted Computing. In IEEE
SmartGridComm, 2014.

[19] M. O. Rabin. How To Exchange Secrets with Oblivious Transfer. IACR
Cryptology ePrint Archive, 2005, 2005.

[20] A. Rial and G. Danezis. Privacy-preserving smart metering. In ACM
workshop on Privacy in the Electronic Society, 2011.

[21] R. Sinha et al. Moat: Verifying Confidentiality of Enclave Programs.
In 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[22] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy, 2015.

[23] A. C. Yao. Protocols for Secure Computations. In Foundations of
Computer Science, 1982.

17


	Introduction
	Background
	Remote Attestation
	Intel SGX

	System Model & Requirements
	System Model
	Adversary Model
	Security Requirements
	Performance Requirements

	Benchmarking SGX
	Implementing the TRE on SGX
	Smart Grid Use Case
	Spatial Aggregation
	Temporal aggregation

	TRE Operation
	TRE Components
	Untrusted Components
	Remote Attestation & Secure Channels
	Application-Specific Components
	Privacy-Enhancing Algorithms
	TRE Core


	Evaluation
	Software TCB Size
	End-to-End Performance Evaluation
	Security Evaluation

	Related Work
	Conclusion and Future Work
	Acknowledgment

