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Abstract 

Deep learning has the potential to help solve numerous problems in cognitive science and 

education, by providing us a way to model the cognitive profiles of individual people. If this 

were possible, it would allow us to design targeted tests and suggest specific remediation based 

on each individual’s needs. On the flip side, employing techniques from psychology can give us 

insight into the underlying skillsets neural networks have acquired during training, addressing 

the interpretability concern. This thesis explores these ideas in the context of transformer 

language models, which have achieved state-of-the-art results on virtually every natural language 

processing (NLP) task. First, we study the ability of transformers to model Age of Acquisition, 

an important variable in predicting word processing in humans.  We then examine the broader 

challenge of using transformers to model the human responses to a test of linguistic 

competencies, this time employing measures from psychometrics as part of our evaluation. 

Compared to simpler models, we find that transformers can achieve superior results in both 

cases, suggesting they are more suitable for modeling psychological properties. The use of 

psychometric measures also allows us to study what linguistic skills transformers cannot learn, 

suggesting where future architectures can make improvements.
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Chapter 1: Introduction 

Psycholinguistics studies how humans process language and represent it in the mind and 

brain [97]. Work within this field has led to many theories on how language is acquired and 

comprehended. While this work is clearly of interest to psychologists, artificial intelligence (AI) 

has benefitted as well. Work dating back decades has investigated applying ideas from 

psycholinguistics to create NLP systems [98]. In the context of neural networks specifically, this 

area of research has sometimes been called “connectionist psycholinguistics” [99]. 

Recently, NLP has seen the rise of a new class of neural language models, based on the 

transformer [12]. Transformers rely on an attention mechanism to perform a sort of feature 

extraction on the input, thus encoding rich structural and semantic information. Attention in 

neural networks is designed to mimic attention from cognitive science, by allowing the network 

to focus on import parts of the input and mask out the rest. It is a general design mechanism in 

deep learning that has been used in fields outside of NLP, such as computer vision [106]. Within 

NLP, while various forms of attention have been used extensively in prior work [100], 

transformers take this to an extreme by using only attention in its encoder and decoder layers, 

throwing out recurrent [101] and convolutional [102] layers entirely. A transformer encoder thus 

consists of only a self-attention layer and a fully connected layer, separated by residual 

connections [107] and layer normalization [108]. The entire architecture consists of multiple 

encoders stacked on top of each other, with a decoder before the output layer that could be as 

simple as a linear layer. This greatly reduces the complexity of the model and the computational 
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costs of training. Moreover, architectures based on the transformer have achieved state-of-the-art 

results on a vast number of NLP tasks. 

Given this great success, a pertinent question is whether transformers are any better than 

previous methods for modeling psycholinguistic properties. An answer to this question would be 

of interest to both psychology and AI. On the one hand, transformers could improve prior 

connectionist approaches for modeling psycholinguistic effects, enriching our understanding of 

language processing in humans. The techniques psychologists have used for decades to model 

latent cognitive processes, in particular, psychometrics,1 could also be quite valuable to AI for 

addressing interpretability concerns. However, perhaps because transformers are still a relatively 

new class of architecture, very little work has addressed their psychological plausibility. 

This thesis explores using transformers for modeling psycholinguistic properties of 

language, using both traditional techniques from machine learning and NLP, as well diagnostics 

originally developed in psychometrics for human evaluations. We begin in Chapter 2 by 

reviewing related work, which covers the use of machine learning to model psycholinguistic 

features, previous attempts to merge psychometrics with AI and work on the interpretability of 

transformers. In chapter 4 we examine how well transformers can model Age of Acquisition 

(AoA), which is the age at which a word is typically learned by humans.  Within 

psycholinguistics, AoA is thought to be an important variable in predicting the lexical processing 

of words, along with concreteness and affectiveness [1-2]. For instance, AoA is thought to affect 

how fast words are read [3], and how fast pictures can be named [4]. AoA and other 

psycholinguistic norms provide a powerful data source for modeling various aspects of human 

behavior using techniques from NLP. For example, research within psychology has shown that 

 
1 https://www.psychometricsociety.org/what-psychometrics 
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combining word embeddings with human psycholinguistic judgment ratings can allow us to 

model human perceptions related to health behavior and risks [54]. We use BERT [10] and 

RoBERTa [11] for these experiments, two popular transformer models. BERT is probably the 

most well-known transformer architecture, as it introduced pre-training objectives that have 

become common in related architectures. RoBERTa is described as a “robustly optimized BERT 

pre-training approach”. It uses the same architecture as BERT but makes various careful 

optimizations to the pre-training strategy that have led to improved performance on various 

benchmarks. We compare the transformers against two baselines, one which simply makes 

random predictions, and the other which uses a set of handcrafted features known to correlate 

highly with AoA. 

In chapter 4, we expand the scope of our experiments by testing the reasoning capabilities 

of transformers on a wide number of linguistic skills. However, unlike previous similar work, we 

make use of psychometric measures to study the performance of transformers compared to a 

human baseline. Unlike the single-valued performance measures common in machine learning 

(accuracy, F1, etc.), psychometrics allows us to model performance on a test as being affected by 

multiple latent variables, which in this case are underlying linguistic competencies. We can thus 

study how these variables relate to each other, giving us a way to check whether certain 

linguistic skills in transformers depend on having acquired others first. We can also study how 

closely this sequence of skill acquisition mirrors human data. We evaluate our transformers on 

GLUE [64], a well-known NLP benchmark. We specifically use the benchmark’s diagnostic, 

which is one of the most comprehensive tests of linguistic reasoning devised by the NLP 

community thus far.  
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Chapter 2: Related Work 

2.1 Applying Distributional Models to Age of Acquisition 

Factors that contribute to word acquisition have been studied extensively over the years. 

It has been shown that word frequency [16], length [18], polysemy [20], and part of speech [15] 

are highly correlated with AoA. Other work has used techniques from network science to 

generate lexical graphs of words and found that associations within these networks could predict 

AoA quite well [48]. Early studies on AoA within psycholinguistics were generally small in 

scale, focusing on a handful of words picked for certain properties they possessed [5]. While this 

type of factorial design allows for specific variables to be studied very precisely, it is unclear 

whether the words being examined have properties typical of all the words in the vocabulary in 

question, or rather are special cases [6]. To address these difficulties, much work has used 

machine learning as both a way to expand existing psycholinguistic datasets automatically and to 

analyze the predictive power of those datasets. [17] used a handcrafted set of psycholinguistic 

features to train machine learning models to predict AoA. They find that a logistic regression 

model achieves up to 72% accuracy on this task, with the random baseline being 50%. [22] 

similarly uses handcrafted features to train a linear regression model to predict the AoA of Italian 

words. 

Because children are thought to utilize co-occurrence information during lexical 

processing [23], distributional models have been especially popular for modeling acquisition 

norms. Work in this area has so far focused on older non-contextual models of semantics, 

especially LSA [7], HAL [8], and skip-gram [9]. [24] extrapolated AoA ratings using LSA, 
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HAL, and skip-gram models. They achieved about 73% correlation with human norms using the 

skip-gram model. [25] combined a distributional model with Wordnet [26] to create an algorithm 

for expanding psycholinguistic datasets in a semi-supervised fashion.  [27] used LSA to estimate 

several psycholinguistic variables, by predicting a word’s rating as the average rating of the 

word’s k-nearest neighbors in the LSA space. They achieved a strong correlation for several of 

the variables tested, though they did not examine AoA. [41] used a network-based distributional 

model to study how affective word features influence early language development. [42] trained 

SVD and skip-gram models on child-directed speech and evaluated the model’s ability to predict 

AoA norms. They achieved a modest and significant correlation on two evaluation tasks. 

Collectively, the success of this work indicates that distributional models are a promising 

way to model feature norms. However, very little work so far has used deep contextual models 

for this purpose, despite the great success they have achieved on NLP tasks. An important 

exception is the work by [28], which fine-tuned BERT on feature norms (not including AoA) and 

demonstrated that the fine-tuned model could predict novel concepts and features quite well. 

Most interestingly, they investigated the psychological plausibility of BERT by testing it on a 

wide variety of classic psychological experiments. In fourteen out of a total of sixteen tests, 

BERT was able to produce human-like responses to the stimuli in a statistically reliable fashion. 

While these experiments alone are not sufficient to state that BERT is a psychologically 

plausible model of human cognition, they do indicate that BERT may be superior to older 

distributional models for psycholinguistic applications. 

2.2 Applications of Psychometrics to Machine Learning 

Psychometrics is a field study dedicated to developing quantitative measures of 

psychological properties. Such properties include knowledge, attitudes, and personality traits, 
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among others. Research within this field has led to the creation of sophisticated models for 

measuring performance on tests, including diagnostic classification models (DCM) [50], and 

item response theory models [49]. These techniques can give us a rich understanding of the 

relationships between underlying cognitive skills because they provide a way to measure how 

those skills relate to each other. In other words, we test whether certain skills depend on having 

first acquired other skills before they can be learned. This property has made psychometrics 

models popular in designing assessments in education [51], since it gives us a more nuanced 

understanding of a student’s performance than any single metric can. 

Given that we can use psychometrics to build cognitive profiles of humans, can we also 

use it to build profiles of neural models? Interest in unifying AI with psychology traces as far 

back as [52], and many others have pursued this unification since then [59-61]. However, despite 

these efforts, the amount of work joining AI with psychometrics is quite limited. [53] augmented 

the DINA [62] and DINO [63] cognitive diagnostic models with a feedforward neural network 

using a semi-supervised learning objective. This architecture can achieve superior results to 

multiple baselines, on both synthetic and real-world assessments. [54] created a deep learning 

architecture for extracting psychometric dimensions from the text, which achieved superior 

performance to prior techniques. [55] investigated how to automatically create a corpus of 

psychometric data from natural language text, sidestepping the need to explicitly gather survey 

responses. [57] used psychometric measures to study the impact of question difficulty on the 

performance of deep neural networks. [56] used deep neural networks to generate data for item 

response theory models. The generated data achieves moderate to high correlation with actual 

human data. [58] used item response theory models to efficiently assess chatbots, reducing the 
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amount of data needing to be annotated by humans. This work clearly demonstrates the potential 

benefits of psychometrics to NLP, but further work is needed to bring it to fruition.  

2.3 BERTology and Interpretability of Transformers 

Understanding the inner workings of neural networks has been a topic of study for years. 

The great success of transformers has also led to a tremendous amount of research on how they 

operate internally, which collectively is sometimes called BERTology [88]. [90] investigated 

what kinds of information are being encoded within BERT. They found that BERT implicitly 

recreates the classical NLP pipeline within its encoder layers. [91] studied the numerical 

reasoning capabilities of various state-of-the-art language models, including BERT. They found 

that BERT struggles with forming good representations of floating-point numbers and fails to 

generalize to numbers not seen in the training data. [92] used BERT’s masked language 

modeling pre-training task to study the model’s knowledge about the world. They determined 

that BERT is competitive with traditional knowledge bases for extracting certain types of 

information. [93] studied how RoBERTa’s predictions on various tasks changed when part of the 

input was permuted to be nonsensical. Surprisingly, the transformers still produced high 

confidence guesses even with meaningless inputs, although it was shown the models could be 

trained to be more robust to this type of permutation. 

In summary, prior work has given us a great deal of insight into how transformers process 

data internally. However, these findings must also be taken with a grain of salt. For example, 

studying the self-attention mechanism in transformers is a popular approach for interpreting the 

model’s predictions, but it is unclear how interpretable attention is [95-96]. It has also been 

shown that results on a probing task can change depending on how the task is structured, 

meaning that a single test is insufficient for drawing strong conclusions [96]. We add to this 
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literature by applying psychometrics to the interpretability problem, which we hope will lead to 

new insights into the kinds of tasks transformers are best suited for. 
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Chapter 3: Modeling Age of Acquisition Norms 

In this chapter, we study how well transformers can model AoA norms, compared to 

several baseline models. We perform our experiments using two common AoA datasets. The 

first is Kuperman’s AoA ratings [14], which contain acquisition norms for over 30,000 English 

words. Kuperman was able to gather this large-scale norm dataset by employing workers on 

Amazon Mechanical Turk and demonstrated through several experiments that the norms 

gathered in this fashion are just as reliable as norms collected in laboratory settings. The original 

dataset was later expanded to include data from several other studies [30-33], bringing the total 

size up to over 50,000 words. The second dataset comes from Wordbank [13] which is a 

database of responses to MacArthur-Bates Communicative Development Inventory [29] (CDI) 

questionnaires, taken by the caregivers of children around the world. This is a self-reported form 

of language proficiency of the child as observed by the caregiver and allows us to study the AoA 

of developing children. 

3.1 Methodology and Results 

We first perform some preprocessing on our datasets. For Kuperman, we use only the 

lemmatized version of each word and drop any duplicate words or words which have no AoA 

rating. For Wordbank, we use data for only English-speaking children and computed the 

normative AoA of each word. This is the age at which at least 50% of the respondents could 

produce the word. In total, we have 600 words in Wordbank and about 30,000 words in 

Kuperman after preprocessing. 
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We use the Transformers [77] implementation of each of our BERT and RoBERTa 

models. We use the bert-base, bert-large, roberta-base and roberta-large community models 

from Huggingface.2 These are all the pre-trained models described in their respective papers. We 

take the average of the activations for the second to last transformer hidden layer of each token 

in the input sequence as the word embedding, giving us a 768-dimensional vector for the base 

models and 1024 for the large ones. Taking the average ensures that the word embeddings are 

always fixed to these lengths, which is important because some words consist of several words 

(for instance “give me five” in Wordbank). Of course, how to best obtain word vectors from 

contextual embeddings is an open question, and future work is planned to examine how different 

embedding strategies impact downstream performance. 

We compare the transformers against a handcrafted set of psycholinguistic features 

known to correlate with AoA: 

3.1.1 Psycholinguistic Features 

• Frequency: How often the word occurs in language. We use the frequency counts of 

words in the OpenSubtitles database [35], since it has been shown this dataset is more 

suitable for studying psycholinguistic phenomena than other corpora [34]. For words not 

present in the data, we set the value to 1. 

• Polysemy: The number of senses a word has. We obtain this by counting the number of 

synsets of the word in Wordnet. For words not present in Wordnet, we set the value to 1. 

• Whether the word is a noun: In the Kuperman norms this data is already present. For 

Wordbank since the dataset is small we manually annotate the word’s part of speech 

based on the category it is assigned to (food, toys, helping verb, etc). In most cases, it is 

 
2 https://huggingface.co/models 
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trivial to determine whether the word is a noun. In any case where the part of speech is 

ambiguous, we set it based on the part of speech of the majority of the word’s synsets in 

Wordnet. 

• Length: the number of characters in the word. 

We additionally compare all models against a random baseline, where the predicted label 

is simply assigned randomly in the range of possible labels for the dataset. If the transformers 

have captured any useful properties for this task, they should be able to consistently do better 

than the random baseline. In the following sections, when we say “baseline features” or 

“baseline” we are referring to the psycholinguistic features, and “random baseline” is this 

random classifier. 

Table 3.2 shows results on the Kuperman norms. We experimented with a variety of 

regression models, all implemented in sci-kit learn [46]. We use Pearson [36] and Spearman [37] 

correlations to measure performance. To ensure statistical significance we shuffled the dataset 

and ran 10-fold cross-validation on all models. The reported correlations are the mean 

correlations of these trials for each model. For the baseline experiments, we first standardized the 

features by removing the mean and scaling to unit variance. For any model which had tunable 

hyperparameters, we first ran a grid search, using a separate validation set held out from the 

training set, and used the following settings found to be optimal: 

3.1.2 Kuperman Hyperparameters 

• SGD: elasticnet penalty, squared loss, adaptive learning rate, eta0 = 0.001, alpha = 0.01 

• Decision Tree: at least 4 samples per leaf, min impurity decrease of 0, max depth of 5 

• k-NN: number of neighbors equal to 25 

• SVR: C = 3.26, epsilon = 0.81 
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All other hyperparameters are left at their defaults. In most cases, the transformers either 

outperform or perform just as well as the baseline features. In most cases, bert-large performs 

somewhat better than bert-base, which is to be expected given the larger size of this model. The 

same trend holds for the RoBERTa models, however, both variants perform noticeably worse 

overall than the BERT models. The transformers perform much better than the random baseline, 

which only gets very weak correlation using both measures. For most folds on the random 

baseline, the correlation is also not statistically significant. 

While the best model is the decision tree using the baseline features, the difference is 

small, as bert-large using SVR comes within 10% of the Pearson correlation and 5% of the 

Spearman correlation. To determine whether this difference in correlation was statistically 

significant, we performed a t-test [40] on the per-fold reported correlations for the bert-large 

SVR model and the baseline decision tree model. We performed this test on the Spearman and 

Pearson correlations separately, results are in Table 3.1. The difference for Pearson correlation is 

clearly statistically significant, but results are less certain for Spearman. While the p-value is less 

than 0.05, it comes close to this significance cutoff, as the exact value is 0.0496. Overall, it 

appears that the baseline features are achieving a modestly stronger correlation than the best 

transformer model, though the difference is quite small.  

For Wordbank, we used an evaluation based on prior work which framed AoA as a 

classification task [17]. We first bin the Wordbank AoA norms into a set of 3 discrete labels. 

Table 3.3 shows the class assignments and the number of examples per class for the resulting 

dataset. Since the large majority of words are acquired at around 20 to 25 months old, we could 

not use uniform ranges for the bins without having classes with an extremely small number of 

examples. We therefore manually tuned the ranges to balance out the number of examples per 
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class as much as possible, although one class still has less than half the number of examples as 

the other two. 

We trained various classification algorithms, again using both the transformers and the 

baseline features. We used Matthews correlation [43] to measure performance. To address the 

class imbalance, we weighted the input samples to be inversely proportional to the class 

frequencies. We use the following hyperparameter settings (all others are left at their defaults): 

3.1.3 Wordbank Baseline Hyperparameters 

• Logistic Regression: C=0.3, L2 penalty, newton-cg solver 

• Decision Tree: Gini impurity, max depth of 200, log2 max features, use the best split 

• SVC: C=0.2, gamma set to auto, rbf kernel 

• KNN: chebyshev distance metric, 15 nearest neighbors 

3.1.4 Wordbank Transformer Hyperparameters 

• Logistic Regression: C=1.0, L2 penalty, sag solver 

• Decision Tree: entropy impurity, max depth of 15, log2 max features, use the best split 

• SVC: C=5.0, gamma set to scale, rbf kernel 

• KNN: manhattan distance metric, 15 nearest neighbors 

 

Table 3.1  Results of the t-test on bert-large SVR and baseline decision tree correlations 

Correlation t-statistic p-value 

ρ 2.17 < 0.05 

r 5.3 < 0.01 
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Table 3.2  Spearman ρ and Pearson r correlation on Kuperman norms. SGD is linear regression with stochastic gradient descent. k-NN 

is k-nearest neighbors regression. All correlations in the table are significant, with p < 0.001. For the random baseline, we obtain 0.01 

correlation on average using both measures, and 95% of the trials have p > 0.05. 

Model bert-base 

ρ 

bert-large 

ρ 

roberta-

base ρ 

roberta-

large ρ 

baseline 

ρ 

bert-base 

r 

bert-large 

r 

roberta-

base r 

roberta-

large r 

baseline r 

Linear 0.53 0.54 0.37 0.41 0.40 0.54 0.55 0.38 0.42 0.44 

Ridge 0.53 0.54 0.37 0.45 0.39 0.54 0.55 0.38 0.42 0.44 

SGD 0.53 0.45 0.28 0.32 0.40 0.54 0.45 0.28 0.33 0.44 

k-NN 0.50 0.48 0.3 0.31 0.53 0.51 0.48 0.3 0.32 0.62 

Decision 

Tree 

0.36 0.31 0.18 0.21 0.59 0.37 0.33 0.19 0.21 0.64 

SVR 0.53 0.56 0.39 0.42 0.46 0.54 0.58 0.4 0.43 0.53 
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Figure 3.1 Isomap projections of all featuresets
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Table 3.3  Final Wordbank dataset statistics. 

AoA Range Label Count 

(0, 20] 0 83 

(20, 25] 1 254 

(25, 52] 2 263 

  

Table 3.4 shows the results of our experiments. We ran 10-fold cross-validation on all 

models using the optimal hyperparameters, correlations shown are of the average across all folds. 

Getting a strong correlation on this dataset is much more challenging since there are only a few 

hundred examples and the class distribution is imbalanced. We obtained only weak correlation 

regardless of the configuration, however, this time bert-large achieves superior performance to 

both baselines, getting as high as 0.14 correlation. We again find that the random baseline 

achieves very weak correlation, which all transformers can surpass using at least one of the 

classification models. 

Unlike in the Kuperman dataset, Wordbank also groups words into semantically related 

categories. For example, there is an “animals” category that has the names of various animals. 

We performed an additional qualitative analysis on this dataset by projecting both the baseline 

features and the transformer embeddings into a 2-dimensional space using isometric mapping 

[39]. Figure 3.1 shows the resulting clusters for all feature sets, color-coded by the word’s 

assigned category in Wordbank. We experimented with other manifold dimensionality reduction 

algorithms but found that isomap gave the most meaningful clusters overall. Even without any 

task-specific fine-tuning, bert-base is clearly segmenting the words along semantically 

meaningful dimensions, as words belonging to the same category are consistently grouped 
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together. It also appears that the space is roughly organized by imageability, which is defined as 

how easily “words arouse a sensory experience”, or in this case how easily the word can be 

visualized [44]. Abstract concepts (actions, descriptive words, connecting words, etc.) are 

skewed negative along the x-axis, while concrete concepts (toys, animals, vehicles, etc.) are 

skewed positive. Previous work has found that imageability and AoA are at least moderately 

correlated with each other [38], so if BERT has learned to distinguish words by this feature that 

may partially explain the observed performance. A similar trend is seen in the other transformers, 

though the clusters are not always grouped in similar locations. We also see this trend using the 

baseline features, however, the clusters are less compact and closer to each other, suggesting that 

BERT has learned to distinguish this semantic feature more effectively. 

Table 3.4  Matthews correlation on the Wordbank norms. The random baseline gets -0.05 

correlation. 

Model baseline bert-base bert-large roberta-base roberta-large 

Logistic 

Regression 

-0.01 -0.01 0.08 0.00 0.05 

Decision 

Tree 

0.02 -0.03 0.07 0.01 0.06 

SVC 0.07 0.01 0.14 0.03 0.03 

KNN 0.01 -0.05 0.08 0.01 0.02 

 

3.2 Discussion 

Age of acquisition is an important psycholinguistic property known to influence lexical 

processing. While much work over the years has studied how distributional models can be used 

to model AoA, the most recent advances in NLP are seldom used. In this chapter, we have 
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addressed this deficit by exploring the use of state-of-the-art transformers to model AoA. Our 

results overall are promising, but not sufficient to definitively state that transformers are superior 

to the baseline psycholinguistic features. On the Kuperman norms, we were able to achieve 

better correlation using the transformers for many of the models we tested, but the best 

performing model used the baseline features. Our t-test confirmed that the higher correlation 

obtained using the baseline features was statistically significant. 

Results on Wordbank are also unclear, while the transformers achieve the highest 

correlation on this dataset, the best correlation was still quite low. Not surprisingly, the 

transformers achieve consistently better performance than the random baseline on both datasets, 

which suggests they must encode at least some features predictive of AoA. We generally 

observed that the larger versions of the transformers outperformed their smaller counterparts. 

This was expected, since adding more encoder layers and self-attention heads usually improves a 

transformer’s predictive capabilities. However, while RoBERTa is theoretically a superior 

architecture to BERT, we found that the RoBERTa models performed consistently worse than 

BERT. This is in line with prior work in interpretability which has found RoBERTa does not 

always perform better than BERT on diagnostic tasks [45]. It is reasonable to think that not all 

transformers are equally good at modeling psycholinguistic properties, and these results suggest 

that BERT may be a better model for predicting such properties of language. We cannot be 

certain, however, since other properties (concreteness, affectiveness, etc.) were not examined. 

Probably our most interesting results were the visualizations of the word embedding 

spaces. The transformers clearly showed more meaningful organization of the words than the 

baseline features, which makes it more surprising the transformers could not consistently achieve 

the highest correlation.  
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Chapter 4: Using Transformers to Predict Psychometric Properties 

The results from the previous chapter indicate that we can use transformers to model 

psycholinguistic properties of language with reasonable predictive power. However, some of our 

results were mixed, making it difficult to determine whether transformers are actually better than 

previous models. What then is the extent of a transformer’s ability to model psycholinguistic 

phenomena? Are there certain properties of language transformers are better at capturing than 

others? In this chapter, we investigate this question using experiments conducted on the GLUE 

diagnostic. 

GLUE and its extension SuperGLUE [65] are suites of NLP tasks designed to test the 

general capabilities of language models across a wide range of different domains. The main tasks 

within GLUE test understanding of sentiment [66], semantic similarity [67], and natural 

language inference [68]. However, most relevant to this work is the benchmark's diagnostic, 

which is a small dataset created by NLP experts meant to evaluate the fundamental linguistic 

reasoning capabilities of models. The diagnostic consists of questions covering four main 

categories of linguistic competencies: lexical semantics, predicate-argument structure, logic, 

and knowledge and common sense. These categories are further divided into multiple sub-

categories, each of which covers a specific and interesting phenomenon in language. For 

instance, within logic, there is a category called propositional structure, which tests a model's 

ability to reason over propositional logic occurring in natural language. 

We gathered results both from transformers and human participants on this diagnostic. 

We compared the neural models against the human results using various psychometric measures. 
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Since the diagnostic tests many different linguistic skills, our hope was that using tools from 

psychometrics would allow us to study how well transformers correlate with human responses on 

each specific skill, giving us a better understanding of performance. 

 

4.1 Methodology 

  

 

4.1.1 Language Model Experiments 

To evaluate our models, we selected a subset of the diagnostic questions that were a 

member of only one sub-category. This ensured that the questions were testing a single specific 

cognitive skill. In most cases, there were enough questions in a single sub-category that we could 

just drop all questions that belonged to multiple categories. However, there were three cases 

where we needed to merge members of one category into another category to prevent overlap: 

4.1.1.1 Merged GLUE Categories 

• negation and double negation questions were merged into morphological negation. 

• symmetry/collectivity was merged into core arguments. 

• Questions in both world knowledge and named entities were merged into named 

entities. 

Each of these was a case where the sub-categories tested closely related skills, and thus 

overlapped highly. This process gave us a set of 811 questions from the diagnostic, which we 

used to evaluate the linguistic capabilities of our models. We gathered performance metrics on 

the diagnostic for a wide array of transformer models, including BERT [10], RoBERTa [11], T5 

[69], ALBERT [70], XLNet [71], ELECTRA [72], Longformer [73], SpanBERT [74], DeBERTa 

[75], and ConvBERT [76]. Each of these models differed from the others along one or more 

factors, including underlying architecture, pre-training objective and data, or the general category 
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the model belongs to (autoregressive, autoencoding, or sequence-to-sequence). This allows us to 

treat each model as effectively being a different individual, which might have a radically 

different cognitive profile from its counterparts. We use the Transformers implementation of all 

models listed above. We experimented with different publicly available versions of each of these 

models, with differing numbers of parameters, transformer layers, and self-attention heads. As a 

baseline, we use an LSTM [78] architecture implemented in PyTorch, which was specifically 

designed for SNLI.3  We use 50- dimensional Glove [79] word embeddings for the LSTM. We 

ran a non-exhaustive grid search to generate a population LSTM baselines, changing the number 

of recurrent layers, size of the hidden layers, learning rate, and dropout [109] probability. To 

evaluate the neural models, we experimented with four different training regimes: 

4.1.1.2 Model Training Regimes 

• Zero shot: The model is initialized with random weights in the hidden layers and is 

evaluated on the diagnostic without any training. This is meant to test whether there is 

any property of the architecture itself which is useful for solving the diagnostic. 

• Pre-train, no finetune: The model is pre-trained but not finetuned for NLI. 

• No pre-train, finetune: The model weights are initialized randomly, but we finetune the 

model on the NLI datasets before evaluating it. 

• Pre-train and finetune: The standard way to evaluate models on the diagnostic, where it 

is pre-trained and then finetuned on the NLI datasets. 

We use the SNLI [80], MNLI [81], and ANLI [82] training and dev sets to finetune our 

models, using Matthews correlation as the evaluation metric. When finetuning, we performed 

one trial that included all three datasets, and then a trial using just SNLI and MNLI. Since ANLI 

 
3 https://github.com/pytorch/examples/tree/master/snli 
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is a challenging task, we wished to study its effect separately from the other two tasks. We 

finetuned our models on these datasets for between 5 to 15 epochs, stopping whenever we found 

further training did not improve correlation on the dev set. We used a learning rate of 1*10-5 and 

a max sequence length of 175. We found these settings allowed our models to get consistently 

strong results on the combined dev sets of our NLI datasets, always achieving a Matthews 

correlation of at least 0.5, and often 0.7 or higher, indicating that they had learned to solve the 

NLI task well. It is important to note that our goal in finetuning was not necessarily to optimize 

the model's performance on these NLI datasets. Rather, since the diagnostic is formatted as an 

NLI task, we hoped that finetuning would help the models to learn what the output labels should 

be.4 

For BERT, we experimented with both the pre-trained models from [10], and a BERT 

model we trained from scratch. Our BERT model had an identical architecture to bert-base, and 

was pre-trained on Google’s One Billion Words corpus [89]. We trained the model for 52 

epochs, using a learning rate 4*10-5, a max sequence length of 128, a warmup ratio of 0.01 and a 

weight decay of 0.01. We used Transformers to pretrain this model, and saved every end of 

epoch checkpoint. We then used every 10th checkpoint as a separate individual to gather 

diagnostic data on, using the previously mentioned training regimes. All training was done on 

three Tesla V100 GPUs with 32GB of memory each. Wherever possible, we used Apex5 to speed 

up training.   

In summary, our approach allowed us to vary the underlying architecture, number of 

parameters, and amount of data used in each trial. Because these changes might lead to radically 

 
4 Because T5 is a sequence-to-sequence model, finetuning is necessary, otherwise its outputs 

would be completely random. 
5 https://github.com/NVIDIA/apex 
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different performance on the diagnostic, our hope was that this would lead to a large variation in 

the profiles of the various transformers tested. 

 

4.1.2 Human Studies 

In addition to evaluating the underlying linguistic skills of language models, we also 

wished to gather the same data for human participants. To do this, we recruited workers on 

Amazon Mechanical Turk6 to complete a subset of the diagnostic questions. While these 

platforms make conducting large scale human studies convenient, there are also well-

documented problems with participants not completing surveys in good faith, and instead 

adversarially answering questions to complete them as quickly as possible [83-85]. This was 

especially problematic for our experiments because we could not filter out participants just 

because they performed poorly on a given category. Therefore, we carefully designed our human 

studies based on recommendations from prior work, so that we could detect and filter out bad 

faith participants. 

We first gathered “attention check” questions, sometimes called “instructional 

manipulation checks” [86], which were very easy questions used to assess whether participants 

were paying attention to the survey. We used questions from the ChaosNLI dataset [87], which 

gathered over 450,000 human annotations on questions from SNLI and MNLI. Each question in 

ChaosNLI was annotated by 100 different workers. The large number of responses per question 

gave us more confidence that, if the inter-annotator agreement for a given question was high, that 

question was likely extremely easy to solve. These questions were also in the exact same format 

as the diagnostic questions, which made it less likely that workers would realize they were being 

 
6 https://www.mturk.com 
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given an attention check. We gathered 36 questions from ChaosNLI where the agreement for the 

correct label was at least 90%. The labels for this subset were perfectly balanced. These were 

enough questions to ensure that each phase of our trials used a unique set of attention check 

questions. 

The human studies were split up into 5 phases, and workers who did sufficiently well in 

one phase were given a qualification to continue to the next phase: 

4.1.2.1 Human Study Phases 

• On-boarding: A qualifying HIT open to any worker located in the United States, who 

had completed at least 50 HITs with an approval rating of at least 90%. The HIT 

consisted of 5 attention check questions, given to each worker in the same order. We 

gathered responses from up to 200 workers and paid each participant $0.50. 

• Phase 1: Included questions from morphological negation, and 3 attention checks. We 

gathered up to 45 responses and paid workers $3.60.   

• Phase 2: Included questions from lexical entailment and prepositional phrases, as well 

as 6 attention checks. We gathered up to 36 responses and paid workers $7.20. 

• Phase 3: Included questions from quantifiers and propositional structure, as well as 6 

attention checks. We gathered up to 27 responses and paid workers $7.20. 

• Phase 4: Included questions from richer logical structure and world knowledge, as 

well as 6 attention checks. We gathered responses from all accepted workers from 

Phase 3, and paid workers $7.20. 

We selected these sub-categories based on how much the average performance of the 

language models improved after pre-training and finetuning since a substantial performance 

improvement indicated this category was actually solvable by the models. Some categories, like 
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restrictivity and core arguments, showed only a very small performance improvement even after 

being fully pre-trained and finetuned, and thus were excluded. 

In each phase, questions were randomly ordered, except for attention checks which were 

spread evenly at specific locations throughout the survey. We used Qualtrics7 to create the 

surveys for each HIT and collect the responses. Participants were first presented with instructions 

for the task and some examples, which were based on the instructions originally given to 

annotators for the MNLI dataset.8 We used the label can't tell from information provided instead 

of maybe correct for the neutral label. The diagnostic questions from each category were a 

randomly chosen subset of the questions tested on the language models for that category. For 

each question, workers also had to provide a short justification for why they believed their 

answer was correct, which was used to help filter out bad faith participants. To validate the 

responses to our surveys, we developed the following authentication procedure based on insights 

from prior work: 

4.1.2.2 Human Studies Codebook 

• Stage 1: Look for duplicate IPs or worker IDs, indicating that the worker took the HIT 

more than once. If there are any, reject the second and future HITs, but keep the first 

submission. 

• Stage 2: If the worker's overall score was less than 40%, reject the HIT. If their overall 

score was greater than 60%, accept the HIT. For workers who scored between 40% and 

60%, we still rejected the HIT if they got less than 75% of the attention checks correct. 

Otherwise, proceed to stage 3. 

 
7 https://www.qualtrics.com 
8 https://nyu-mll.github.io/GLUE-human-performance/mnli.html 
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• Stage 3: Finally, we examined the justifications of all workers not previously rejected 

to decide whether workers should be accepted. Here we were looking for simple, but 

clear, reasons for why workers chose their answer. We included this step because we 

found that workers sometimes provided nonsensical justifications for their answers 

even when they did well on the survey, making it hard to tell whether they were truly 

paying attention. We checked that the justifications appeared relevant to the question 

(some workers seemed to paste random text from other websites into the justification), 

that they did not paste part of the question for their justification, that they did not use 

the same justification for every question regardless of whether it was relevant, and that 

they did not use short nonsensical phrases for their justification (some workers simply 

wrote “good” or “nice” as their justification). Workers who gave responses that were 

not questionable based on these criteria were accepted. 

Using the above procedure, we gathered human responses for all the diagnostic categories 

of interest. In total, 27 out of the original 200 workers passed all phases of the human study, and 

we used responses from these workers for our experiments. 

 

4.2 Results 

Using the data from the previous steps, we performed several experiments to study the 

psychometric properties of the response data. Our main interest here is determining if there are 

any commonalities between the human data and the transformer data. If so, it would suggest 

transformers may be able to model some cognitive properties of humans, and therefore be useful 

diagnostic tools in education and other domains. 

First, we study how effective the transformers are at modeling simple problem difficulty, 

which is defined as how many members of each population (transformer, human, etc.) get a 
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given question on the diagnostic correct. For each question i given to the human participants, we 

calculated the percentage of the humans who got that question right. We then did the same for 

the transformer and LSTM models. As an additional baseline, we also include a random 

classifier that simply chooses a label randomly for each question. Table 4.1 shows the results of 

this experiment. We see that transformers generally correlate much better with the human data 

than either the LSTMs or the random baseline. The main exceptions are morphological 

negation and richer logical structure, where they do not achieve significant correlation. In both 

of these categories, humans perform considerably better than either transformers or LSTMs on 

average than they do on any other category (above 90% in both cases versus 60% and 43% 

respectively). These categories also test skills transformers are known to have difficulty 

mastering. Richer logical structure involves numerical reasoning, and as discussed in Chapter 2 

transformers do not generally form good representations of numbers. Morphological 

negation involves reasoning over negation, which transformers are notoriously bad at [105]. 

Overall, results from these experiments indicate transformers could be useful as a model of 

problem difficulty in humans.  

One important idea which DCM psychometric models build on is that two items 

(questions) that rely on the same underlying skills should have similar chances of being 

answered correctly. To determine whether two items have the same skill requirements, we can 

use inter-item correlation (IIC). A high IIC indicates the items have similar skills, and is 

calculated by taking the correlation (Spearman or Pearson) between all pairs of items. 

In our second experiment, we used IIC as a distance metric for clustering the diagnostic 

problems. This allowed us to study how closely the transformer’s estimates of the required skills 
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for a given question matched the same estimates obtained using human data. To do this, we 

converted the IIC c into a distance metric by taking 1 – c. 

Table 4.1 Spearman correlation and p-value for transformer, LSTM, and random estimates of 

problem difficulty, compared to the human estimates. 

Category Transformer, p LSTM, p Random, p 

Morphological 

Negation 

0.05, > 0.5 0.03, > 0.5 0.93, > 0.5 

Prepositional Phrases 0.78, < 0.001 0.23, < 0.5 -0.33, < 0.5 

Lexical Entailment 0.68, < 0.01 0.31, < 0.5 -0.26, < 0.5 

Quantifiers 0.50, < 0.1 -0.33, < 0.5 0.11, > 0.5 

Propositional 

Structure 

0.89, < 0.001 -0.25, < 0.5 -0.20, < 0.5 

Richer Logical 

Structure 

0.09, < 0.1 0.32, < 0.5 -0.57, < 0.05 

World Knowledge 0.85, < 0.001 -0.06, > 0.5 -0.15, > 0.5 

 

We applied k-medoids clustering to these data points, and used the silhouette method 

[103] to find the optimal value of k. We calculated the optimal clusters on each sub-category, 

using the human, transform, LSTM, and random data separately. To check how well the resulting 

clusters matched across populations, for each pair of items i,j we define Ci,j = 1 if i and j are in 

the same cluster, and 0 otherwise. We calculated these scores for every populations, and finally 

take the Pearson correlation between the resulting vectors from different populations. Results are 

in Table 4.2. In most cases, we see moderate and significant correlation with the human data 

using the transformer models. The correlation for LSTM and random models is consistently 
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insignificant, which further suggests transformers provide a better way to model cognitive 

profiles. The one exception to this trend is on Morphological negation, where we again see weak 

and insignificant correlation using transformers. This time however, the LSTMs achieve 

significant correlation on this category, unlike all the others. 

Table 4.2 Pearson correlation and p-values for how closely the transformer, LSTM, and random 

models match the clusters for the human responses. 

Category Transformer, p LSTM, p Random, p 

Morphological 

Negation 

0.18, < 0.5 0.40, < 0.01 -0.14, < 0.5 

Prepositional Phrases 0.31, < 0.01 -0.15, < 0.5 -0.01, > 0.5 

Lexical Entailment 0.64, < 0.001 -0.03, > 0.5 -0.16, < 0.5 

Quantifiers 0.22, < 0.05 0.001, > 0.5 0.06, > 0.5 

Propositional 

Structure 

0.51, < 0.001 0.03, > 0.5 0.04, > 0.5 

Richer Logical 

Structure 

0.60, < 0.001 0.00, > 0.5 0.04, > 0.5 

World Knowledge 0.37, < 0.001 0.00, > 0.5 -0.09, < 0.5 

 

4.3 Discussion 

Our results on these experiments indicate transformers are better at predicting some 

psychometric properties, compared to non-contextual baselines. The correlations on individual 

categories reveal interesting patterns, for instance, transformers do not model Morphological 

negation well at all. This, along with prior work, strongly indicates that transformers do not 

handle negation well, and suggests an avenue for how they can be improved. Transformers 
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generally perform well on the other categories, consistently achieving modestly strong and 

significant correlation. Compared to other baselines which seldom achieve above random 

correlation, they clearly correlate much better with human psychometric data.  

It is important to stress however that further study is needed before we can draw strong 

conclusions. We had data for only 27 human participants and 111 neural models for these 

studies, which is a very limited sample size. We found that, for transformers, individual 

variances on problem difficulty did not correlate at all, which indicates that our population of 

neural models may not be as diverse as we hoped. Part of the problem may be that due to the 

immense computing resources required to finetune very large transformers (e.g. T5-11B), the 

largest transformer we trained had only about 700 million parameters. While transformers are a 

clear improvement over the previous generation of non-contextual models, compared to humans 

they are still absurdly inefficient learners that require much more data to achieve robust 

knowledge. Therefore, we may need data for much larger transformers before more interesting 

patterns start to emerge. Regardless, we believe our findings are quite encouraging, and are 

optimistic that further study will continue to reveal interesting parallels between the transformer 

and human responses. 

  



31 

 

 

 

 

 

 

Chapter 5: Conclusion 

In this work, we have investigated the use of transformers to model psycholinguistic and 

psychometric properties of language. We examined experimental results from several related 

lines of research, the first on using transformers to model Age of Acquisition, and the second on 

applying psychometrics models to measure how the linguistic capabilities of transformers relates 

to humans. Unlike prior work in interpretability which tended to focus on a handful of models, 

we experimented with as many transformers as possible to draw broad conclusions about the 

capabilities of this class of architecture. Our results are quite encouraging, as transformers 

consistently either achieved superior results to the baselines examined or did no worse.   

There are several avenues worth exploring in future work. Regarding the AoA studies, it 

is possible that applying dimensionality reduction to the transformer features before using them 

for training may improve the performance of our models, especially since our isomap projections 

revealed that transformers were clearly segmenting the Wordbank norms in a semantically 

meaningful fashion. We also have not established how transformers compare against other 

common distributional models. Finally, we have not determined whether fine-tuning the 

transformers on AoA data can boost downstream performance. We plan to investigate these 

possibilities in the follow-up experiments. 

Regarding the psychometrics experiments, we plan to increase the size of our 

populations, by gathering data from more workers and more neural models. For the human 

studies, we also plan to control age, income, and education level to gather a representative 

sample, whereas in the studied presented here that data was not collected. We believe that using 
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mixture models, in particular Google’s switch transformer [104], could allow us to scale up to 

billions of parameters while still being computationally tractable. Like what was done with bert-

base, we plan to pre-train a switch transformer from scratch on the Colossal Clean Crawled 

Corpus [69], which contains 800gb of English text. We will scale up the switch model to billions 

of parameters, as many as possible without running out of memory, and save each end of epoch 

checkpoint. We hope that a much larger model than the others tested will increase the diversity 

of the transformers to the point that we can find more interesting patterns in the psychometric 

data. We will gather this data for the switch transformer, along with other transformers which we 

did not examine. We will also expand the diversity of our finetuning configurations by 

finetuning using more partitions of our 3 training sets, for instance using just SNLI or MNLI. As 

the size of our population increases, we expect that we will be able to use more sophisticated 

psychometric constructs from item response theory and diagnostic classification models, both of 

which require much larger sample sizes to get reliable results. 
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