
Journal of Digital Forensics, Journal of Digital Forensics, 

Security and Law Security and Law 

Volume 10 Number 4 Article 7 

2015 

Exploring The Use Of PLC Debugging Tools For Digital Forensic Exploring The Use Of PLC Debugging Tools For Digital Forensic 

Investigations On SCADA Systems Investigations On SCADA Systems 

Tina Wu 
University of Oxford 

Jason R.C. Nurse 
University of Oxford 

Follow this and additional works at: https://commons.erau.edu/jdfsl 

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer 

Engineering Commons, Forensic Science and Technology Commons, and the Information Security 

Commons 

Recommended Citation Recommended Citation 

Wu, Tina and Nurse, Jason R.C. (2015) "Exploring The Use Of PLC Debugging Tools For Digital Forensic 

Investigations On SCADA Systems," Journal of Digital Forensics, Security and Law: Vol. 10 : No. 4 , Article 

7. 

DOI: https://doi.org/10.15394/jdfsl.2015.1213 

Available at: https://commons.erau.edu/jdfsl/vol10/iss4/7 

This Article is brought to you for free and open access by 
the Journals at Scholarly Commons. It has been 
accepted for inclusion in Journal of Digital Forensics, 
Security and Law by an authorized administrator of 
Scholarly Commons. For more information, please 
contact commons@erau.edu. 

(c)ADFSL 

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol10
https://commons.erau.edu/jdfsl/vol10/iss4
https://commons.erau.edu/jdfsl/vol10/iss4/7
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2015.1213
https://commons.erau.edu/jdfsl/vol10/iss4/7?utm_source=commons.erau.edu%2Fjdfsl%2Fvol10%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/


Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

EXPLORING THE USE OF PLC
DEBUGGING TOOLS FOR DIGITAL

FORENSIC INVESTIGATIONS ON SCADA
SYSTEMS

Tina Wu and Jason R.C. Nurse
Cyber Security Centre

Department of Computer Science
University of Oxford

Oxford, United Kingdom
{tina.wu,jason.nurse}@cs.ox.ac.uk

ABSTRACT

The Stuxnet malware attack has provided strong evidence for the development of a forensic
capability to aid in thorough post-incident investigations. Current live forensic tools are typ-
ically used to acquire and examine memory from computers running either Windows or Unix.
This makes them incompatible with embedded devices found on SCADA systems that have
their own bespoke operating system. Currently, only a limited number of forensics tools have
been developed for SCADA systems, with no development of tools to acquire the program
code from PLCs. In this paper, we explore this problem with two main hypotheses in mind.
Our first hypothesis was that the program code is an important forensic artefact that can be
used to determine an attacker’s intentions. Our second hypothesis was that PLC debugging
tools can be used for forensics to facilitate the acquisition and analysis of the program code
from PLCs. With direct access to the memory addresses of the PLC, PLC debugging tools
have promising functionalities as a forensic tool, such as the ”Snapshot” function that allows
users to directly take values from the memory addresses of the PLC, without vendor specific
software. As a case example we will focus on PLC Logger as a forensic tool to acquire and
analyse the program code on a PLC. Using these two hypotheses we developed two exper-
iments. The results from Experiment 1 provided evidence to indicate that it is possible to
acquire the program code using PLC Logger and to identify the attacker’s intention, there-
fore our hypothesis was accepted. In Experiment 2, we used an existing Computer Forensics
Tool Testing (CFTT) framework by NIST to test PLC Logger’s suitability as a forensic tool
to analyse and acquire the program code. Based on the experiment’s results, this hypothesis
was rejected as PLC Logger had failed half of the tests. This suggests that PLC Logger in its
current state has limited suitability as a forensic tool, unless the shortcomings are addressed.

Keywords: PLC debugging, program code, SCADA, digital forensics, NIST, PLCs, attack-
ers

c© 2015 ADFSL Page 79



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

1. INTRODUCTION
Supervisory Control and Data Acquisition
(SCADA) systems are used to gather, mon-
itor and analyse real-time data in an au-
tomated manner. They provide the un-
derlying architecture for many critical in-
frastructures including power plants, wa-
ter, oil and gas distributions systems. Ini-
tially SCADA systems were isolated allow-
ing a degree of protection. The adoption of
ethernet TCP/IP and wireless technologies
(such as IEEE 802.x) in these systems, how-
ever has significantly reduced this isolation.
The connection to the enterprise network
leaves SCADA systems, that were previously
air-gapped, vulnerable to an ever-increasing
range of external attacks (Zhu, Joseph, &
Sastry, 2011).
In recent years there have been several,

well-documented attacks including a sophis-
ticated malware designed specifically to at-
tack SCADA systems, known as the Stuxnet
virus. This virus exploits multiple vul-
nerabilities in Windows to target the soft-
ware used to program Programmable Logic
Controllers (PLCs) central to the opera-
tion of SCADA systems. One of the key
attack mechanisms of Stuxnet was the re-
programming of the program code on the
PLCs (Falliere, Murchu, & Chien, 2011).
To respond to attacks on SCADA systems,
forensics play a critical role. A forensic in-
vestigation can be used to identify who car-
ried out the attack, to define their inten-
tions and also to understand their method-
ology. Not only is it important to use the
information discovered during the investiga-
tion in order to attribute the attack, it is
also essential that it is used to improve se-
curity measures on the SCADA system and
to share the threat intelligence information
with other SCADA sites. In the past, digital
forensics focused on normal IT setups with
consumer electronics and enterprise systems

involving computers with hard drives, the
majority using the Windows Operating Sys-
tem (OS). The attack surface of a control-
system environment however, is very differ-
ent to a typical IT environment. Some of the
main differences include the fact that there
are many embedded devices using bespoke
protocols and OSs, and many systems still
using outdated and unpatched OSs (Zhu et
al., 2011).
Most related research has focused on the

development of live forensic frameworks us-
ing agents to collect forensic artefacts from
SCADA systems such as (Ahmed, Ober-
meier, Naedele, & Richard, 2012) (Taveras,
2013) (Kilpatrick, Gonzalez, Chandia, Papa,
& Shenoi, 2006). Many of these approaches
have focused on acquiring evidence from
computer systems. However, the focus
should arguably shift to acquiring evidence
from PLCs as they are a crucial components
in SCADA systems (as seen in the Stuxnet
case where a critical PLC component was
attacked). Moreover the majority of current
research in SCADA forensics is theoretical
with many authors such as (Taveras, 2013)
not having tested the practical use of their
proposed approach.
The novelty of our research is exploring

the utility of PLC debugging tools in sup-
porting forensic investigations. Specifically
this will be used to acquire the memory ad-
dresses from a Siemens S7 PLC and explore
the suitability of PLC Logger for forensic in-
vestigations on SCADA systems. PLC de-
bugging tools have promising functionalities
such as communication with the PLC with-
out using vendor specific software and direct
access to the memory of the PLC. However
it is unclear whether such tools are useful for
forensic investigations.
Our research question is; can PLC debug-

ging tools be used to support digital foren-
sic investigations on SCADA systems? From
this research question we developed two hy-

Page 80 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

potheses, these are:
• Program code is an important forensic
artefact that can be used to determine
an attacker’s intentions.

• PLC debugging tools can be used as a
forensic tool to acquire and analyse the
program code from a PLC.

The paper is structured as follows: In Sec-
tion 2, we discuss related work on SCADA
forensics, live forensics data and the instal-
lation of agents on a SCADA network and
related data acquisition methods. Section 3
discusses the forensic artefacts that can be
acquired from PLCs but also artefacts specif-
ically from Siemens S7 PLCs. In Section
4, we present an overview of NIST’s Com-
puter Forensics Tool Testing (CFTT) frame-
work and the purpose of its use. In Sec-
tion 5, we introduce our experimental setup,
the PLC Logger tool and the program code.
Next, Section 6 presents the experiment re-
sults and a critical reflection on the use of
the PLC program code to investigate the at-
tacker’s intentions, and to test PLC Logger
for its suitability as a forensic tool for PLCs
using NIST’s CFTT framework. Finally Sec-
tion 7 concludes this paper and presents fu-
ture work.

2. RELATED

RESEARCH
There is a large amount of existing research
in the area of forensics on SCADA systems.
In particular, several authors have pro-
posed the installation of agents on SCADA
networks to conduct live forensic acquisi-
tion (Ahmed et al., 2012),(Kilpatrick et al.,
2006). Live data acquisition is the extrac-
tion of data when the device is still running;
in digital forensics this is normally used to
recover RAM in the memory of a computer
(Jones, 2007). There are two methods of live
data acquisitions. The first method requires

an agent to be pre-installed on the host com-
puter. Data can then be acquired through
the network to extract artefacts in a large
network such as an enterprise environment.
These agents include open source tools such
as Googles GRR Rapid Response1 and pro-
prietor software such as EnCase Enterprise2.
The second method extracts data using an
agent customised depending on the forensic
artefacts required. These include tools such
as Mandiant Redline3 often used in Incident
Response (IR) to find signs of malicious ac-
tivity in the device’s memory.
(Kilpatrick et al., 2006) propose imple-

menting agents across the control network,
the agents then send network packets back
to a data warehouse on an isolated net-
work to prevent external access. This tech-
nique relies on trust that the agents have
not been compromised, or that the network
packets sent back to the data warehouse have
not been modified during transit. (Taveras,
2013) proposes the use of a finite state au-
tomaton as an agent that would monitor
SCADA events in real-time. These events
are then compared against a set of rules to
determine whether any changes have been
made to the state. If changes have been
identified the agent then switches to foren-
sic mode to log the information for use in a
forensic investigation. However, further re-
search would be required to test this on a
testbed simulation to assess its effectiveness
on a real SCADA system.
(Radvanovsky & Brodsky, 2013) have

identified that obtaining the hexadecimal
dump from the memory of the PLC can be
useful in a forensic investigation. The file
system can be checked for known malware
signatures and compared against expected
file signatures to determine changes to the

1https://github.com/google/grr
2https://www.guidancesoftware.com/products/Pages/

encase-enterprise/overview.aspx
3https://www.mandiant.com/resources/download/redline

c© 2015 ADFSL Page 81



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

file system. The authors have not suggested
a practical solution to extract the hexadeci-
mal dump from the PLC, currently there are
no methods to achieve this.
(Van der Knijff, 2014) examined an attack

scenario and discussed the forensic methods
and tools that could possibly be used for
a forensic investigation on the SCADA sys-
tem. The author stated potential artefacts
stored in the RAM of the PLC would be
lost if rebooted. They have suggested in or-
der to preserve the potential evidence in the
RAM it would need to be switched to pro-
gramming mode. This is an hypothesis they
have concluded and have not carried out a
practical element to prove their hypothesis
is correct. In order to switch the PLC into
programming mode specific software would
have to be obtained from the vendor. In cir-
cumstances where this is unavailable, the au-
thor has suggested the use of debugging tools
connecting through the Joint Action Test
Group (JTAG) port or physical removal of
the chips. However it is rare that a SCADA
system will have a back-up system that al-
lows a PLC to be taken offline. This could
be an issue with the SCADA system owners
who would be unlikely to allow this.
A key limitation with the majority of

existing work such as (Ahmed et al.,
2012)(Patzlaff, 2013) is they have not con-
ducted a practical evaluation of their forensic
framework. In order to establish if their im-
plementation is capable of extracting foren-
sic artefacts from PLCs.

3. FORENSIC

ARTEFACTS FROM

PLCS

3.1 Existing Research

Here we explore the forensics artefacts that
can be retrieved from PLCs. In traditional

computer forensics, forensic artefacts are
normally defined as artefacts that have been
exposed by a forensic investigator to reveal
the truth about an event that has been left
on the system (Clarke, Tryfonas, & Dodge,
2012). On a PLC there are two sources of
evidence that can be obtained i.e; the de-
vice and network traffic. The focus of our
research will be on forensic artefacts retriev-
able from devices. Network traffic on its own
would not be sufficient as it cannot provide
hardware level data.
(ENISA, 2013) has identified some types

of data that can be extracted from field de-
vices such as date and time, current active
processes and logs. They have identified that
in order to be able to acquire data from field
devices they need to work with control sys-
tem engineers and vendors to support the
investigation.
In terms of a PLC, the forensic process and

tools to be used would be highly dependent
on the make and model of the PLC. It would
therefore be useful to gather information
such as vendor of the PLC, firmware version,
date and time on the PLC, IP Address, serial
number of the PLC, model name, and the
type of Computer Processing Unit (CPU).
To the best of our knowledge, no re-

search has currently identified whether there
is any useful evidence on PLCs that may be
used to support a forensic investigation of a
SCADA system. The attack using Stuxnet
involved the reprogramming of the PLC pro-
gram code and the installation of malware.
Therefore we hypothesise that there are po-
tential artefacts in the reprogrammed code,
that can be used the to establish the at-
tacker’s intentions (Falliere et al., 2011).
There are other malicious attacks on PLCs
such as firmware counterfeiting and modi-
fications (Basnight, 2013) and uploading of
malware (McLaughlin, 2011). This paper fo-
cuses on a modification attack on the PLC
program code, as to our knowledge there has

Page 82 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

been limited research in this area (consider-
ing this occurred in the Stuxnet attack).
There is a feasible scenario where an at-

tacker could maliciously alter the PLC pro-
gram code to perform the initial attack.
When this is complete the attacker could ac-
cess the PLC again to revert to the original
program code in the PLC or to enter any
random program code they choose. In this
situation we would not be able to rely on the
program code from the PLC without other
sources of evidence from the SCADA sys-
tem. For example captured network traffic
and event logs.
Our approach is general, but for this spe-

cific test case in the paper, we are using the
Siemens S7-1200 PLC. This PLC was cho-
sen for our experiments, as it is a common
brand of PLC with wide support and de-
velopers regularly creating libraries to sup-
port communication with Siemens S7 PLCs.
The next section explores the structure of
the program code on Siemens S7 PLCs.

3.2 Siemens S7 PLCs

The Siemens S7 protocol is a proprietary
protocol used to communicate with PLCs
of the Siemens family. The main purpose
of the protocol is to exchange data among
PLCs and access data from SCADA sys-
tems for diagnostics purposes. The Siemens
S7 TCP/IP protocol communicate using
port 102 and can be programmed using the
TIA Portal Step 7 software. According to
Siemens, a typical S7 PLC stores program
code and configuration data within the Ran-
dom Access Memory (RAM). The struc-
ture of RAM changes frequently as it is the
volatile area of the memory, (i.e when power
is removed the data stored is lost) (Vidas,
2007).
Siemens structure their program code by

storing them in blocks, limited to 1024. The
program code uses memory addresses to ac-
cess information in the memory location.

The following are blocks of code used to
structure the program code:
• Organisation Block (OB): provides
structure to the program and allows the
interface between the OS and the user
program; it is the entry point of a pro-
gram;

• Function Code (FC): performs a specific
operation on a set of input values. The
FC stores the results of this operation
in the memory location;

• Data Block (DB): contains program
specific data such as numbers and struc-
tures;

• Function Block (FB): use an instance
DB for its parameters and static data.
FB has variable memory located in a
DB; and

• System Data Block (SDB): contains
information on how the PLC is con-
figured. They are created depend-
ing on the number and type of hard-
ware modules that are connected to the
PLC (Siemens, 2015).

Forensic artefacts within the Siemens S7
PLCs are the blocks of code (program
blocks) such as OB and FBs. Other impor-
tant artefacts are within the blocks of codes
containing memory addresses as shown in
Figure 1. The blocks of code and memory
addresses can be used to reconstruct the pro-
gram code back to its raw format, in order to
identify modifications made by attacker to
determine their intentions. For example in
the scenario of a traffic control system, the
attacker may change the program code in-
tending to modify the traffic lights sequence
to cause accident or traffic chaos.

c© 2015 ADFSL Page 83



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

Figure 1. Forensic artefacts of a program code on a Siemens S7 PLCs

4. NIST’S COMPUTER

FORENSICS TOOL

TESTING (CFTT)

FRAMEWORK
The CFTT field is a well researched area
with many frameworks developed by the Na-
tional Institute of Standards and Technol-
ogy (NIST) (NIST, 2007) to test forensic
tools. The CFTT framework has been fur-
ther refined for specific areas of forensics
by (Rick Ayers, 2013),(Flandrin, Buchanan,
Macfarlane, Ramsay, & Smales, 2014). Since
the CFTT framework involves testing of var-
ious computer forensic toolkits the same
principles are also applicable to other foren-
sic tools, for example forensic tools for PLCs.
The purpose of testing forensic tools is to
measure validity of the results, to under-
stand the tool’s capabilities and to allow de-
velopers to improve the tool, including its
functionality and utility.
Currently there are a limited number of

fully developed forensic tools for SCADA
and crucially no specific framework to test
a SCADA forensic tools. The aim of our ex-
periment is to test PLC debuggers, in this

case example PLC Logger for its suitability
as a forensic acquisition and analysis tool for
PLCs. It is not within our scope of this pa-
per to develop a framework to test tools for
SCADA systems. Instead we used existing
research to test the suitability of PLC Log-
ger. This enabled us to follow an already
established standard that is a recognised in-
dustry framework.

5. EXPERIMENTAL

SETUP
The purpose of the experiments is to test
PLC debugging tools, in this case example
we test PLC Logger to explore its suitability
as an acquisition and analysis tool to sup-
port forensic investigations. The following
section provides an explanation of PLC Log-
ger and the program code showing the sce-
nario of a traffic control system required for
the experiments. We constructed two exper-
iments based on the two hypotheses, these
are:
1. Experiment 1: investigate if the pro-

gram code once acquired can be used
to determine an attacker’s intentions.

2. Experiment 2: examined whether PLC
Logger is suitable as a forensic acquisi-

Page 84 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

tion and analysis tool using an existing
NIST CFTT framework.

5.1 Tool: PLC Logger

Based on documentation retrieved about
PLC Logger4, it is used to store and anal-
yse data from various vendors; this includes
the Siemens S7, CoDeSys and Modbus TCP
protocol-based PLCs. The configuration file
stores data about a PLC that is acquired
and can be saved as a PLCLogFile (.PLF).
The protocol configuration can be stored as a
PLCConfigurationFile (.PCF). Finally, any
gathered data such as output values from the
memory addresses, can then be visualised in
a graph. PLC Logger is normally used to
record data on PLCs for diagnostic purposes
such as tracing faults in machinery and to
improve the efficiency of the system. PLC
Logger was chosen because it is capable of
accessing the memory areas of the PLC while
also recording timestamped data. Moreover
it has the capability to record data from a
number of PLCs simultaneously. As a foren-
sic tool for a SCADA system, this recovering
capability would be an important feature, as
it is anticipated that there are a number of
PLCs on the system.

5.2 The Program Code

For our experiment, program code was de-
veloped based on an attack scenario involv-
ing a traffic control system. We narrowed
down our approach to an example of a sin-
gle pedestrian crossing with Traffic Lights
(TLs). Siemens TIA Portal Step 7 program-
ming software was used to create the pro-
gram code and upload onto the Siemens S7-
1200 PLC. Table 1 shows a block of code
from OB1 and contains the memory ad-
dresses of the program code. The following
provides a further explanation of the pro-
gram code shown in the table.

4http://sourceforge.net/projects/plclogger/

In the first instance, when the program
code is uploaded onto the PLC it is in State
0, this means that the TLs are currently
green (Q0.2) and the Pedestrian Lights
(PLs) are red (Q0.3); see Figure 2. When the
PL button (I0.6,I0.7) is pressed, the timer
counts for two seconds and then goes to State
1 turning the TLs amber (Q0.1) and the PLs
remain red (Q0.3). In State 2 both TLs and
PLs are red (Q0.0) and in State 3 the TLs
are red (Q0.0) and the PLs green (Q0.4). In
State 4 the TLs turn amber (Q0.1) and the
PL turn red (Q0.3) before reverting back to
State 0.

Figure 2. Program Code based on a Scenario
of a Traffic Lights and Pedestrian Crossing

Using PLC Logger and the program code
the following two experiments were con-
ducted.

5.3 Experiment 1

Our first hypothesis is that by acquiring the
program code, we will be able to gain valu-
able artefacts that could allow us to deter-
mine the attacker’s intentions. To test this
hypothesis we conducted the experiment us-
ing the following steps:
1. We uploaded the program code onto the

Siemens S7-1200 PLC.
2. We took the memory addresses (shown

in Table 1) from the program code and
entered these into the PLC Logger con-
figuration interface.

c© 2015 ADFSL Page 85



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

Table 1. Variables stored in the Memory addresses within OB1

Name Tag Table Data Type Address

Start Variables Boolean M0.0

State 0 Variables Boolean M0.1

State 1 Variables Boolean M0.2

State 2 Variables Boolean M0.3

State 3 Variables Boolean M0.4

State 4 Variables Boolean M0.5

Start P Variables Boolean M0.6

Button Variables Boolean M0.7

Figure 3. Block diagram of Experiment 2

3. We observed the visualisation graph in
PLC Logger to determine the values
that the memory addresses output. The
only datatypes that were created in the
program code are in boolean, meaning it
can output only either a value of 1=true
or 0=false.

4. The data observed was saved to a local
file for later use.

5. Slight modifications were made to the
program code to represent an attack
scenario on the traffic control system
where an attacker modified both PLs
and TLs to green. The modified pro-
gram code was uploaded onto the PLC.

6. We observed the visualisation graph in
PLC Logger to determine the memory
addresses that output either a value of
1 and 0. The data was saved as a local
file to be used later.

7. The data between the two saved files
were compared to determine the mod-
ifications to the memory addresses, to

determine the attackers intentions.

5.4 Experiment 2

Our second hypothesis is PLC debugging
tools can be used as a forensic tool to acquire
and analyse the program code from a PLC,
in this case example we use the tool PLC
logger. Using NIST’s existing CFTT frame-
work we set about testing PLC Logger for
its suitability as a forensic analysis and ac-
quisition tool using the methodical approach
shown in Figure 3. While NIST’s CFTT
framework was usable for a general computer
forensic toolkit, it would need be customised
for these experiments. In this section, we re-
fer to PLC Logger as the ”tool” to keep the
framework generic. Following NIST’s CFTT
framework, a set of requirements were de-
fined; these are requirements the tools must
adhere to should they be used in a forensic
context. Assertions were deduced from the
requirements. Assertions are general state-
ments or conditions that can be checked after

Page 86 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

a test is executed. The assertions are then
transformed into a set of test cases, these are
a combination of test parameters required to
assess each assertion.

5.4.1 Requirements

The following are requirements that set a
base criteria the tool should achieve, these
are gathered from a combination of previ-
ous research by (Patzlaff, 2013) who have
a detailed list of requirements that a foren-
sic tool for a PLC should meet. Additional
requirements were developed based on foren-
sic properties that a acquisition and analysis
forensic tool should provide (Carrier, 2003).
The requirements are defined as follows.
It is necessary that the tool is able to

connect to the PLC while it is operational
and through a network connection as this
is the main approach to acquire the PLC’s
program code (REQ-01). In a real SCADA
system there is no visible way to verify the
connection with the PLC, therefore the tool
should provide a method of verifying the
connection (REQ-02). The tool should be
able to acquire the program code from the
memory of the PLC (REQ-03). Errors in
connection or during acquisition should be
reported to the user (REQ-04). The tool
should notify the user when the acquisition
has been successful (REQ-05). The tool
should notify the user when the acquisition
has been unsuccessful (REQ-06). The tool
should write the acquired data to a file, saved
in various file formats when acquisition of
the PLC’s program code is successful (REQ-
07). The tool should not write any data to
the memory of the PLC (REQ-08). The tool
should acquire the data securely (REQ-09).
The tool should automatically be able to ac-
quire the memory addresses (REQ-10). In
the next section we outline the assertions de-
veloped based on the above requirements.

5.4.2 Assertions (ASRT-#)

The assertions have been categorised into
four main forensic properties these are; con-
nectivity, accuracy, usability and verifiabil-
ity. The assertions have been mapped with
the requirements and are shown in Table 2.

5.4.2.1 Connectivity
ASRT-01: The connection between

the tool and the PLC should be made
possible through the network.
ASRT-02: If the connection between the

tool and the PLC is successful, the tool
should notify the user.
ASRT-03: If the connection between the

tool and the PLC is unsuccessful the tool
should notify the user.
ASRT-04: The tool should present ac-

quired program code in a format useful to
an digital forensic investigator.
ASRT-05: If the acquisition of the pro-

gram code is successful or unsuccessful the
tool should notify the user.

5.4.2.2 Accuracy
ASRT-06: The tool should not send

any data to modify the PLC program code.
ASRT-07: The tool should accurately ac-

quire the program code. For example, if
the program code contains 8 DBs and 9
OB blocks, the tool should report this ac-
curately.

5.4.2.3 Usability
ASRT-08: The tool should provide

the ability to allow the user to start the
acquisition process.
ASRT-09: The acquisition of the program

code should be automatic after entering the
memory addresses.
ASRT-10: The tool should record and save

the data in a format that can be later used
in analysis also storing timestamps.
ASRT-11: The tool should have the abil-

ity to acquire data while the device is still
operational.

c© 2015 ADFSL Page 87



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

Table 2. Requirements for the PLC Debugger tool and associated assertions

REQ-01 REQ-02 REQ-03 REQ-04 REQ-05 REQ-06 REQ-07 REQ-08 REQ-09 REQ-10

ASRT-01 •

ASRT-02 • •

ASRT-03 • •

ASRT-04 •

ASRT-05 • • •

ASRT-06 • •

ASRT-07 •

ASRT-08 •

ASRT-09 •

ASRT-10 •

ASRT-11 •

ASRT-12 •

ASRT-13 •

ASRT-12: If acquisition of the program
code is successful, the tool should write the
acquired data to a local folder.

5.4.2.4 Verifiability
ASRT-13: The tool should acquire the
program code over an encrypted network.

5.4.3 Test Cases (TSC-#)

This section contains a list of test cases.
Each of the test cases consists of a list of
steps to complete the test and the expected
result required to pass the test. The asser-
tions are mapped against the test cases and
are shown in Table 3.

5.4.3.1 TSC-01
1. Connect the tool to the PLC via the net-

work
2. Verify the connection status is correct

via the tool interface
Expected result: The connection status is
reported as correct.

5.4.3.2 TSC-02
1. Connect the tool to the PLC
2. Verify that there has been a successful

connection by starting an acquisition
Expected result: The acquisition is reported
as completed successfully or unsuccessfully.

5.4.3.3 TSC-03
1. Connect the tool to the PLC

2. Start the acquisition of the PLC mem-
ory

3. Examine the captured network traffic
using Wireshark5 (a network protocol
analyser)

Expected result: During acquisition, data
should not overwrite any program code on
the PLC.

5.4.3.4 TSC-04
1. Connect an unsupported PLC model to

the tool
2. Verify that the PLC is identified as un-

supported
Expected result: The connection status is re-
porting as an unsupported PLC in the tool.

5.4.3.5 TSC-05
1. Start the acquisition of the PLC pro-

gram code
2. Turn off the PLC

Expected result: The acquisition is aborted
and the tool notifies the user of the discon-
nection.

5.4.3.6 TSC-06
• Start the acquisition of the PLC pro-
gram code

• Wait until the acquisition is completed
successfully

5https://www.wireshark.org/

Page 88 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

• Export and save the acquired data to a
file

Expected result: The tool saves the acquired
data to a file.

5.4.3.7 TSC-07
• Connect a supported PLC to the tool
• Enter the memory addresses to acquire
• Use the tool to start the acquisition

Expected result: The acquisition is com-
pleted successfully.

5.5 Limitations

There are several limitations in our exper-
iments. Firstly, PLC Logger reads values
over a network connection which would in-
crease traffic overhead on the network. Fur-
ther research would be required to establish
effects on industrial equipment.
Our experiments were limited to the use

of a specific brand of Siemens PLC and one
PLC debugging tool. However our experi-
mental setup can be applied to other brands
of PLCs and other PLC debugging tools.
We based our experiment on one scenario

with the program code specifically developed
for these experiments and was not collected
from a real SCADA system. Therefore, ad-
ditional testing would be required and pro-
gram codes would need to be collected from
real SCADA systems. We have developed
our traffic light scenario for the experiments
as close as possible to model a real-life traf-
fic light crossing. A real-life traffic light sce-
nario will be more complex when compared
to our demonstration since ours is only a
small component of the traffic light system.
PLC programming concepts are common to
all manufacturers and differ in program lan-
guages, I/O addressing, memory organisa-
tion and instruction sets mean that they are
never perfectly interchangeable between dif-
ferent makers, even products from the same
manufacturer may not be compatible.

6. RESULTS AND

DISCUSSION
In this section, we present and discuss the re-
sults from our experiments. The results from
testing PLC Logger are presented. Then we
used NIST’s CFTT framework to test PLC
Logger to determine its suitability as a foren-
sic acquisition and analysis tool for PLCs.

6.1 Experiment 1

In PLC Logger, the following are the mem-
ory addresses that have output a value of
1 (True): Pedestrian Red (Q0.3), Green
(Q0.2), Start Light (M0.0), State0 (M0.1)
and StartP (M0.6). This indicates the PLC
is currently in State 0, with the TLs green
and the PLs red. Slight modifications were
made to the memory addresses in the pro-
gram code, to cause both the TLs and PLs
to turn green. PLC Logger was again used
to acquire the memory addresses and found
that the following had been modified; Pedes-
trian Red (Q0.3) outputs a value of 0 (False)
and Pedestrian Green (Q0.4) of 1 (True).
Thus, both TLs and PLs were showing green.
One of our research aims was to investi-

gate whether the PLC program code can be
of use in forensic investigations, for instance
to determine an attacker’s intentions. The
results from the experiment indicate that
PLC Logger can be used to communicate
and acquire data from the memory addresses
of the PLC without any problems. In this
scenario, by acquiring the memory addresses
from the PLC we were able to identify that
the attacker had made slight modifications
to the memory addresses, allowing us to de-
termine their intention. In this situation
it would have been their intention to cause
both TLs and PLs to turn green, potentially
to cause an accident, disrupt the flow of traf-
fic flow or cause distress. The results from
Experiment 1 show the hypothesis was ac-
cepted, as we were able to show that the

c© 2015 ADFSL Page 89



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

program code was useful for a forensic in-
vestigation by identifying the attacker’s in-
tention. In the next section a methodological
approach is used to further test PLC Logger.

6.2 Experiment 2

We used an existing CFTT framework to
explore the suitability as a forensic acqui-
sition and analysis tool for PLCs. First,
developing a set of requirements, assertions
and then test cases. Each test case consists
of the steps required to complete the test
and the expected results needed to pass the
test. The reason for not using a numbering
grading scale as the one seen in (Anobah,
Saleem, & Popov, 2014) is because it’s main
use there was for the comparison of forensic
tools. Whereas our intention was to explore
whether PLC Logger was suitable forensic
tool for PLCs. An overview of the results
are shown in Table 3.
The complete results can be found in Ap-

pendix A; in this section only the main re-
sults are discussed.
The test that failed was TSC-01 with the

assertion ASRT-02 referring to the notifica-
tion of successful connection between PLC
Logger and the PLC if successful. The tool
failed this assertion as it does not notify the
user when the PLC is online or when an un-
supported PLC is connected. We found that
when the wrong IP address of the PLC was
entered, the tool’s interface would display a
red exclamation indicator. But this was the
also the case when a user had entered an in-
correct memory address. This meant there
was no clear indication which was incorrect
as it could either be the memory address, IP
address or both.
TSC-04 with the assertion ASRT-03 refers

to PLC Logger notifying the user when the
PLC is disconnected from the network. The
tool failed the test as it does not notify
the user when the PLC is disconnected.
It was identified the graphical interface in

PLC Logger continues to output the value 0,
which could be an indication that the PLC
is disconnected.
TSC-02 with the assertion ASRT-05, re-

ferring to the PLC Logger notifying the user
if the acquisition of the PLC is successful or
unsuccessful. This assertion failed the test,
as there are no notifications in the interface
of PLC Logger until the user has input the
correct IP address of the PLC and memory
addresses. If these are not input correctly
the interface in PLC Logger remains at the
default setting.
Assertions ASRT-01 to 05 showed it had

failed on connectivity issues. However these
can easily be overcome by implementing sim-
ple features such as notifications to the user
when a PLC has been disconnected from
PLC Logger.
In TSC-03 with the assertion ASRT-06,

refers to PLC Logger making modifications
to the program code during acquisition. This
assertion was to test for accuracy and failed,
after examination of the captured network
traffic, it was not possible to determine
whether any modifications were made. With
any live forensic tool the investigator would
want to prevent modifications to the origi-
nal data as much as possible to preserve the
integrity of the evidence. Therefore further
research would be required on PLC Logger
to determine the type of data sent and re-
ceived during the acquisition process on the
PLC (Jones, 2007).
The next tests was TSC-02 with the as-

sertion ASRT-07, referring to PLC Logger
reporting the complete program code. This
was to test for accuracy, however PLC Log-
ger failed as it did not provide specific mem-
ory addresses that can be entered into PLC
Logger. A solution would be to use a combi-
nation of PLC Logger and a Snap 7 Client. A
Snap 7 Client 6 is used to communicate with

6http://snap7.sourceforge.net/

Page 90 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

Table 3. Assertions mapped against the tests cases and the results from testing PLC Logger
using an existing CFTT framework, more details are shown in Appendix A

TSC-01 TSC-02 TSC-03 TSC-04 TSC-05 TSC-06 TSC-07

ASRT-01 Passed

ASRT-02 Failed Passed

ASRT-03 Failed

ASRT-04 Passed

ASRT-05 Failed Failed

ASRT-06 Failed

ASRT-07 Failed

ASRT-08 Passed

ASRT-09 Failed Passed

ASRT-10 Passed

ASRT-11 Passed

ASRT-12 Passed

ASRT-13 Failed

Siemens S7 PLC. The client can be used as
the supporting tool using the directory func-
tion to read only the memory addresses of
the PLC. Also to gather information such as
the number of program blocks (such as OB,
FB) and the memory addresses within each
program block.
TSC-02 associated with the assertion

ASRT-9, refers to the automatic acquisition
of the program code. This assertion failed,
as it was found the user would have to man-
ually enter the memory addresses.
Assertions 08 to 12 passed 5 out of 6 on

usability as it allowed the user to easily iden-
tify how to start the acquisition process and
save the data in a suitable format for later
analysis.
TSC-03 next, with the assertion ASRT-13,

refers to the acquisition over an encrypted
network. Encryption during the acquisition
process will prevent an attacker from inter-
cepting the data acquisition and to ensure
the data stream is secure. However, PLC
Logger does not provide an option for this
feature.
Another finding during testing was that,

PLC Logger does not provide the option to

delete memory data areas once they have
been entered. A solution to this was deleting
the configuration file in PLC Logger’s instal-
lation folder.
The results from Experiment 2 show that

PLC Logger failed half of the tests. This
demonstrates that PLC Logger in its current
state would not be suitable for use as an ac-
quisition tool on SCADA systems. It still
has potential, features such as the ”Snap-
shot” function allowing users to directly take
values from the memory addresses of the
PLC. However, PLC Logger’s shortcomings
need to be addressed before it can be used
in a forensic context.
Taking into consideration that PLC Log-

ger is not a tool specifically developed for
forensic purposes, functions such as en-
crypted secure network would not be ex-
pected to be present.

7. CONCLUSION AND

FURTHER RESEARCH
In this paper, our first hypothesis was, that
the program code once acquired could be
used to identify the attacker’s intention. The

c© 2015 ADFSL Page 91



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

findings from Experiment 1 indicate our hy-
pothesis was accepted and by using PLC
Logger to acquire the program code, we were
able to extract useful forensic artefacts that
could be useful in determining an attacker’s
intention.
Our second, hypothesis was that PLC

debugging tools can be used as a foren-
sic tool to acquire and analyse the pro-
gram code from a PLC. In Experiment 2 we
used NIST’s CFTT framework to establish
a method for testing forensic tools for PLCs
and also to understand the tool’s capabili-
ties. The results showed this hypothesis was
rejected as PLC Logger had failed half of
the tests. Considering PLC Logger was de-
signed to be used for diagnostic purposes on
PLCs, and not as a forensic tool, this could
be viewed as a expected result.
The use of NIST’s CFTT framework

would be ideal for initial testing of other ac-
quisition and analysis tools for PLCs. Help-
ing to identify any possible problems with
tools and whether it would be a suitable tool
for forensic investigations on SCADA sys-
tems. The results from these experiments
can be used to improve PLC Logger for use
as a forensic tool for SCADA systems. They
can also be used as a specification for the
initial design of an acquisition tool.
Currently we have conducted all of our

experiments only on the Siemens S7 PLC.
PLC Logger also supports Modbus TCP/IP,
therefore further research should be carried
out to determine whether it would be use-
ful for other PLC brands. A practical prob-
lem, because PLC Logger was developed by
open source developers, may at some point
choose not to develop it further or fix bugs
in the software. Further research would be
required to add the additional forensic fea-
tures that were found to be missing during
the tool testing experiments. For example,
the encrypted secure network was one of the
missing features. A next step in the research

would be to evaluate our research contribu-
tions by comparing it against a tool with
similar features.
Current research suggests that remote at-

testation be implemented to solve the prob-
lem of attacks manipulating the PLC pro-
gram code. However this is theoretical and
has not been tested in practical experiments.
It has been suggested that remote attesta-
tion is weak, as a verifier cannot prove that
the device has not been compromised only
that it is working as expected (Valente, Bar-
reto, & Cardenas, 2014).

ACKNOWLEDGEMENTS
We would like to thank EPSRC for the fund-
ing of Tina Wu’s DPhil programme. Tina
would also like to thank Adrian Campos for
teaching her how to program PLCs.

Page 92 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

REFERENCES
Ahmed, I., Obermeier, S., Naedele, M., &

Richard, G. G. (2012). Scada
systems: Challenges for forensic
investigators. Computer , 45 (12),
44–51.

Anobah, M., Saleem, S., & Popov, O.
(2014). Testing framework for mobile
device forensics tools. Journal of
Digital Forensics, Security and Law ,
9 (2), 221–234.

Basnight, Z. H. (2013). Firmware
Counterfeiting and Modification
Attacks on Programmable Logic
Controllers. Retrieved from http://

oai.dtic.mil/oai/oai?verb=

getRecord\&metadataPrefix=html\

&identifier=ADA583401

Carrier, B. (2003). Defining digital forensic
examination and analysis tools using
abstraction layers. International
Journal of digital evidence, 1 (4),
1–12.

Clarke, N., Tryfonas, T., & Dodge, R.
(2012). Proceedings of the 7th
international workshop on digital
forensics and incident analysis
WDFIA 2012. University of
Plymouth.

ENISA. (2013). Can we learn from scada
security incidents? (Tech. Rep.).
Enisa.

Falliere, N., Murchu, L. O., & Chien, E.
(2011). W32. stuxnet dossier. White
paper, Symantec Corp., Security
Response.

Flandrin, F., Buchanan, W. J., Macfarlane,
R., Ramsay, B., & Smales, A. (2014).
Evaluating digital forensic tools
(DFTs).

Jones, R. (2007). Safer live forensic
acquisition. University of Kent .
Retrieved from
https://www.cs.kent.ac.uk/pubs/

ug/2007/co620-projects/

forensic/report.pdf

Kilpatrick, T., Gonzalez, J., Chandia, R.,
Papa, M., & Shenoi, S. (2006). An
architecture for SCADA network
forensics. Advances in Digital
Forensics II , 222 , 273–285\r364.
Retrieved from
<GotoISI>://000240980400022

McLaughlin, S. (2011). On dynamic
malware payloads aimed at
programmable logic controllers.
Proceedings of the 6th USENIX
conference on Hot topics in security.
HotSec, 11 , 10.

NIST. (2007, December). General test
methodology for computer forensic
tools.

Patzlaff, H. (2013). D7.1 preliminary report
on forensic analysis for industrial
systems (Tech. Rep.). The CRISALIS
Consortium.

Radvanovsky, R., & Brodsky, J. (2013).
Handbook of SCADA/control systems
security. Taylor & Francis. Retrieved
from https://books.google.co.uk/

books?id=ukqGhkpOkdMC

Rick Ayers, W. J., Sam Brothers. (2013,
September). Guidelines on mobile
device forensics.

Siemens. (2015, January). S7-1200 easy
book [Computer software manual].

Taveras, P. (2013). SCADA live forensics:
real time data acquisition process to
detect, prevent or evaluate critical
situations. European Scientific
Journal , 9 (21).

Valente, J., Barreto, C., & Cardenas, A. a.
(2014). Cyber-Physical Systems
Attestation. IEEE International
Conference on Distributed Computing
in Sensor Systems , 354–357.

Van der Knijff, R. M. (2014). Control
systems/scada forensics, what’s the
difference? Digital Investigation. doi:

c© 2015 ADFSL Page 93



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

10.1016/j.diin.2014.06.007
Vidas, T. (2007). The acquisition and

analysis of random access memory.
Journal of Digital Forensic Practice,
1 (4), 315–323.

Zhu, B., Joseph, A., & Sastry, S. (2011). A
taxonomy of cyber attacks on scada
systems. In Proceedings of the 2011
international conference on internet
of things and 4th international
conference on cyber, physical and
social computing (pp. 380–388).

Page 94 c© 2015 ADFSL



Exploring the Use of PLC Debugging Tools for Digital Forensic ... JDFSL V10N4

APPENDIX

A. TOOL TESTING

RESULTS

A.1 ASRT-01

A.1.1 TSC-01 [PASSED]

The tool was capable of using the network
through the PLC’s IP address to acquire the
memory addresses stored on the PLC.

A.2 ASRT-02

A.2.1 TSC-01 [FAILED]

The tool does not provide the user with a no-
tification when the connection to the PLC is
successful

A.2.2 TSC-02 [PASSED]

The tool does not notify the user if the acqui-
sition is successful however the tool provides
graphical visualisation that an connection has
been established and acquisition can be visu-
alised in the tool.

A.3 ASRT-03

A.3.1 TSC-04 [FAILED]

The tool does not notify the user when the con-
nection between the PLC and the tool is unsuc-
cessful.

A.4 ASRT-04

A.4.1 TSC-02 [PASSED]

The tool outputs values within the memory ad-
dresses with useful data that can be linked back
to the program code. For example the tool
was able to determine whether the values in the
memory addresses were either True or False

A.5 ASRT-05

A.5.1 TSC-02 [FAILED]

The tool does not notify user if the acquisition
is successful or unsuccessful. However it was
identified if an memory area added that is not

within the memory range of the PLC then a red
exclamation is shown in PLC Logger

A.5.2 TSC-05 [FAILED]

The tool does not notify the user when the PLC
is disconnected from the network. This can
viewed in the graphical visualisation to whether
the memory addresses are outputting any values

A.6 ASRT-06

A.6.1 TSC-03 [FAILED]

After examining the captured network traffic
between the PLC and PLC Logger it was unde-
termined whether there were any modifications
were made during live acquisition.

A.7 ASRT-07

A.7.1 TSC-02 [FAILED]

The tool only allows the user to view the mem-
ory addresses but is unable to allow the user to
view the number of program blocks within the
program code

A.8 ASRT-08

A.8.1 TSC-02 [PASSED]

The tool has a button labelled with a ”Play”
button and allows the user to start data cap-
turing based on the customised configurations

A.9 ASRT-09

A.9.1 TSC-02 [FAILED]

The tool requires some input from the user, in
order to be able to acquire data from the mem-
ory addresses the user would need to manually
enter each memory address as the tool does not
automatically detect the memory addresses in
the PLC.

A.9.2 TSC-07 [PASSED]

Once the memory addresses are entered into the
tool the acquisition process can be completed

c© 2015 ADFSL Page 95



JDFSL V10N4 Exploring the Use of PLC Debugging Tools for Digital Forensic ...

A.10 ASRT-10

A.10.1 TSC-06 [PASSED]

The tool provided the option to export the data
in two formats MySQL and CSV files. The tool
successfully allows the user to save the files to
be used later for further analysis including the
timestamps.

A.11 ASRT-11

A.11.1 TSC-01 [PASSED]

The tool is capable of acquiring data over the
network while the PLC is online

A.12 ASRT-12

A.12.1 TSC-06 [PASSED]

The tool was capable of saving the acquired
data to a local folder

A.13 ASRT-13

A.13.1 TSC-03 [FAILED]

The tool does not provide an option to allow the
user to have an encrypted secure acquisition

Page 96 c© 2015 ADFSL


	Exploring The Use Of PLC Debugging Tools For Digital Forensic Investigations On SCADA Systems
	Recommended Citation

	Exploring The Use Of PLC Debugging Tools For Digital Forensic Investigations On SCADA Systems

