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Abstract. Modern shared memory multiprocessor systems commonly
have non-uniform memory access (NUMA) with asymmetric memory
bandwidth and latency characteristics. Operating systems now provide
application programmer interfaces allowing the user to perform specific
thread and memory placement. To date, however, there have been rel-
atively few detailed assessments of the importance of memory/thread
placement for complex applications.

This paper outlines a framework for performing memory and thread
placement experiments on Solaris and Linux. Thread binding and lo-
cation specific memory allocation and its verification is discussed and
contrasted.

Using the framework, the performance characteristics of serial versions
of lmbench, Stream and various BLAS libraries (ATLAS, GOTO, ACML
on Opteron/Linux and Sunperf on Opteron, UltraSPARC/Solaris) are
measured on two different hardware platforms (UltraSPARC/FirePlane
and Opteron/HyperTransport). A simple model describing performance
as a function of memory distribution is proposed and assessed for both
the Opteron and UltraSPARC.

1 Introduction

Creation of scalable shared memory multiprocessor systems has been made possi-
ble by cc-NUMA (cache-coherent Non-Uniform Memory Access) hardware. This
approach uses a basic building block comprising one or more processors with local
memory and an interlinking cache coherent interconnect [5]. Unlike UMA (Uni-
form Memory Access) systems which comprise processors with identical cache
and memory latency characteristics, NUMA systems exhibit asymmetric mem-
ory latency and possibly asymmetric bandwidths between its building blocks.
On such platforms the operating system should consider physical processor and
memory locations when allocating resources (i.e. memory allocation and CPU
scheduling) to processes.
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Pthreads [6] and OpenMP [17] are two widely used programming models
which target shared memory parallel computers. Both, however, were developed
for UMA platforms, making no assumptions about the physical location of mem-
ory or where a thread is executing. Although there has been debate about the
merit of adding NUMA extensions to these programming models, this issue is
yet to be resolved [7]. In part the aim of the work presented here is to develop
the tools and protocols required for performing memory and thread placement
experiments that can be used to address this issue.

Linux and Solaris are two examples of operating systems that claim to be
“NUMA aware”. Exactly what this implies is not always well defined, but suf-
fice it to say that both Solaris and Linux provide application program interfaces
(API) that give the user some level of control over where threads are executed
and memory is allocated [11,14] and perform some form of default NUMA aware
placement of threads and data. While this is useful, for the programmer wish-
ing to explore NUMA issues it is also useful to have functions that will iden-
tify the CPU currently being used by that thread, and the physical location
that corresponds to an arbitrary (but valid) virtual address within an executing
process.

In this paper we compare the support provided for thread and memory place-
ment by Solaris and Linux, and also outline how a user can interrogate these
runtime environments to determine actual thread and memory placements. Using
this infrastructure the performance characteristics of two contemporary NUMA
architectures – the UltraSPARC [20] using the FirePlane interconnect [4] and
the Opteron [12] using HyperTransport [9] - are explored through a series of
latency, bandwidth and basic linear algebra (BLAS) experiments.

A novel placement distribution model (PDM) which describes performance
as a function of bandwidth and latency is presented and used to analyse perfor-
mance results. The PDM uses directed graphs representing processor, memory
and interconnect layout to aid in the enumeration of contention classes. The dis-
tribution of these contention classes permit qualitative analysis of performance
data from NUMA platform experiments.

The paper is structured into the following sections – thread and memory place-
ment on Solaris and Linux is discussed in section 2. The experimental hardware
and software platforms used are described in section 3 while section 4 outlines the
latency, bandwidth experiments and the placement distribution model. Section 5
covers related work and section 6 presents our conclusions.

2 Thread and Memory Placement

Conceptually, both Solaris and Linux are similar in their approach to abstract-
ing underlying groupings of processors and memory based on latency. Yet, the
mechanics of using the two NUMA APIs are quite different. Below we provide
a brief review of Solaris thread and memory placement APIs, before contrasting
this with the Linux NUMA support. We then consider placement verification for
both Solaris and Linux.
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2.1 Solaris NUMA Support

Solaris represents processor and memory resources as locality groups [11]. A lo-
cality group (lgrp) is a hierarchical DAG (Directed Acyclic Graph) representing
processor-like and memory-like devices, which are separated from each other by
some access-latency upper bound. A node in this graph contains at least one
processor and its associated local memory. All the lgrps in the system are enu-
merated with respect to the root node of the DAG, which is called the root lgrp.
Two modes of memory placement are available, next-touch1 and random2. The
former is the default for thread private data, while the latter is useful for shared
memory regions accessed by multiple threads as it can reduce contention.

A collection of APIs for user applications wanting to use lgrp information or
provide memory management hints to the operating system is available through
liblgrp [18]. Memory placement is achieved using madvise(), which provides
advice to the kernel’s virtual memory manager. The meminfo() call provides
virtual to physical memory mapping information. We also note that memory
management hints are acted upon by Solaris subject to resources and system
load at runtime.

Threads have three levels of binding or affinity – strong, weak or none which
are set or obtained using lgrp affinity set() or lgrp affinity get() respec-
tively. Solaris’ memory placement is determined firstly by the allocation policy
and then with respect to threads accessing it. Thus there is no direct API for
allocating memory to a specific lgrp, rather a first touch memory policy must
be in place and then memory allocated by a thread that is bound to that spe-
cific lgrp. Within an lgrp it is possible to bind a specific thread to a specific
processor by using the processor bind() system call.

2.2 Linux NUMA Support

NUMA scheduling and memory management became part of the mainstream
Linux kernel as of version 2.6. Linux assigns NUMA policies in its scheduling and
memory management subsystems. Memory management policies include strict3

allocation to a node, round-robin4 memory allocations, and non-strict preferred
binding to a node (meaning that allocation is to be preferred on the specified
node, but should fall back to a default policy if this proves to be impossible). In
contrast, Solaris specifies policies for shared and thread local data.

The default NUMA policy is to map pages on to the physical node which
faulted them in, which in many cases maximises data locality. A number of sys-
tem calls are also available to implement different NUMA policies. These sys-
tem calls modify scheduling (struct task struct) and virtual memory (struct
vm area struct) related variables structures within the kernel.
1 The next thread which touches a specific block of memory will possibly have access

to it locally i.e. if remote memory is accessed it will possibly be migrated.
2 Memory is placed randomly amongst the lgrps.
3 Memory allocation is to occur at a given node. It will fail if there is not enough

memory on the node.
4 Memory is dispersed equally amongst the nodes.
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Relevant system calls include mbind(), which sets the NUMA policy for a
specific memory area, set mempolicy(), which sets the NUMA policy for a spe-
cific process, and the sched setaffinity(), which sets a process’ CPU affinity.
Several arguments for these system calls are supplied in the form of bit masks,
and macros, which makes them relatively difficult to use. For the application
programmer a more attractive alternative is provided by the libnuma API. Al-
ternatively, numactl is a command line utility that allows the user to control
the NUMA policy and CPU placement of a entire executable5.

Within libnuma useful functions include the numa run on node() call to bind
the calling process to a given node and numa alloc onnode() to allocate mem-
ory on a specific node. Similar calls are also available to allocate interleaved
memory, or memory local to the caller’s CPU. In contrast to the Solaris memory
allocation procedure, numa alloc modifies variables within the process’ struct
vm area struct and the physical location of the thread that performs the mem-
ory allocation is irrelevant. The libnuma API can also be used to obtain the cur-
rent NUMA policy and CPU affinity. To identify NUMA related characteristics
libnuma accesses entries in /proc and /sys/devices. This makes applications
using libnuma more portable those that use the lower level system calls directly.

2.3 Placement Verification

Solaris provides a variety of tools6 to monitor process and thread lgroup map-
pings – lgrpinfo, pmadvise, plgrp and pmap. The lgrpinfo tool displays the
lgroup hierarchy for a given machine. The pmadvise tool can be used to apply
memory advice to a running process. The plgrp tool can observe and affect a
running thread’s lgroup; it can also give a diagrammatic representation of the
lgroup affinities. The pmap tool permits display of lgroups and physical memory
mapping for all virtual address associated with a running process.

Although libnuma provides a means for controlling memory and process place-
ment on Linux systems, it does not provide a means for determining where a
given area of memory is physically located. A kernel patch that attempts to
addresses this issue is provided by Per Ekman [15]. The patched kernel cre-
ates per-PID /proc entries that include, among other things, information about
which node a process is running on, and a breakdown of the locations of each vir-
tual memory region belonging to that process. While we found that this package
was generally sufficient as a verification tool it involved having to check quickly
the /proc entries while the program was running. We also found that under
some circumstance the modified kernel failed to free memory after a process had
terminated.

Based on the work of Ekman [15] we designed an alternative kernel patch that
provides a system call and user level function to return the memory locations
for each page in a given virtual memory range. This utility proved considerably
more convenient as it could be called from within a running application.
5 It can also be used to display NUMA related hardware configuration and configura-

tion status.
6 http://opensolaris.org/os/community/performance/numa/observability

http://opensolaris.org/os/community/performance/numa/observability
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3 Experimental Platforms

Two NUMA platforms were used in this work: a twelve processor Sun Ultra-
SPARC V1280 [21] and a four processor AMD848 Opteron system based on the
Celestica A8448 [3] motherboard. We now briefly outline the NUMA character-
istics of each platform.

3.1 UltraSPARC/FirePlane

The V1280 has twelve 900MHz UltraSPARC III Cu processors each with a 32
Kb L1 instruction cache, 64 Kb L1 data cache and 8192 Kb L2 cache which
is off-chip. The system contains three boards which hold four processors each
and are linked using the FirePlane interconnect [4]. The system contains 8GB
of memory per board giving a total of 24GB for the entire system. The three
boards form a combined snooping based coherency domain. For larger systems,
i.e. > 24 processors, a directory based protocol is used at the point-to-point level.

A pair of processors and their associated memories are all linked using a
Dual CPU Data Switch (DCDS), i.e. there are four separate data paths each
running at 2.4 GB/s from processors or memories to the DCDS. The DCDSs
can sustain 4.8 GB/s to the board data switch. Since memory on the boards is
16-way interleaved across a board, a peak of 6.4 GB/s per board is achieved. The
point-to-point links among boards have a bi-directional bandwidth of 4.8 GB/s
per board, approaching a peak of 9.6 GB/s for the whole system. Since the four
processors on a board have similar memory access latencies, we will refer to it
as one node. A schematic illustration of the V1280 is given in Figure 1 (a).
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Fig. 1. (a) Schematic diagram of the V1280 UltraSPARC platform and (b) Celestica
Opteron platform

3.2 Opteron/HyperTransport

The Opteron system contains four 2.2Ghz AMD848 processors each with a 64
Kb L1 data and instruction cache and a 1024 Kb L2 cache. The Celestica A8440
motherboard is configured with 2GB of memory per processor giving a total
of 8GB for the entire system. The AMD848 Opterons have an on-chip memory
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controller and uses coherent HyperTransport to link processor coherency traffic.
The Opteron has two coherent HyperTransport links [9], each operating at 6.4
GB/s bi-directionally. The processors are arranged in a ring topology resulting
in processors having at most two hops to reach the most distant processor. A
schematic illustration of the Opteron system is given in Figure 1 (b).

3.3 Software Platform

While Solaris 10 was used on the V1280 system, the Opteron platform was ca-
pable of dual booting into either Solaris 10 or OpenSuSE 10. The Sun Studio 11
compilers were used on both Solaris platforms, while version 6.0 of the Portland
Group compilers were used under Linux. Compiler flags for the highest optimi-
sation levels were used on both compilers. To obtain accurate performance data
the PAPI library [2] was used to access hardware performance counters under
Linux whereas the libcpc [19] infrastructure was used under Solaris. The nu-
meric libraries used under Linux are the ACML (version 3.0) from AMD, ATLAS
(version 3.6) [23], GOTO BLAS [8] (version 1.00) while Sunperf (Sun Studio 11)
was used under Solaris.

4 Results

This section discusses observed memory latency, serial memory bandwidth and
parallel memory bandwidth for the two NUMA platforms.

4.1 Latency Characterisation

To determine the memory latency characteristics of the two platforms the lm
bench [13] memory latency benchmark was modified to accept memory and
thread placement parameters. Latencies to get data from level-one cache (L1) on
the Opteron and UltraSPARC were measured as 3 and 2 cycles respectively, while
accessing level-two cache (L2) took 20 cycles on both platforms. The latencies
recorded for a thread bound to a particular node accessing memory at a specific
location are given in Table 1. From these, the NUMA ratio7 of the Opteron sys-
tem is found to be 1.11 for one hop and 1.53 for two hops from any given proces-
sor, while on the V1280 there is only one NUMA level with a ratio of 1.2. While
these are NUMA machines with low NUMA ratios, the emphasis of this paper is
the sketching out and testing of the memory and thread placement framework
with the view of extending it to NUMA systems with higher NUMA ratios.

4.2 Bandwidth Characterisation

To determine the memory bandwidth characteristics of the two platforms the
Stream [10] benchmark was modified to accept memory and thread placement pa-
rameters. This benchmark performs four different vector operations, correspond-
ing to vector copy, scale, add, and triad. On the Opteron system there are four
7 NUMA ratio = RemoteLatency

LocalLatency
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Table 1. Main Memory latencies (Cycles). lmbench uses a pointer chasing benchmark
to determine memory latencies. Results were obtained for the Opteron and V1280
platforms by pinning a thread on a given node and placing memory on different nodes.

Memory Location
Thread Opteron V1280
Location 0 1 2 3 0 1 2

0 225 250 250 345 220 265 265
1 250 225 345 250 265 220 265
2 250 345 225 250 265 265 220
3 345 250 250 225 – – –

nodes and four physically distinct memory banks, while on the UltraSPARC sys-
tem there are three nodes and three memory banks. For a single thread it might be
expected that the “best” possible Stream performance would be obtained when a
thread is accessing vectors that are stored entirely in local memory. Conversely the
“worst” possible performance would correspond to a thread accessing data stored
in memory located as far away as possible.

Results for these two scenarios are given in Table 2. For the Opteron system
running Solaris we find performance differences between best and worst memory
placement that vary from a factor of 1.4 to 1.6. For Linux on the same platform
we find a some what larger variation with factors between 1.09 to 2.35. On the
V1280 system the effect is considerably less indicating relatively mild NUMA
characteristics. (We note that the superior performance of the copy operation
on the Opteron using Linux reflects the use of specialised instructions by the
PGI compiler to perform the memory moves).

Table 2. Serial Stream bandwidths (GB/s) for the Opteron and V1280 systems. A
single thread was pinned to a given node and had its memory placed on different
nodes. Best and Worst refer to thread and memory placements which are expected to
give the best and worst possible performance (See text for details).

Opteron V1280
Solaris Linux Solaris

Test Best Worst Best Worst Best Worst

Copy 2.17 1.99 4.68 3.14 0.72 0.71
Scale 2.50 1.58 2.35 1.47 0.79 0.74
Add 2.75 1.17 2.55 1.54 0.83 0.81

Triad 2.24 1.51 2.44 1.52 0.85 0.79

The Stream benchmark was modified to create multiple threads, that concur-
rently ran separate instances of the original Stream benchmark. Results for this
are presented in Table 3. In this case the worst case scenario on the Opteron
would correspond to node 0’s executing the Stream benchmark with all the data
being serviced from memory 3, while the opposite happens on node 3, and nodes
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1 and 2 are similarly exchanging data. Not surprisingly on both the Opteron
and V1280 system the difference between good and bad memory placement has
increased significantly over that observed for the serial benchmark.

Table 3. Parallel Stream bandwidths (GB/s). Threads were pinned to various nodes
and had its memory placed locally (“Best”) or remotely (“worst”). Four threads were
run concurrently for the Opteron which twelve threads were run concurrently for the
V1280 system.

Opteron V1280
Solaris Linux Solaris

Test Best Worst Best Worst Best Worst

Copy 8.98 2.53 16.55 4.22 4.89 3.56
Scale 9.98 2.67 9.60 2.67 4.91 3.46
Add 10.85 2.85 10.33 2.94 5.22 3.57

Triad 9.17 2.68 9.87 2.96 5.14 3.71

4.3 Placement Distribution Model

In the above we considered “best” and “worst” case scenarios for the various
Stream benchmarks. In the general case as well as on the Opteron system each
vector or data quantity used in a Stream benchmark could be located in the
memory associated with any one of the four available nodes. For the parallel
add and triad benchmarks, on the Opteron system, this means that there are a
total of 412∗4! possible thread/memory combinations8 while 48∗4! copy and scale
benchmarks are possible (add and triad benchmarks use 3 data quantities while
copy and scale use 2 data quantities). Obviously evaluating the performance
characteristics of each of these cases quickly becomes impossible for large NUMA
systems. Thus, it is useful to develop a simple performance model which gives
the probability of a given memory and thread placement experiments.

A placement distibution model (PDM) is developed to categorize the occur-
rence and type of possible placements. A directed graph of the NUMA platform
is given to the model along with the data quantities used per thread. Figures 1
(a), (b) can be interpreted as graphs where links entering and exiting nodes
are arcs. Traffic associated with each link can be modeled as weights along the
links between nodes. Nodes are assumed to route traffic to their local memory
controller or to other nodes along the most direct path. The model also as-
sumes concurrent execution of all defined threads accessing its data quantities
in tandem with other threads over the interconnect. This model can be used to
characterise the communication requirements for any given memory placement
experiment.
8 A given data quantity could reside in 4 possible memory locations and each thread

could run on 4 possible processors i.e. there are a total of 43 experiments for one
thread and three data quantities. For all the 4 threads in the system there are
43 ∗ 4 ∗ 43 ∗ 3 ∗ 43 ∗ 2 ∗ 43 ∗ 1 = 412 ∗ 4! possible combinations.
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4.4 Placement Distribution Algorithm

An algorithm for the placement distribution model is presented in Algorithm 1.
The PDM requires a graph G, which represents the layout of memory M, proces-
sor nodes N and a set I of ordered processor to memory or memory to processor
data movements for a set of data quantities D. These inputs are used to traverse
over all possible configurations per thread of both thread and memory placement

Algorithm 1. The Placement Distribution Model
1: N ← {node1, node2, . . . , nodei} The set of all processor nodes
2: M← {mem1, mem2, . . . , memj} The set of memory nodes
3: L ← { link1, link2, . . . , linkk} The set of all links between nodes
4: T ← { data1, data2, . . . , datal} The set of data quantities
5: E ← N x M Cartesian product denoting data movement
6: G ←<E,L> Graph G representing memory and processor layout
7: D ←{<x, y> |x ∈ T, y ∈ M} A data quantity x resides in memory location y
8: I ← E x D Set of inputs for thread, memory placement
9: I ≡ {<e, f> | e =<n,m>∈ E, f =<x,y>∈ D}

10: W (l) | l ∈ L Weight matrix W
11: C(x, y) Cost matrix C

Require: <n,m>∈ E

12: procedure OptPath(<n,m>) Optimal path from n to m where n, m ∈ E

13: Use appropriate alogrithm or heuristic
14: return {<x,y> |x, y ∈ L} to get path between <n,m>
15: end procedure

Require: x ∈ D ∀x ∈ Q

Require: <x,y>∈ L ∀ <x,y>∈ P

16: procedure FlowSize(Q, P) Compute cost of moving data items across link P

17: cost ← 0
18: for all (link ∈ P) do
19: for all (qty ∈ Q) do
20: cost ← cost + | qty | ∗W (link)
21: end for
22: end for
23: return cost
24: end procedure

25: procedure ComputeDistribution
26: Q

′ ← {x | x ∈ D} Set of data quantities of interest
27: for all (i ∈ I) do Loop over input I (i ≡<e,f>)
28: links ← OptPath(e) where e ∈ i Get the optimal path for a given e
29: for all ((j ← links) ∧ (f ∈ i)) do Loop over links and use f ∈<e,f>
30: C(i, j) = C(i, j) + F lowSize(Q′, j)
31: end for
32: end for
33: end procedure
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for each data quantitity. A traversal implies data quantities are moved over a link
and this entails a cost W (l) per link l. Each traversal contributes to a cumulative
cost entry in cost matrix C. Three procedures are defined in Algorithm 1 namely
OptPath, FlowSize and ComputeDistribution. Procedure OptPath returns the op-
timal path, a set of ordered pairs of <x,y> between two end points <n,m> while
procedure FlowSize computes a cost associated with moving data quantities con-
tained in set Q over links contained in set P and procedure ComputeDistribution
uses a set of data quantities as used per thread for all threads in set Q′ and
computes the cost for these data quantites for an ordered set of inputs I.

A state machine was coded to perform walks along the links of graph G, for
all possible thread and memory placements given a specific processor/memory
topology and data quantities. These walks model link traffic moving from a
source node to a target node, traffic moving from a node to its local memory
and traffic moving from one memory bank to another. In the event that there
are two paths to the required destination of equal length, the traffic is split
equally along each path. This assumption is made as a simplification to avoid
complex specification of the underlying interconnect protocol. For example, if
a placement dictates that Node 1 will be continuously accessing memory from
Node 0, we increment variables belonging to each link along the route to record
the quantity of the data movement. This results in a tuple holding values for
link contention and node contention.

Using the PDM, for a given processor and memory layout, yields costs for
thread and memory placement which are distributed in ranges which we term
as link contention classes. The range of a link contention class gives the degree
of contention at a node. For each contention class obtained from the PDM,
20 random configurations were generated i.e. thread and memory placement for
all threads and data quantities which yields a link contention that lies in the
range of all observed link contention classes. These placement configurations are
subsequently used to perform copy and scale Streammeasurements. In effect this
process permits for a tractable analysis of possible performance characteristics
for the benchmarks without resorting to running all experiments for all possible
thread and memory placements.

Table 4 characterises the copy and scale Stream benchmarks according to the
maximum level of contention on any given link. This table shows, for example,
that on the Opteron system 51.9% of all possible memory placement configu-
rations have link contentions greater or equal to 3 but less than 4, while 0.1%
have a link contention of between 7 and 8. The ranges 3-4 and 7-8 are the link
contention classes. The results show that on the Opteron system given random
vector placement the probability of landing in a 3-4 link contention class is the
highest, and within this class you might expect to see a performance degradation
of about 20%. On the V1280 the effect is much less.

4.5 BLAS Experiments

Using the memory placement framework developed above, experiments were
conducted for level 2 (DGEMV – matrix vector) and level 3 (DGEMM – matrix
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Table 4. Copy and Scale (GB/s) Stream benchmark results for the placement distri-
bution model. Contention classes denote the ranges of link contention for all the nodes
in the system. %Freq gives the frequency of occurance of a given class in percent.

Contention Solaris Linux
Class %Freq Copy Scale Copy Scale

Opteron
2-3 2.6 5.7 6.0 7.4 5.6
3-4 51.9 5.0 5.1 6.7 4.7
4-5 34.6 4.5 4.8 6.4 4.2
5-6 9.2 3.9 4.6 5.5 3.6
6-7 1.5 3.3 3.4 4.4 3.0
7-8 0.1 3.0 3.0 3.3 2.7

V1280
08-12 10.3 4.0 4.0
12-16 59.7 3.8 3.9
16-20 24.8 3.7 3.8
20-24 5.0 3.6 3.6

multiply) BLAS operations. Results obtained for square matrices of dimension
1600 using ACML on the Opteron and sunperf on the V1280 are given in Table 5.
In addition we also include results obtained from the triad Stream benchmark
as these are representative of level 1 BLAS operations. The results show greatest
NUMA effects on the Opteron system, where, as expected the variation is largest
for triad, less for level 2 BLAS and almost unnoticeable for level 3 BLAS. This

Table 5. BLAS Stream Triad, Level 2 BLAS, Level 3 BLAS (GigaFlops) results for
the placement distribution model. Results are averages for twenty random generated
configurations per contention class. Tr = Triad.

Contention Solaris Linux
Class %Freq Tr L2 L3 Tr L2 L3

Opteron
3-4 1.9 0.5 1.6 15.3 0.5 1.5 15.6
4-5 38.1 0.4 1.4 15.2 0.4 1.4 15.6
5-6 38.2 0.4 1.5 15.2 0.4 1.4 15.6
6-7 16.0 0.4 1.4 15.2 0.4 1.3 15.6
7-8 5.0 0.3 1.3 15.2 0.3 1.3 15.6

8-12 3.4 0.3 1.1 14.9 0.3 0.8 15.6

V1280
12-16 8.3 0.4 1.0 17.4
16-20 48.3 0.3 1.0 15.8
20-24 30.7 0.3 1.0 16.2
24-28 10.2 0.3 1.0 17.4
28-40 2.3 0.3 1.0 17.5
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Fig. 2. Serial Opteron DGEMM (C = A ∗ B) performance (MegaFlops) for square
matrices of dimension 1600 using ACML, ATLAS, GOTO and Sunperf libraries. A
total of 256 experiments were run for all possible thread and memory placements for
one thread and three data quantities A, B and C.

reflects the fact that a well written DGEMM will spend most of its time working
on data that is resident in the level 2 cache, but this is not possible for level 1
or level 2 BLAS where data must be streamed from memory to processor.

In Figure 2 we present floating point performance for serial DGEMM on the
Opteron system using four different BLAS libraries: i) ACML, ii) ATLAS , iii)
GOTO and iv) Sunperf. With three matrices and four different nodes on the
Opteron system there are a total of 256 different thread and memory placement
permutations. These have been ordered according to maximum contention on a
given link and then sorted by performance observed within that group. As this
is a serial matrix multiply, the link contention ranges from 1 to 3. Memory con-
tention of 1 occurs when the three matrices are located on adjacent nodes with
the compute thread is bound to the central node, i.e. the contention on the net-
work is actually reduced compared to the case when all three matrices are local
to the node accessing them (contention value of 3). Interestingly in some cases
the best performance is obtained for a link contention of 2 indicating that on an
idle machine non-local placement of some data quantities may be advantageous
if it leads to enhanced overall memory bandwidth. The performance also shows
considerable fine structure, especially for GOTO BLAS [8] which for most of
the time exhibits the best performance, but in some cases also shows the worst
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performance. At this point we believe the reason for these sudden performance
drops (of ≈16%) is cache line conflicts arising from slightly different memory
placements within a node.

5 Related Work

Brecht [1] evaluates the importance of placement decisions on NUMA machines
with different NUMA ratios. Application placement which mirrored hardware
is beneficial for application performance and its importance increased with the
NUMA ratio.

Robertson and Rendell [16] quantify the effects of memory bandwidth and
latency on the SGI Origin 3000 using lmbench and stream. Using a 2D heat
diffusion application, they stress the importance of good thread and memory
placement and show that relying on the operating system for thread and memory
placement is not always optimal.

Tikir and Hollingsworth [22] use link counters and a bus analyzer, on the
SunFire 6800 system to effect transparent page migration, without modification
to the operating system or application code. They are able to improve execu-
tion time of benchmarked applications by 16%. This is achieved by using a
combination of hardware counters, runtime instrumentation and madvise().

6 Conclusions

The support for thread binding and memory placement provided by Solaris and
Linux has been outlined and contrasted. For Linux, the kernel was modified in
order to provide a user API that could be used to verify binding and deter-
mine physical memory placement from a user supplied virtual address. Using
the various thread and memory placement APIs, a framework was outlined for
performing NUMA performance experiments. Detailed measurements of the
latency, bandwidth and BLAS performance characteristics of two different hard-
ware platforms were undertaken. These showed the Opteron system to be “more
NUMA” than the Sun system, despite the fact that it had only 4 processors. To
assist in the analysis of the performance data, a simple placement distribution
model of the NUMA characteristics for the two platforms was outlined. The
PDM uses directed graphs to represent processor, memory and interconnect lay-
out. It was found that if multiple level 1 or level 2 BLAS operations are run in
parallel on the Opteron system performance differences of up to a factor of two
were observed depending on memory and thread placement. For level 3 BLAS,
differences are much smaller as there is much better re-use of data from level 2
cache.

The use of the PDM shows node local allocation of memory is not always
the best strategy for the DGEMM kernel. The best peak results were obtained
for a link contention of 2 i.e. non-local placement of data. This highlights the
benefits of user-level discovery, at runtime, of processor and memory topologies
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and the use of this knowledge within the application to effect thread and memory
placement specific to its needs.
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