
46

Exploring Time/Resource Trade-Offs by
Solving Dual Scheduling Problems with the
Ant Colony Optimization

GANG WANG

University of California, Santa Barbara

WENRUI GONG

Mentor Graphics

BRIAN DERENZI

University of Washington

and

RYAN KASTNER

University of California, Santa Barbara

Design space exploration during high-level synthesis is often conducted through ad hoc probing of

the solution space using some scheduling algorithm. This is not only time consuming but also very

dependent on designer’s experience. We propose a novel design exploration method that exploits

the duality of time- and resource-constrained scheduling problems. Our exploration automatically

constructs a time/area tradeoff curve in a fast, effective manner. It is a general approach and can

be combined with any high-quality scheduling algorithm. In our work, we use the max-min ant

colony optimization technique to solve both time- and resource-constrained scheduling problems.

Our algorithm provides significant solution-quality savings (average 17.3% reduction of resource

counts) with similar runtime compared to using force-directed scheduling exhaustively at every

time step. It also scales well across a comprehensive benchmark suite constructed with classic and

real-life samples.

Categories and Subject Descriptors: J.6 [Computer Applications]: Engineering—Computer-aided
design (CAD)

General Terms: Algorithms, Design, Theory

This work was supported in part by the National Science Foundation Grant CNS-0524771.

Authors’ addresses: G. Wang (corresponding author), R. Kastner, Department of Electrical and

Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-

9560; email: {wanggang, kastner}@engr.ucsb.edu; W. Gong, Mentor Graphics Corporation, 8005 SW.

Boeckman Rd., Wilsonville, OR 97070; email: wenrui gong@mentor.com; B. Derenzi, Department

of Computer Science and Engineering, University of Washington, PO Box 352350, Seattle, WA

98195-2350; email: bderenzi@cs.washington.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/09-ART46 $5.00 DOI 10.1145/1278349.1278359 http:/doi.acm.org/

10.1145/1278349.1278359.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:2 • G. Wang et al.

Additional Key Words and Phrases: Design space exploration, ant colony optimization, instruction

scheduling, max-min ant system

ACM Reference Format:
Wang, G., Gong, W., Derenzi, B., and Kastner, R. 2007. Exploring time/resource trade-offs by

solving dual scheduling problems with the ant colony optimization. ACM Trans. Des. Automat.

Electron. Syst. 12, 4, Article 46 (September 2007), 20 pages. DOI = 10.1145/1278349.1278359

http:/doi.acm.org/10.1145/1278349.1278359.

1. INTRODUCTION

When building a digital system, designers are faced with a countless number of
decisions. Ideally, they must deliver the smallest, fastest, lowest-power device
that can implement the application at hand. More often than not, these de-
sign parameters are contradictory. For example, making the device run faster
often makes it larger and more power hungry. Designers must also deal with
increasingly strict time-to-market issues. Unfortunately, this does not afford
them much time to make a decision.

Designers must be able to reason about the tradeoffs amongst a set of param-
eters. Such decisions are often made based on experience, that is, this worked
before, it should work again. Exploration tools that can quickly survey the de-
sign space and report a variety of options are invaluable.

From an optimization point of view, design space exploration can be distilled
to identifying a set of Pareto-optimal design points according to some objec-
tive function. These design points form a curve that provides the best tradeoffs
for the variables in the objective function. Once the curve is constructed, the
designer can make design decisions based on the relative merits of the vari-
ous system configurations. Timing performance and the hardware cost are two
common objectives in such a process.

Resource allocation and scheduling are two fundamental problems in con-
structing such Pareto-optimal curves for time/cost tradeoffs. The two problems
are tightly interwoven. Resource-constrained scheduling takes as input an ap-
plication modeled as data flow graph and a number of different types of re-
sources. It outputs a start time for each of the operations such that the resource
constraints are not violated, while attempting to minimize the application la-
tency. Here allocation is performed before scheduling, and the schedule is ob-
viously very dependent on the allocation; a different resource allocation will
likely produce a vastly different scheduling result.

We could perform scheduling before allocation; this is the time-constrained
scheduling problem. Here the inputs are a data flow graph and a time deadline
(latency). The output is again a start time for each operation such that the
latency is not violated, while attempting to minimize the number of resources
that are needed. It is not clear as to which solution is better, nor is it clear as
to the order in which we should perform scheduling and allocation.

One possible method of design space exploration is to vary the constraints
to probe for solutions in a point-by-point manner. For instance, you can use
some time-constrained algorithm iteratively, where each iteration has a differ-
ent input latency. This will give you a number of solutions, and their various

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:3

resource allocations over a set of time points. Or you can run some resource-
constrained algorithm iteratively. This will give you a latency for each of these
area constraints.

An effective design space exploration strategy must understand and exploit
the relationship between time- and resource-constrained problems. Unfortu-
nately, designers are left with individual tools for tackling either problem. They
are faced with questions like: Where do we start the design space exploration?
What is the best way to utilize the scheduling tools? When do we stop the
exploration?

Moreover, due to the lack of connection amongst the traditional methods,
there is very little information shared between time-constrained and resource-
constrained solutions. This is unfortunate, as we are throwing away potential
solutions; solving one problem can offer more insight into the other.

In this article, we describe a design space exploration strategy for schedul-
ing and resource allocation. The ant colony optimization (ACO) metaheuristic
lies at the core of our algorithm. We switch between timing- and resource-
constrained ACO heuristics to efficiently traverse the search space. Our algo-
rithms dynamically adjust to the input application and produce a set of high-
quality solutions across the design space.

The article is organized as follows. We discuss related work in the next sec-
tion. In Section 3, we present a design space exploration algorithm using dual-
ity between the time and resource scheduling problems. Section 4 discusses the
ant colony optimizations that we use to search the design space. Experimental
results for the new algorithms are presented and analyzed in Section 5. We
conclude with Section 6.

2. RELATED WORK

Scheduling and resource allocation problems form the basis for design space
exploration during high-level synthesis. These problems can be formulated as
an integer linear program (ILP) [Wilken et al. 2000], however, it is typically
impossible to solve large problem instances in this manner. Much research has
been done to cleverly use heuristic approaches to address these problems.

In Dutta et al. [1992], the authors concentrate on providing alternative “mod-
ule bags” for design space exploration by heuristically solving clique partition-
ing problems and using force-directed scheduling. Their work focuses more on
those situations where the operations in the design can be executed on alter-
native resources. In the Voyager system [Chaudhuri et al. 1997], scheduling
problems are solved by carefully bounding the design space using ILP, and
good results are reported on small-sized benchmarks. Moreover, it reveals that
clock selection can have an important impact on the final performance of the
application. In Heijligers et al. [1995], Dick and Jha [1997], and Palesi and
Givargis [2002], genetic algorithms are implemented for design space explo-
ration. Simulated annealing [Madsen et al. 1997] has also been applied in this
domain. A survey on design space exploration methodologies can be found in
Lin [1997] and compared with McFarland et al. [1990].

Force directed scheduling (FDS) [Paulin and Knight 1987] is a popular
scheduling algorithm. The original FDS algorithm is designed to solve the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:4 • G. Wang et al.

time-constrained scheduling (TCS) problem, that is, to reduce the number of
functional units used in the implementation with a given execution deadline.
This objective is achieved by attempting to uniformly distribute the operations
onto the available resource units. The distribution ensures that resource units
allocated to perform operations in one control step are used efficiently in all
other control steps, which leads to a high utilization rate. A“force” is used to
measure the parallel usage of a resource type. Each force is computed based on
the operation’s mobility range, under the assumption that each operation opi

has a uniform probability of being scheduled into any of the control steps in this
range. The algorithm proceeds iteratively by selecting the operation and time
step with the minimal force. The authors also proposed a method called force-
directed list scheduling (FDLS) to address the resource-constrained scheduling
problem. Here, the priority function of the list scheduler is constructed using
forces.

The FDS method is constructive, since the solution is computed without
backtracking. Every decision is made deterministically in a greedy manner. If
there are two potential assignments with the same cost, the FDS algorithm
cannot accurately estimate the best choice. Moreover, FDS does not take into
account future assignments of operators to the same control step. Consequently,
it is possible that the resulting solution will not be optimal due to its greedy
nature. FDS works well on small-sized problems, however, it often results in
inferior solutions for more complex problems. This phenomenon is observed in
our experiments, reported in Section 5.

In this article, we focus our attention on the basic design space exploration
problem similar to the one treated in Paulin and Knight [1987], where the
designers are faced with the task of mapping a well-defined application repre-
sented as a DFG onto a set of known resources where the compatibility between
operations and resource types has been defined. Furthermore, clock selection
has been determined in the form of execution cycles for the operations. The goal
is to find the Pareto-optimal tradeoff amongst design implementations with re-
gard to timing and resource costs. Our basic method can be extended to handle
clock selection and the use of alternative resources. However, this is beyond the
scope of this article.

3. EXPLORATION USING TIME- AND RESOURCE-CONSTRAINED DUALITY

We are concerned with the design problem of making tradeoffs between hard-
ware cost and timing performance. This is still a commonly faced problem in
practice, and other system metrics, such as power consumption, are closely re-
lated. Based on this, we have a 2D design space as illustrated in Figure 1(a),
where the x-axis is the execution deadline and the y-axis is the aggregated
hardware cost. Each point represents a specific tradeoff of the two parameters.

For a given application, the designer is given R types of computing resources
(e.g., multipliers and adders) to map the application to the target device. We
define a specific design as a configuration, which is simply the number of each
specific resource type. In order to keep the discussion simple, in the rest of
the article we assume there are only two resource types, namely M (multiply)

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:5

Fig. 1. Design space exploration using duality between schedule problems (curve l gives the opti-

mal time/cost tradeoffs).

and A (add), though our algorithm is not limited to this constraint. Thus, each
configuration can be specified by (m, a), where m is the number of resource M
and a is the number of A.

It is worth noticing that for each point in the design space shown in Fig-
ure 1(a), we might have multiple configurations that could realize it. For exam-
ple, assuming unit cost for all resources, it is possible that a configuration with
10 multipliers and 10 adders can achieve the same execution time as another
configuration with 5 multipliers and 15 adders, as both solutions have the same
cost (i.e., 20).

Studying the design space more carefully reveals several key observations.
First, achievable deadlines are limited to the range [tasap, tseq], where tasap is
the ASAP time for the application while tseq is the sequential execution time
when we have only one instance for each resource type. It is impossible to get a
solution faster than the ASAP solution, and any with a deadline beyond that of
tseq are not Pareto-optimal. Furthermore, for each specific configuration we have
the following lemma about the portion of the design space to which it maps.

LEMMA 3.1. Let C be a feasible configuration with cost c for the target appli-
cation. The configuration maps to a horizontal line in the design space starting
at (tmin, c), where tmin is the resource-constrained minimum scheduling time.

The proof of the lemma is straightforward, as each feasible configuration has
a minimum execution time tmin for the application, and obviously can handle
every deadline longer than tmin. For example, in Figure 1(a), if the configuration
(m1, a1) has cost c1 and minimum scheduling time t1, the portion of design space
that it maps to is indicated by the arrow next to it. Of course, it is possible
for another configuration (m2, a2) to have the same cost but greater minimum
scheduling time t2. In this case, their feasible space overlaps beyond (t2, c1).

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:6 • G. Wang et al.

As we discussed before, the goal of design space exploration is to help the
designer find the optimal tradeoff between time and area. Theoretically, this
can be done by finding the minimum area c amongst all configurations that
are capable of producing t ∈ [tasap, tseq]. In other words, we can find these
points by performing time-constrained scheduling (TCS) on all t in the range
of interest. These points form a curve in the design space, as illustrated by
curve L in Figure 1(a). This curve divides the design space into two parts,
labeled with F and U , respectively, in Figure 1(b), where all the points in
F are feasible to the given application while U contains all the unfeasi-
ble time/area pairs. More interestingly, we have the following attribute for
curve L.

LEMMA 3.2. Curve L is monotonically nonincreasing as the deadline t in-
creases.

PROOF. Assume the lemma is false. Therefore, we will have two points (t1, c1)
and (t2, c2) on the curve L, where t1 < t2 and c1 < c2. This means we have a
specific configuration C with cost c1 that is capable of producing an execution
time t1 for the application. Since t1 < t2, and also from Lemma 3.1, we know
that configuration C can produce t2. This introduces a contradiction, since c2,
which is worse than c1, is the minimum cost at t2.

Due to this lemma, we can use the dual solution of finding the tradeoff
curve by identifying the minimum resource-constrained scheduling (RCS) time
t amongst all configurations with cost c. Moreover, because of the monotonically
nonincreasing property of curve L, there may exist horizontal segments along
the curve. Based on our experience, horizontal segments appear frequently in
practice. This motivates us to look into potential methods to exploit the duality
between RCS and TCS to enhance the design space exploration process. First,
we consider the following theorem.

THEOREM 3.3. If C is a configuration that provides the minimum cost at time
t1, then the resource-constrained scheduling result t2 of C satisfies t2 ≤ t1. More
importantly, there is no configuration C′ with a smaller cost that can produce
an execution time within [t2, t1].

PROOF. The first part of the theorem is obvious. Therefore, we focus on the
second. Assuming there is a configuration C′ that provides an execution time
t3 ∈ [t2, t1], then C′ must be able to produce t1 based on Lemma 3.1. Since C′ has
a smaller cost, this conflicts with the fact that C is the minimum-cost solution
(i.e., the TCS solution) at time t1. Thus the statement is true. This is illustrated
in Figure 1(b) with configuration (m1, a1) and (m′, a′).

This theorem provides a key insight for the design space exploration prob-
lem. It says that if we can find a configuration with optimal cost c at time t1,
we can move along the horizontal segment from (t1, c) to (t2, c) without losing
optimality. Here t2 is the RCS solution for the found configuration. This en-
ables us to efficiently construct the curve L by iteratively using TCS and RCS
algorithms and leveraging the fact that such horizontal segments do frequently
occur in practice. Based on the preceding discussion, we propose a new space

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:7

exploration algorithm as shown in Algorithm 1 that exploits the duality between
RCS and TCS solutions. Notice the min function in step 10 is necessary, since
a heuristic RCS algorithm may not return the true optimal that could be worse
than tcur.

By iteratively using the RCS and TCS algorithms, we can quickly explore the
design space. Our algorithm provides benefits in runtime and solution quality
compared with using RCS or TCS alone. Our algorithm performs exploration
starting from the largest deadline tmax. Under this case, the TCS result will
provide a configuration with a small number of resources. RCS algorithms have
a better chance to find the optimal solution when the resource number is small,
therefore provide a better opportunity to make large horizontal jumps. On the
other hand, TCS algorithms take more time and provide poor solutions when the
deadline is unconstrained. We can gain significant runtime savings by trading
off between RCS and TCS formulations.

The proposed framework is general and can be combined with any schedul-
ing algorithm. We found that in order for it to work in practice, the TCS and
RCS algorithms used in the process require special characteristics. First, they
must be fast, which is generally requested for any design space exploration tool.
More importantly, they must provide close to optimal solutions, especially for
the TCS problem. Otherwise, the conditions for Theorem 3.3 will not be sat-
isfied and the generated curve L will suffer significantly in quality. Moreover,
notice that we enjoy the biggest jumps when we take the minimum RCS result
amongst all configurations that provide the minimum cost for the TCS problem.
This is reflected in steps 6–9 in Algorithm 1. For example, it is possible that
both (m, a) and (m′, a′) provide the minimum cost at time t, but have different
deadline limits. Therefore, a good TCS algorithm used in the proposed approach
should be able to provide multiple, if not all, candidate solutions with the same
minimum cost.

Algorithm 1. Iterative Design Space Exploration.

procedure DSE

output: curve L
1: interested time range [tmin, tmax], where tmin ≥ tasap and tmax ≤ tseq.

2: L = φ

3: tcur = tmax.

4: while tcur ≥ tmin do
5: perform TCS on tcur to obtain the optimal configurations Ci .

6: for configuration Ci do
7: perform RCS to obtain the minimum time ti

rcs
8: end for
9: trcs = mini (ti

rcs) /* find the best rcs time */

10: tcur = min (tcur, trcs) − 1

11: extend L based on TCS and RCS results

12: end while
13: return L

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:8 • G. Wang et al.

4. ANT COLONY OPTIMIZATIONS FOR TIME- AND
RESOURCE-CONSTRAINED SCHEDULING

In order to select suitable TCS and RCS algorithms, we studied different
scheduling approaches for the two problems, including the popularly used force-
directed scheduling (FDS) for the TCS problem [Paulin and Knight 1987], vari-
ous list scheduling heuristics, and the recently proposed ant colony optimization
(ACO)-based instruction scheduling algorithms [Wang et al. 2005; Wang et al.
to appear].

We found that ACO-based scheduling algorithms offer the following major
benefits over FDS, several variants of list scheduling, and simulated anneal-
ing [Wang et al. to appear]: (1) ACO-based scheduling algorithms generate
better-quality results that are close to optimal, with good stability for both the
TCS and RCS problems; and (2) ACO-based methods provide reasonable run-
time; (3) as a population-based method, the ACO-based TCS approach naturally
provides multiple alternative solutions. As we have discussed, this feature pro-
vides potential benefits in the proposed DSE process, since we can select the
largest jump provided by these candidates.

4.1 Ant Colony Optimization (ACO)

ACO is a cooperative heuristic searching algorithm inspired by ethological stud-
ies on the behavior of ants [Dorigo et al. 1996]. It was observed that ants—
who lack sophisticated vision—manage to establish the optimal path between
their colony and a food source within a very short period of time. This is done
through indirect communication known as stigmergy via chemical substance,
or pheromone, left by the ants on the paths. Each individual ant makes a de-
cision on its direction biased on the “strength” of the pheromone trails that lie
before it, where a higher amount of pheromone hints a better path. As an ant
traverses a path, it reinforces that path with its own pheromone. A collective
autocatalytic behavior emerges as more ants choose the shortest trails, which
in turn creates an even larger amount of pheromone on the short trails, making
such short trails more attractive to future ants. The ACO algorithm is inspired
by this observation. It is a population-based approach where a collection of
agents cooperate together to explore the search space. They communicate via
a mechanism imitating pheromone trails.

One of the first problems to which ACO was successfully applied was the
traveling salesman problem (TSP) [Dorigo et al. 1996], for which it gave com-
petitive results compared with traditional methods. Researchers have since
formulated ACO methods for a variety of traditional NP-hard problems. These
problems include the maximum clique problem, quadratic assignment problem,
graph coloring problem, shortest common supersequence problem, and multi-
ple knapsack problem. ACO also has been applied to practical problems such
as the vehicle routing problem, data mining, network routing problem, and
system-level task partitioning problem [Corne et al. 1999; Wang et al. 2004,
2003].

It was shown [Gutjahr 2002] that ACO converges to an optimal solution with
probability of exactly one; however there is no constructive way to guarantee

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:9

this. Balancing exploration to achieve close to optimal results within manage-
able time remains an active research topic for ACO algorithms. The max-min
ant system (MMAS) [Stützle and Hoos 2000] is a popularly used method to
address this problem. MMAS is built upon the original ACO algorithm and im-
proves it by providing dynamically evolving bounds on the pheromone trails so
that the heuristic never strays too far from the best encountered solution. As
a result, all possible paths will have a nontrivial probability of being selected;
thus it encourages broader exploration of the search space while maintaining
a good differential between alternative solutions. It was reported that MMAS
was the best-performing ACO approach on a number of classic combinatory
optimization tasks.

4.2 Time- and Resource-Constrained Scheduling Formulation

We formulated two MMAS-based algorithms for the TCS and RCS problems, re-
spectively. These algorithms apply traditional heuristics within the ACO frame-
work. The scheduling problems thus are formulated as searching problems and
the algorithms employ a collection of agents that collaboratively explore the
search space. A stochastic decision making strategy is proposed in order to com-
bine global and local heuristics to effectively conduct this exploration. As the
algorithm proceeds in finding better-quality solutions, dynamically computed
local heuristics are utilized to better guide the searching process. The inputs
for these algorithms are a DFG representation for the application, the resource
types, and their counts for the RCS problem or the desired deadline for the TCS
problem. The ant colony optimization (ACO) algorithm plays a core role in our
work. Unfortunately, in the interests of space, we can only give a general intro-
duction on the ACO formulation for the TCS problem. For a complete treatment
of the algorithms, including detailed discussion on their implementation, appli-
cability, complexity, extensibility, parameter selection, and performance, please
refer to our previous publications [Wang et al. 2005; Wang et al. to appear].

In its ACO-based formulation, the TCS problem is solved with an iterative
searching process. Each iteration consists of two stages. First, the ACO algo-
rithm is applied where a collection of ants traverse the DFG to construct indi-
vidual operation schedules with respect to the specified deadline, using global
and local heuristics. Second, these scheduling results are evaluated using their
resource costs. The associated heuristics are then adjusted based on the so-
lutions found in the current iteration. The hope is that future iterations will
benefit from this adjustment and come up with better schedules.

Each operation or DFG node opi is associated with D pheromone trails τij,
where j = 1, . . . , D and D is the specified deadline. These pheromone trails in-
dicate the global favorableness of assigning the ith operation at the j th control
step in order to minimize the resource cost with respect to the time constraint.
Initially, based on ASAP and ALAP results, τij is set with some fixed value τ0 if
j is a valid control step for opi; otherwise, it is set to be 0.

For each iteration, m ants are released and each ant individually starts to
construct a schedule by picking an unscheduled instruction and determining
its desired control step. However, unlike the deterministic approach used in the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:10 • G. Wang et al.

FDS method, each ant picks up the next instruction for the scheduling decision
probabilistically. Once an instruction oph is selected, the ant needs to make
decision on which control step it should be assigned. This decision is also made
probabilistically, as illustrated in Eq. (1).

phj =
⎧⎨
⎩

τhj(t)α ·ηβ

hj∑
l (τ

α

hl(t)·ηβ

hl)
if oph can be scheduled at l and j

0 otherwise

(1)

Here j is the time step under consideration. The item ηhj is the local heuristic
for scheduling operation oph at control step j , and α and β are parameters to
control the relative influence of the distributed global heuristic τhj and local
heuristic ηhj. Assuming oph is of type k, ηhj is simply set to be the inverse
of the distribution graph value [Paulin and Knight 1987], which is computed
based on the partial scheduling result and is an indication of the number of
computing units of type k needed at control step j . In other words, an ant is
more likely to make a decision that is globally considered “good” and also uses
the fewest number of resources under the current partially scheduled result.
We do not recursively compute the forces on successor and predecessor nodes.
Thus selection is much faster. Furthermore, the time frames are updated to
reflect the changed partial schedule. This guarantees that each ant will always
construct a valid schedule.

Algorithm 2. MMAS for Timing-Constrained Scheduling.

procedure MaxMinAntSchedulingTCS(G,R)
input: DFG G(V , E), resource set R
output: operation schedule

1: initialize parameter ρ , τij, pbest, τmax, τmin
2: construct m ants
3: BestSolution ← φ
4: while ending condition is not met do
5: for i = 0 to m do
6: ant(i) constructs a valid schedule timing constrained Scurrent as following:
7: Scurrent ← φ
8: perform ASAP and ALAP
9: while exists unscheduled operation do

10: update time frame [tS
i , tL

i] associated with each operation opi and the distribution

graphs qk .

11: select one operation oph among all unscheduled operations probabilistically

12: for tS
h ≤ j ≤ tL

h do
13: set local heuristic ηhj = 1/qk(j) where oph is of type k
14: end for
15: select time step l using η and τ as Equation (1).

16: Scurrent = schedule(Scurrent, oph, l)

17: Update time frame and distribution graphs based on Scurrent

18: end while
19: if Scurrent is better than that of BestSolution then
20: BestSolution ← Scurrent

21: end if
22: end for

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:11

23: update τmax and τmin using MMAS principle

24: update η if needed
25: update τij based on Equation (2)

26: end while
27: return BestSolution

In the second stage of our algorithm, the ant’s solutions are evaluated. The
quality of the solution from ant h is judged by the total number of resources,
namely, Qh = ∑

k rk . At the end of the iteration, the pheromone trail is updated
according to the quality of individual schedules. Additionally, a certain amount
of pheromone evaporates. More specifically, we have

τij(t) = ρ · τij(t) +
m∑

h=1

�τh
ij (t) where 0 < ρ < 1. (2)

Here ρ is the evaporation ratio, and

�τh
ij =

{
Q/Qh if opi is scheduled at j by ant h
0 otherwise

. (3)

Q is a fixed constant to control the delivery rate of the pheromone. Two impor-
tant operations are performed in the pheromone trail updating process. Evapo-
ration is necessary for ACO to effectively explore the solution space, while rein-
forcement ensures that favorable operation orderings receive a higher volume
of pheromone and will have a better chance of being selected in future itera-
tions. The aforementioned process is repeated multiple times until an ending
condition is reached. The best result found by the algorithm is reported.

Compared with the FDS method, the proposed algorithm differs in several
respects. First, rather than using a one-time constructive approach based on
greedy local decisions, the ACO method solves the problem in an evolutionary
manner. By using simple local heuristics, it allows individual scheduling results
to be generated in a faster manner. With a collection of such individual results
and by embedding and adjusting the global heuristics associated with partial
solutions, it tries to learn during the searching process. By adopting a stochastic
decision making strategy considering both global experience and local heuris-
tics, it tries to balance the efforts of exploration and exploitation in this process.
Furthermore, it applies positive feedback to strengthen “good” partial solutions
in order to speed-up the convergence. Of course, the negative effect is that it
may fall into local minima, thus requires compensation measures such as the
one introduced in MMAS. In our experiments, we implemented both the basic
ACO and MMAS algorithms. The latter consistently achieves better schedul-
ing results, especially for larger DFGs. A pseudocode implementation of our
TCS algorithm using MMAS is shown as Algorithm 2, where the pheromone
bounding step is indicated as step 23.

In our study [Wang et al. to appear], compared with widely-used FDS [Paulin
and Knight 1987] and list scheduler with various priority heuristics, MMAS-
based scheduling algorithms reported better-quality results with up to 19.5%
area reductions on the TCS problem and 14.7% reduction in time on the
RCS problem. Moreover, the algorithms scale well with regard to different

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:12 • G. Wang et al.

applications and problem sizes. The runtimes of these algorithms are also rea-
sonably good, especially for the TCS formulation, which runs in the same scale
as the FDS method.

5. EXPERIMENTS AND ANALYSIS

5.1 Benchmarks and Setup

In order to test and evaluate our algorithms, we have constructed a comprehen-
sive set of benchmarks named ExpressDFG. These benchmarks are taken from
one of two sources: (1) popular benchmarks used in previous literature; and
(2) real-life examples generated and selected from the MediaBench suite [Lee
et al. 1997].

The benefit of having classic samples is that they provide a direct compari-
son between the results generated by our algorithm and those from previously
published methods. This is especially helpful when some of the benchmarks
have known optimal solutions. In our final testing benchmark set, seven sam-
ples widely used in instruction scheduling studies are included. These samples
focus mainly on frequently used numeric calculations performed by different
applications. However, these samples are typically small to medium in size, and
considered somewhat old. To be representative, it is necessary to create a more
comprehensive set with benchmarks of different sizes and complexities. Such
benchmarks shall aim to provide:

—real-life testing cases from real-life applications;

—more up-to-date testing cases from modern applications;

—challenging samples for instruction scheduling algorithms with regard to
the larger number of operations, higher level of parallelism, and data depen-
dency; and

—a wide range of synthesis problems to test the algorithms’ scalability.

For this purpose, we investigated the MediaBench suite, which contains a
wide range of complete applications for image processing, communications, and
DSP applications. We analyzed these applications using the SUIF [Aigner et al.
2000] and Machine SUIF [Smith and Holloway 2002] tools, and over 14,000
DFGs were extracted as preliminary candidates for our benchmark set. After
careful study, 13 DFG samples were selected from 4 MediaBench applications:
JPEG, MPEG2, EPIC, and MESA.

Table I lists all 20 benchmarks that were included in our final benchmark set.
Together with the names of the various functions from which the basic blocks
originated are the number of nodes, number of edges, and instruction depth
(assuming unit delay for every instruction) of the DFG. The data, including
related statistics, DFG graphs, and source code for all testing benchmarks, is
available online [ExpressDFG 2006].

We implemented four different design space exploration algorithms:

(1) FDS: Exhaustively step through the time range by performing time-
constrained force-directed scheduling at each deadline.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:13

Table I. ExpressDFG Benchmark Suite

Benchmark Name # Nodes # Edges ID

HAL 11 8 4

horner bezier† 18 16 8

ARF 28 30 8

motion vectors† 32 29 6

EWF 34 47 14

FIR2 40 39 11

FIR1 44 43 11

h2v2 smooth downsample† 51 52 16

feedback points† 53 50 7

collapse pyr† 56 73 7

COSINE1 66 76 8

COSINE2 82 91 8

write bmp header† 106 88 7

interpolate aux† 108 104 8

matmul† 109 116 9

idctcol 114 164 16

jpeg idct ifast† 122 162 14

jpeg fdct islow† 134 169 13

smooth color z triangle† 197 196 11

invert matrix general† 333 354 11

Benchmarks with † are extracted from MediaBench.

(2) MMAS-TCS: Step through the time range by performing only MMAS-based
TCS scheduling at each deadline.

(3) MMAS-D: Use the iterative approach proposed in Algorithm 1 by switching
between MMAS-based RCS and TCS.

(4) FDS-D: This is similar to the MMAS-D, except using FDS-based scheduling
algorithms.

We implemented the MMAS-based TCS and RCS algorithms as described
in Section 4. Since there is no widely distributed and recognized FDS imple-
mentation, we implemented our own. The implementation is based on Paulin
and Knight [1987] and has all the applicable refinements proposed in the pa-
per, including multicycle instruction support, resource preference control, and
look-ahead using second order of displacement in force computation.

For all testing benchmarks, the operations are allocated on two types of
computing resources, namely, MUL and ALU, where MUL is capable of handling
multiplication and division, while ALU is used for other operations such as
addition and subtraction. Furthermore, we define the operations running on
MUL to take two clock cycles and the ALU operations take one. This definitely is
a simplified case from that of reality, however, it is a close enough approximation
and does not change the generality of the results. Other operation to resource
mappings can easily be implemented within our framework.

With the assigned resource/operation mapping, ASAP is first performed to
find the critical path delay Lc. We then set our predefined deadline range to be
[Lc, 2Lc], that is, from the critical path delay to 2x of this delay. This results
in 263 testing cases in total, and 4 design space exploration experiments are
carried out. For the FDS and MMAS-TCS algorithms, we run force-directed

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:14 • G. Wang et al.

Fig. 2. Distribution of the TCS ACO solution quality on idctcol benchmark with a deadline set

to its ASAP time. Each line shows a different phase of the algorithm execution where each point

gives the number of solutions of a particular resource cost. The line “1–200” denotes the first 200

solutions found by the ACO algorithm, while the line “1801–2000” gives the last 200.

or MMAS-based time-constrained scheduling on every deadline and report the
best schedule results together with the costs obtained. For the MMAS-D and
FDS-D algorithms, we only run MMAS-based or FDS-based TCS on selected
deadlines starting from 2Lc and make jumps based on RCS results on the
configurations previously obtained by performing TCS.

5.2 Quality Assessment

We first studied the effectiveness of the ACO approach for design space explo-
ration. Two individual tests are carried out: one to verify its performance on
the TCS problem with a specific deadline, and the other tries to confirm its
performance over the entire design space.

In the first tests, MMAS-based TCS is performed on the idctcol benchmark,
an implementation of inverse discrete cosine transform, with the deadline set
to its ASAP time of 19. We use 10 ants for each iteration, which provides 10
individual scheduling solutions. The total iteration limit is set to 200, which
produces a total of 2000 scheduling results for this TCS problem. We want
to examine the effectiveness of the algorithm, in other words, how does the
quality of the solutions improve across iterations? Figure 2 shows this result
by plotting the solution quality/frequency curves over time. Here each curve
aggregates solutions found within certain iterations. For example, the curve
labeled “1-200” diagrams the quality distribution for the first 200 scheduling
results obtained in the first 20 iterations. The x-axis is the hardware cost for
the schedule results, where we simply use resource number counts. The y-axis
shows the number of solutions that the iteration range produces at each specific
cost.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:15

Fig. 3. Solution quality of the TCS ACO on the idctcol benchmark. We run the TCS ACO algorithm

at each deadline ranging from its ASAP time of 19 to 32. The size of dot indicates the proportion of

solutions with a specific resource cost found at each deadline.

From this graph, we can easily see that MMAS-based TCS is working. For
example, comparing the initial (1–200) and final 200 solutions (1801–2000). In
the initial 200 solutions, there are 5 with an area of 20, and the best have area
of 14 (there are 12 such); by the last 200 solutions, there are 0 with an area of
20, 69 with an area of 14, and 1 with an area of 11. As the algorithm progresses,
a positive trend emerges where the ants ignore the worst solutions and enforce
the better ones.

To show the effectiveness of the algorithm over the whole design space, simi-
lar experiments are conducted across the range of deadlines of interest. Figure 3
gives one example of the idctcol benchmark on deadlines from 19 to 32, where
the x-axis is the deadline constraint and y-axis the cost for scheduling results.
The size of dots is proportional to the number of schedule results that the ants
produce for a specific cost and deadline. It is easy to see that the focus area of
the algorithm adjusts as the constraints change. Moreover, if we inspect each
column more carefully, we can see that the algorithm effectively explores the
“best” part of the design space. This is evidenced by the movement of dense
area in the graph and the relatively invariant vertical spread.

We performed experiments on each benchmark using the four different de-
sign space exploration algorithms. First, time-constrained FDS scheduling is
used at every deadline. The quality of results is used as the baseline for qual-
ity assessment. Then MMAS-TCS, MMAS-D, and FDS-D algorithms are exe-
cuted; the difference is that MMAS-TCS steps through the design space in the
same way as FDS, while MMAS-D, and FDS-D utilize the duality between TCS
and RCS. Because of their randomized nature, MMAS-TCS and MMAS-D algo-
rithms are executed five times in order to obtain enough statistics to evaluate
their stability.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:16 • G. Wang et al.

Fig. 4. Design space exploration results: MMAS-D, FDS-D, and FDS.

Detailed design space exploration results for six of the benchmarks are shown
in Figure 4, where we compare the curves obtained by MMAS-D, FDS-D, and
FDS algorithms. Table II summarizes the experiment results. For each bench-
mark we give the node/edge count, and the average resource savings of the
FDS-D, MMAS-TCS, and MMAS-D algorithms compared with FDS. We report
the savings in percentage of total resource counts (a negative result indicates a
lower (better) resource cost). We weight the two resource types M and A equally,
though we use different cost weights to bias alternative solutions (e.g., solution
(3M, 4A) is more favorable than (4M, 3A) as resource M has a large cost weight).
We could easily vary the relative costs and number of resources types. However,
we feel this would introduce confusion caused by different weight choices. The
percentage savings is computed for every deadline of every benchmark. The
average for a certain benchmark is reported in Table II. It is easy to see that
MMAS-TCS and MMAS-D both outperform the classic FDS method across the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:17

Table II. Summary for Design Space Exploration Results

Name Nodes/Edges Deadline FDS-D MMAS-TCS MMAS-D

HAL 11/8 (6–12) 14.3% −7.1% −7.1%

hbsurf 18/16 (11–22) 0.0% −9.9% −13.2%

ARF 28/30 (11–22) −4.7% −12.4% −18.6%

motionvectors 32/29 (7–14) −8.0% −13.1% −16.0%

EWF 34/47 (17–34) −5.6% −11.5% −21.9%

FIR2 40/39 (12–24) −4.1% −16.8% −22.8%

FIR1 44/43 (12–24) −3.9% −15.2% −18.0%

h2v2 smooth 51/52 (17–34) 4.2% −19.3% −20.5%

feedbackpoints 53/50 (11–22) −1.2% −5.9% −9.1%

collapsepyr 56/73 (8–16) −5.3% −18.3% −20.0%

COSINE1 66/76 (10–20) −3.1% −21.5% −23.5%

COSINE2 82/91 (10–20) 0.7% −5.6% −8.1%

wbmpheader 106/88 (8–16) −2.4% −0.9% −1.6%

interpolate 108/104 (10–20) −2.3% −0.2% −1.8%

matmul 109/116 (11–22) −4.7% −3.7% −5.6%

idctcol 114/164 (19–38) −11.2% −30.7% −32.0%

jpegidctifast 122/162 (17–34) 35.2% −50.3% −52.1%

jpegfdctislow 134/169 (16–32) 16.2% −31.4% −34.6%

smoothcolor 197/196 (15–30) −4.6% −7.3% −8.6%

invertmatrix 333/354 (15–30) 0.0% −11.2% −11.9%

Total Avg. 0.48% −16.4% −17.3%

Each line gives the benchmark name, the tested time range, and the results of each design space

exploration algorithm (FDS-D, MMAS-TCS, MMAS-D compared to the exhaustive FDS result). A

negative result indicates a smaller resource allocation, which is desired.

board with regard to solution quality, often with significant savings. Overall,
MMAS-TCS achieves an average improvement of 16.4% while MMAS-D obtains
a 17.3% improvement. Both algorithms scale well for different benchmarks and
problem sizes. Moreover, by computing the standard deviation over the 5 differ-
ent runs, the algorithms are shown to be very stable. For example, the average
standard deviation on result quality for MMAS-TCS is only 0.104. On the other
hand, FDS-D algorithms have a minor performance degradation compared with
the FDS baseline. It outperforms FDS in 14 out of the 20 benchmarks, gives
worse results on 4 samples, and shows no change on 2. Though it provides mod-
estly better results over two testing samples (i.e., wbmpheader and interpolate)
when compared to MMAS-D, overall MMAS-D produces a much better result.
Finally, FDS-D is much less stable with regard to result quality. It seems to
be more application dependent and yields bad results in certain cases (e.g.,
benchmark jpegidictifast).

It is interesting and initially surprising to observe that MMAS-D never had
worse performance than MMAS-TCS. More careful inspection of the experi-
ments reveals the reason: Using the duality between TCS and RCS not only
reduces computation time, but can also improve the quality of the result. To
understand this, recall Theorem 3.3 and Figure 1(b). If we achieve an optimal
solution at t1, with MMAS-D we automatically extend this optimality from t1

to t2, while the MMAS-TCS algorithm can provide worse-quality solutions on
deadlines between t1 and t2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:18 • G. Wang et al.

Fig. 5. Timing performance comparison.

This benefit is not specifically associated with MMAS scheduling algorithms,
but rather, is also observed when other scheduling methods are used. For ex-
ample, consider the curve generated by FDS-D in Figure 4(d). We can see that
the configuration provided by TCS at deadline 24 can be pushed to deadline
16. FDS-D achieves better results over FDS at time stamps of 16, 17, 18, and
21. However, we will not always obtain this benefit. For the same curve, FDS-D
actually suffers worse results at times 13 and 14. Extreme examples of this
are shown in Figures 4(e) and 4(f), the two worst samples for FDS-D. It is easy
to realize that if a generous TCS result is generated at a bigger deadline, the
following RCS step is misled to provide a very small deadline result. The effect
is that the algorithm provides a poor tradeoff curve.

In conclusion, the proposed duality-based design space exploration frame-
work is a general approach and can be combined with any scheduling algorithm.
However, the selection of such scheduling algorithms has a direct impact on the
quality of the resulting tradeoff curves. This is not surprising in light of our dis-
cussion on Theorem 3.3 in Section 3.

Figure 5 diagrams the average execution time comparison for the four design
space exploration approaches, ordered by size of benchmark. All of the experi-
ment results use the same Linux box with a 2GHz CPU. It is easy to see that the
all algorithms have similar runtime scale, where MMAS-TCS takes more time,
while MMAS-D and FDS have very close runtimes, especially on larger bench-
marks. The major execution time savings come from the fact that MMAS-D
exploits the duality and only computes TCS on a selected number of deadlines.
In over 263 testing cases, we find that on average MMAS-D skips about 44%
of the deadlines with the help of RCS. The fact that MMAS-D achieves much
better results than FDS with almost the same execution time makes it very
attractive in practice.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

Exploring Time/Resource Trade-Offs • 46:19

6. CONCLUSION

We proposed a novel design space exploration method that bridges time- and
resource-constrained scheduling problems and exploits their duality. Our al-
gorithm provides a time/cost tradeoff curve in the design space in a systemic
manner. We proved that it is possible to use the duality to help us effectively
construct such a curve, while reducing the computing time and improving the
quality of the result. The proposed method is general and can be combined with
any high-quality scheduling algorithm. However, the underlying scheduling al-
gorithm has direct impact on the quality of the tradeoffs curve. We showed that
ACO-based scheduling algorithms are ideal due to their robustness, high per-
formance, reasonable execution time, and the capability of providing multiple
scheduling candidates. Our algorithms outperformed the popularly used force-
directed scheduling method with significant savings (average 17.3% savings on
resource counts) and almost the same runtime on comprehensive benchmarks
constructed with classic and real-life samples. The algorithms also scaled well
over different applications and problem sizes.

REFERENCES

AIGNER, G., DIWAN, A., HEINE, D. L., MOORE, M. S. L. D. L., MURPHY, B. R., AND SAPUNTZAKIS, C.

2000. The Basic SUIF Programming Guide. Computer Systems Laboratory, Stanford University

Stanford, CA.

CHAUDHURI, S., BLYTHE, S. A., AND WALKER, R. A. 1997. A solution methodology for exact design

space exploration in a three-dimensional design space. IEEE Trans. Very Large Scale Integr.
Syst. 5, 1, 69–81.

CORNE, D., DORIGO, M., AND GLOVER, F., EDS. 1999. New Ideas in Optimization. McGraw Hill,

London.

DICK, R. P. AND JHA, N. K. 1997. MOGAC: A multiobjective genetic algorithm for the co-synthesis

of hardware-software embedded systems. In Proceedings of the IEEE/ACM Conference on Com-
puter Aided Design, 522–529.

DORIGO, M., MANIEZZO, V., AND COLORNI, A. 1996. Ant system: Optimization by a colony of cooper-

ating agents. IEEE Trans. Syst. Man Cybern. Part-B 26, 1 (Feb.), 29–41.

DUTTA, R., ROY, J., AND VEMURI, R. 1992. Distributed design-space exploration for high-level syn-

thesis systems. In Proceedings of the Design and Automation Conference (DAC). IEEE Computer

Society Press, Los Alamitos, CA, 644–650.

EXPRESSDFG. 2006. ExpressDFG benchmark website. http://express.ece.ucsb.edu/benchmark/.

GUTJAHR, W. J. 2002. ACO algorithms with guaranteed convergence to the optimal solution. Inf.
Process. Lett. 82, 3, 145–153.

HEIJLIGERS, M. J. M., CLUITMANS, L. J. M., AND JESS, J. A. G. 1995. High-Level synthesis scheduling

and allocation using genetic algorithms. In Proceedings of the EDA Technofair Design Automation
Conference/Asia and South Pacific Design Automation Conference (Makuhari, Massa, Chiba,

Japan). Article 11.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. MediaBench: A tool for evaluating

and synthesizing multimedia and communicatons systems. In Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture.

LIN, Y.-L. 1997. Recent developments in high-level synthesis. ACM Trans. Des. Autom. Electron.
Syst. 2, 1, 2–21.

MADSEN, J., GRODE, J., KNUDSEN, P. V., PETERSEN, M. E., AND HAXTHAUSEN, A. 1997. LYCOS: The

Lyngby co-synthesis system. Des. Autom. Embedded Syst. 2, 2 (Mar.), 125–63.

MCFARLAND, M., PARKER, A. C., AND CAMPOSANO, R. 1990. The high-level synthesis of digital sys-

tems. In Proc. IEEE. 78, 301–318.

PALESI, M. AND GIVARGIS, T. 2002. Multi-Objective design space exploration using geneticalgo-

rithms. In Proceedings of the 10th International Symposium on Hardware/Software Codesign.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

46:20 • G. Wang et al.

PAULIN, P. G. AND KNIGHT, J. P. 1987. Force-Directed scheduling in automatic data path synthesis.

In Proceedings of the 24th ACM/IEEE Conference on Design Automation Conference.

SMITH, M. D. AND HOLLOWAY, G. 2002. An Introduction to Machine SUIF and Its Portable Li-
braries for Analysis and Optimization. Division of Engineering and Applied Sciences, Harvard

University.

STÜTZLE, T. AND HOOS, H. H. 2000. Max-Min ant system. Future Gen. Comput. Syst. 16, 9 (Sept.),

889–914.

WANG, G., GONG, W., DERENZI, B., AND KASTNER, R. Ant colony optimizations for resource and timing

constrained operation scheduling. IEEE Trans. Comput.-Aided Des (to appear).

WANG, G., GONG, W., AND KASTNER, R. 2003. A new approach for task level computational

resourcebi-partitioning. In Proceedings of the 15th International Conference on Parallel and Dis-
tributed Computingand Systems 1, 1 (Nov.), 439–444.

WANG, G., GONG, W., AND KASTNER, R. 2004. System level partitioning for programmable platforms

using the antcolony optimization. In Proceedings of the 13th International Workshop on Logic and
Synthesis (IWLS).

WANG, G., GONG, W., AND KASTNER, R. 2005. Instruction scheduling using Max-Min ant optimiza-

tion. In 15th ACM Great Lakes Symposium on VLSI (GLSVLSI).
WILKEN, K., LIU, J., AND HEFFERNAN, M. 2000. Optimal instruction scheduling using integer pro-

gramming. In Proceedings of the ACM SIGPLAN Conference on Programming Language design
and Implementation.

Received June 2006; revised March 2007; accepted March 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 46, Pub. date: Sept. 2007.

