
Exploring Trade-off’s Between Centralized versus Decentralized Automotive
Architectures Using a Virtual Integration Environment

Sri Kanajan
General Motors Corporation

Warren, Michigan 48090
sri.kanajan@gm.com

Haibo Zeng
University of California, Berkeley

Berkeley, CA 94720
zenghb@eecs.berkeley.edu

Claudio Pinello
General Motors Berkeley Lab

Berkeley, CA 94720
claudiopinello@cal.berkeley.edu

Alberto Sangiovanni-Vincentelli
University of California, Berkeley

Berkeley, CA 94720
alberto@eecs.berkeley.edu

Abstract

The large variety of architectural dimensions in automo-
tive electronics design, for example, bus protocols, number
of nodes, sensors and actuators interconnections and power
distribution topologies, makes architecture design task a
very complex but crucial design step especially for OEMs.
This situation motivates the need for a design environment
that accommodates the integration of a variety of models
in a manner that enables the exploration of design alterna-
tives in an efficient and seamless fashion. Exploring these
design alternatives in a virtual environment and evaluating
them with respect to metrics such as cost, latency, flexibility
and reliability provide an important competitive advantage
to OEMs and help minimize integration risks later in the de-
sign cycle. In particular, the choice of the degree of decen-
tralization of the architecture has become a crucial issue in
automotive electronics. In this paper, we demonstrate how
a rigorous methodology (Platform-Based Design) and the
Metropolis framework can be used to find the balance be-
tween centralized and decentralized architectures.

1. Introduction

The electronic content in an automobile is increasing at
a rapid rate. In-vehicle electronics is displacing the tradi-
tional mechanical interfaces and enhancing the driving ex-
perience in every area from safety to telematics. OEMs face
a number of challenges related to the integration of this elec-
tronic content. Specifically, a significant challenge lies in
the selection of an appropriate architecture. The selection
of an electronic architecture is presently anad-hocactivity

that relies heavily on the expertise of the designer. Archi-
tecture optimization is essentially driven by an architectus-
ing a qualitative and manual design approach. Traditionally,
an automotive electronic architecture is highly decentral-
ized as the components are provided by Tier 1 suppliers that
develop subsystems implemented in a self-contained ECU.
This approach makes integration difficult as there is little
visibility from the OEM on the content of the ECUs and
on their behaviors. Recently, OEMs are taking increasingly
control over the architecture so that a global view of the
functionality and of the implementation platform could be
used to optimize a number of important metrics such as cost,
reliability, fault tolerance, and performance. Reasoningat a
qualitative level, an architect trades-off the level of flexibil-
ity and modularity offered by a decentralized architecture
versus the cost effectiveness and low latency of a centralized
architecture. Enabling a designer to make various design
choices quickly and to evaluate them systematically using
quantitative analysis would definitely increase efficiencyin
OEM engineering. Considering the role of OEMs as sys-
tem integrators of a heterogeneous set of electronic subsys-
tems fed by a complex and distributed supply chain, it is es-
sential for the design methodology to facilitate the capture
of constraints and requirements on the architecture coming
from the supplier components.

This paper presents the application of the platform-based
methodology and the supporting framework (Metropolis)1

to explore the trade-off between centralized and decentral-
ized architectures in a design case study.

1 A more detailed explanation of the modelling semantics and integra-
tion environment is available in [1].

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



2. Platform-based Design and Metropolis

The basic principle of the platform-based design
methodology [5] is the “orthogonalization of concerns”,
i.e. separating the various aspects of a design to facili-
tate greater design productivity. The methodology primarily
advocates separation between the following aspects of a de-
sign:

1. Function (what the system does) and architecture (how
it does it)

2. Computation and communication

3. Behavior and performance

There are four basic steps in a platform-based design
flow [5]:

1. Choosing the model(s) of computation (MoC) [2]

2. Modeling the functionality of the system

3. Modeling the architectural platform

4. Carrying out different mappings of functions to archi-
tectural elements to evaluate different points in the de-
sign space

The first step involves choosing one or more models of
computation and abstraction levels that are appropriate for
modelling both the functionality and the architectural plat-
form. Also, it must be possible to implement the MoC on
the architectural platform in an efficient manner - it must
be a good match for the architectural components. A spe-
cific model of computation may be realized at different ab-
straction levels. The abstraction level can be chosen based
on the accuracy of models that are desired. Abstract mod-
els may not accurately capture the performance of the sys-
tem, whereas refined models may cause unnecessarily high
overhead. The result of this step in the design flow is agree-
ment on a set of common services at a particular abstraction
level and a set of rules that determine how these services
can be composed - the MoC. After this step in the design
flow, both the functional and architectural modelling activ-
ities can be carried out concurrently. A functional model
captures the actions the system will carry out, but does not
indicate how these actions will be performed. However, the
functional model does not explicitly rely on an architectural
model for completeness - it is an independent executable
specification of the behavioral aspects of the system. The
architectural model captures how the common services will
be realized using the architectural components. The perfor-
mance aspects of implementing these services are captured
by the architectural model. An architectural model may be
parameterizable. Mapping is the step in the design flow that
allows the services utilized by the functional model to be

bound with the services provided by the appropriately con-
figured architectural model. The definition of a legal map-
ping depends upon the specific MoC used. A mapping rep-
resents a particular point in the design space of the system.
After a mapping is realized, the performance of the system
can be estimated using simulation. An iterative design space
exploration procedure can be carried out to explore differ-
ent points in the design space.

Metropolis [1] embodies the platform-based de-
sign methodology and provides a unified framework
for simulation, synthesis and verification of heteroge-
neous systems. The infrastructure supports many differ-
ent MoCs and abstraction levels. The specification language
for Metropolis is known as the ”metamodel”, as any spe-
cific model of computation can be obtained by refinement,
and supports both imperative and declarative specifica-
tions for modelling functionality, architecture, and map-
ping. Metropolis also provides a set of backend tools,
including a simulator, and interfaces with formal verifica-
tion tools.

3. Case Study

3.1. Functional Architecture

Supervisory 

Control

Steering Control

Braking Control

Susp Control

Electrochromic 

Control

Inertial Sensor

Wheel Speed 

Sensor(4)

Mode Switch

Hand Wheel 

Sensor

Light Sensor(3)

Tint Actuator(4)

Tint Level Tuner

Figure 1. Functional Architecture.

The case study involves a combination of two indepen-
dent functionalities - a supervisory control system that co-
ordinates the steering, braking and suspension systems, and
an electrochromic window control system. The objective of
the supervisory control system is to integrate active vehi-
cle control subsystems to provide enhanced riding and ve-
hicle performance capabilities. The electrochromic control
feature allows the driver to control the level of tint on the
windows. The high-level view of the functional architecture
of the two control systems is defined in Figure 1.



3.2. Architectural Model

The architectural elements that can be used to implement
the functionality of the system consist of a set of ECU’s, a
CAN based communication bus and a set of sensors and ac-
tuators. The ECU consists of a set of software tasks, middle-
ware, a CPU scheduler, an interrupt handler, a CAN Driver,
and a CAN Controller2. The smart sensor/actuators have a
CAN interface to inject sensor data or receive actuator com-
mands through the bus.

In this paper, we explore alternative architectures by re-
stricting our choice to centralized or decentralized I/O (sen-
sor, actuator)3 and computing. In this context, a decentral-
ized I/O architecture has a smart I/O’s that translate an ana-
log signal into a digital message andvice-versaand connect
onto a communication bus while a centralized I/O approach
would have direct I/O connections to the ECU. For comput-
ing, we may have different ECUs each carrying out a dif-
ferent task needed by the system at one extreme or a sin-
gle ECU carrying out the entire computation at the other
extreme. The trade-offs we explore are in terms of wire
lengths, number of wires(also known as cut leads), num-
ber of packaged ECU’s, signal latency and flexibility.

The following architectures were modelled in Metropo-
lis that helped analyze the timing metrics such as bus uti-
lization and signal latency. For wire length and total num-
ber of wires, an automotive electrical layout tool called Car-
chitect was used4.

3.2.1. Mixed Decentralized I/O Centralized Computing
(MDICC) Architecture

This architecture shown in Figure 2,represents a mix be-
tween a partially decentralized I/O structure with the hand
wheel sensors and wheel speed sensors connected onto the
serial data bus and a partially centralized computing struc-
ture with the supervisor and brake features allocated to one
module.

3.2.2. Centralized I/O Centralized Computing (CICC)
Architecture

This architecture shown in Figure 3, features a highly cen-
tralized I/O with a centralized computing infrastructure.

3.2.3. Centralized I/O Decentralized Computing
(CIDC) Architecture

2 For a more detailed description of this platform as modelled in
Metropolis, please refer to [6].

3 The term I/O and Sensor/Actuator are used interchangeablythrough
the paper and are synonymous in meaning.

4 Carchitect is an Architecture Layout tool developed internally at GM
by Mike Allison, Alan Baum and Mira Supal. This tool should have
been integrated into the Metropolis framework as a backend tool to
perform layout and analysis. Due to time constraints for thispaper,
the modelling in Carchitect was manually derived from the represen-
tation in Metropolis. We will complete the integration soon

Supervisory Control

+ Braking Control

Steering 

Control Susp Control

Electrochromic Control

Sensor/Actuator

ECU

High Speed CAN

Light

Sensor(3)

Tint Level 

Tuner

Tint 

Acutator(4)

Mode

Switch

Inertial 

Sensor

Smart Sensor/Actuator

Wheel Speed 

Sensor(4)
Hand Wheel 

Sensor

Figure 2. Mixed Decentralized I/O Centralized
Computing Architecture.

Supervisory Control

+Braking Control

+Steering Control

Susp Control Electrochromic Control

Hand Wheel 

Sensor

Light

Sensor(3)

Tint Level 

Tuner
Tint 

Acutator(4)

Mode

Switch

Inertial 

Sensor

Wheel Speed 

Sensor(4)

High Speed CAN

Figure 3. Centralized I/O Centralized Comput-
ing Architecture.

This architecture shown in Figure 4, features a highly de-
centralized computing infrastructure since each feature has
a dedicated ECU. On the other hand, the I/O structure is
centralized with all the I/O’s directly connected to ECU’s.

3.2.4. Decentralized I/O Decentralized Comput-
ing (DIDC) Architecture

This architecture shown in Figure 5, features decentralized
computing and decentralized I/O.

3.3. Metrics

We analyzed the architectures with respect to the follow-
ing metrics

1. Control Latency



Supervisory Control

Steering 

Control
Susp Control

Braking 

Control

Electrochromic 

Control

Hand Wheel 

Sensor

Light

Sensor(3)

Tint Level 

Tuner

Tint 

Acutator(4)

Mode

Switch

Inertial 

Sensor Wheel Speed 

Sensor(4)

High Speed CAN

Figure 4. Centralized I/O Decentralized Com-
puting Architecture.

Supervisory 

Control

Steering 

Control
Susp Control

Braking 

Control

Electrochromic 

Control

High Speed CAN

Hand Wheel 

Sensor
Mode Switch

Tint Level 

Tuner

Wheel Speed 

Sensor(4)

Inertial 

Sensor

Light 

Sensor(3)

Tint 

Actuator(4)

Figure 5. Decentralized I/O Decentralized
Computing Architecture.

We are interested in control applications, where the
electronic system typically interacts in a closed loop
with the plant and the environment using sensors and
actuators. An interesting measure of perfomance is
given by the end-to-end latency from sensors to actua-
tors. We measure the delay between sensing a change
in the environment and the arrival of the correspond-
ing control signal at the actuator function.

2. Geometric Metrics (number of cut-leads, wire length)
We consider three geometric attributes: total wire

length, number of cut leads5 and of ECUs. These three
attributes vary considerably according to the chosen ar-
chitecture and are the greatest cost drivers for assem-
bly and manufacturing costs.

3. Serial Data Metrics

5 A cut lead is defined as a contiguous point-to-point wire connection.

We compare the architecture alternatives with re-
spect to how they use the serial bus. We measure
the number of signals communicated locally versus
the number of messages transmitted over the bus, the
amount of data (number of bytes) in those messages,
and the bus utilization (as % of the total bandwidth
used for communication).

4. Flexibility
Flexibility is defined as the degree of resilience an

established architecture has with respect to specific fu-
ture design changes. To evaluate flexibility, we define
11 different incremental design scenarios. Each archi-
tecture is evaluated with respect to these scenarios in
terms of whether the architecture can accommodate the
design scenario without any additional cost. The scor-
ing is binary where 1 is for an architecture that can ac-
commodate the scenario without cost and a 0 for an ar-
chitecture that incurs a cost or at least changes in the
hardware due to the design scenario.

The following were the scenarios we used:

• Removal of the electrochromic control feature in-
cluding its corresponding S/A. I.e. a vehicle that
has only the active stability control features.

• Removal of two wheel speed sensors.

• Removal of the light sensors. I.e. a feed forward
control strategy for the electrochromic windows.

• Removal of the active suspension control feature.

• Removal of the active steer control feature.

• Change of geometric location of one of the light
sensors from the rear of the vehicle to the top.

• Addition of a new node on the HS CAN bus
housing a feature that requires wheel speed data.

• Addition of a new node on the HS CAN bus
housing a feature that requires mode switch.

• Addition of a new node on the HS CAN bus
housing a feature that requires light sensor data.

• Change in data flow where the braking function-
ality requires the mode switch signal as well.

• Change of geometric position of the inertial mea-
surement sensor.

We assume that each of these design scenarios have
equal probability of occurrence, hence the weighting
of the score is uniform.

4. Experimental Results

4.1. Control Latency

At the top of Table 1 we report the control latencies (in
milliseconds). The first two rows report the time when a



change in the sensed Steering Wheel Angle leads to a new
value of the commanded Active Front Steering Angle reach-
ing the destination middleware and then the actuator func-
tion. Similarly, the next two rows report the latency incurred
from a change in the sensed lighting conditions to the cor-
responding actuation of the ElectroChromic Windows.

The general trend is that on a centralized architecture it
is easier to achieve shorter latencies. There are at least two
reasons for this

• communication over serial busses is generally slower
than communication local to an ECU;

• it is possible to control the relative order of execution
of functions within an ECU. Whereas, across ECU’s
in an unsynchronized communication network, there is
no way of ensuring sampling alignment across the re-
ceiver and transmitter.

In distributed architectures, the lack of synchronization
among ECUs leads to scenarios where the sampling align-
ment is so unfavorable that it introduces one-period delays
at each sample. For example, looking at the first two rows
of the last column we see that the control signal arrived
at the destination middleware just past the periodic acti-
vation of the actuator function, namely at time 11.6182ms
vs 10.0014ms. Therefore, the updated value will be read at
the next periodic activation of the actuator, namely at time
20.0014ms.

Conversely, looking at the latencies of the Elec-
trochromic Windows for the first three architectures,
controlling the offsets can easily minimize the Control La-
tency.

4.2. Geometric Attributes

From the layout analysis (Table 1), architecture 3
(DIDC) had the shortest wire length and the least num-
ber of cut leads since the distributed I/O enabled the I/O’s
to be connected to the nearest bus wire rather than di-
rectly to an ECU located further away. Architecture 2
(CIDC) on the other hand had the longest wire length
due to the geometric location of the ECU’s with re-
spect to the I/O’s. Architecture 1 (CICC), although bene-
fiting from the shorter wire length due to the fewer num-
ber of ECU’s, suffered from a relatively large cut lead
count due to all its I/O’s being centralized. Architec-
ture 0 (MDICC) is pretty much in between, with 49 cut
leads and a wire length of 143.5.

4.3. Serial Data

In the results Table 1 there is a section comparing the ar-
chitecture alternatives with respect to the serial bus usage.

Clearly, the more distributed architectures make more ex-
tensive use of the bus.

4.4. Flexibility

Architecture 3 (DIDC) obviously was the most flexible
since every feature and I/O was an independent compo-
nent. Architecture 0 (MDICC) was resilient to 6 out of the
11 changes since its wheel speed sensors, hand wheel sen-
sors and steering and suspension subsystems were modu-
lar. Based on the scenario’s, it turned out that these features
and I/O were the most sensitive to change.

5. Conclusion and Future Work

We analyzed a set of alternative architectures for an auto-
motive case study using Platform-based Design and the sup-
porting Metropolis environment. These architectures were
evaluated by four different metrics, i.e. control latency,ge-
ometric attributes, serial data attributes and system flexibil-
ity. The overall results favor the architecture that is a mix
between a centralized electrochromic window control sys-
tem and a decentralized vehicle supervisory control system
(MDICC). This architecture supports 6 out of the 11 design
scenarios for flexibility, has low latency and bus utilization,
relatively short wire length and small cut lead count. This
was due to the architecture housing the window application
being quite decoupled from the architecture of the super-
visory control feature. Since wheel speed sensors and hand
wheel sensors were sensitive to future changes and were ge-
ometrically complicated to route, having these as distributed
I/O, was a key attribute contributing to the quality of the
MDICC architecture.

In general though, due to the locations of the sensors and
actuators, a centralized I/O configuration naturally caused a
larger wire length since each I/O wire had to be routed all
the way back to the target ECU. On the other hand, the de-
centralized I/O allowed the designer to route the signal com-
ing from the I/O to the nearest bus connection, hence reduc-
ing the total wire length significantly. This is a sure advan-
tage since wiring issues contribute for a large part to the
assembly costs and warranty issues. The trade-off though
is clearly the reduced latency in a centralized architecture
while the decentralized architecture supports a geometri-
cally distributed sensor actuator configuration and is gen-
erally more flexible.

This paper highlights the need for a virtual integration
environment that allows the architect to take advantage of
the architectural degrees of freedom and efficiently analyze
the impact of the changes. Here, Metropolis was used as
the master modeling environment while the back end tools
such as the geometric layout design tool performed the anal-
ysis for other metrics. Changes in the design can easily be



Architecture 0
(MDICC)

Architecture 1
(CICC)

Architecture 2
(CIDC)

Architecture 3
(DIDC)

Latencies
SteeringWheel Angle latency (ms), ar-
rival at destination middleware

11.3962 0.008 11.3962 11.6182

SteeringWheel Angle latency (ms),
read by destination process

20.0037 10.0081 20.0038 20.0014

Light Adjusting latency (ms), arrival at
destination middleware

0.2007 0.2007 0.2007 17.6645

Light Adjusting latency (ms), read by
destination process

0.3003 0.3003 0.3003 20.0001

Geometric Attributes
Cut leads 49 63 53 20
ECUs 9 3 5 20
Total Wire Length (grid-point) 143.5 153.5 165.5 106.5
Serial Data
Local Signals 35 51 23 0
CAN Msgs 19 13 24 37
Total Msg DATA Length(bytes) 119 87 159 208
Bus Utilization 36.90% 26.14% 48.00% 68.06%
Flexibility 6 2 4 11

Table 1. Results Table

propagated through the integrated environment and quan-
titatively analyzed. The methodology and the environment
are key enablers in providing a decision support system for
OEM’s to make good architectural choices early on in the
design cycle and manage complexity.

Dependability, albeit an important aspect, was not con-
sidered in this paper. Intuitively, a decentralized systemof-
fers more availability than a centralized system that inher-
ently has a single point of failure. Our group is also work-
ing on a design environment for automotive architecture ex-
ploration for safety systems [3][4]. We plan to extend the
case study to include the dependability metric. In addition,
a cost model that captures the impact of architectural deci-
sions on the entire lifecycle of an architecture would be in-
strumental in giving the architect an informed way of navi-
gating the design space. Another interesting avenue for re-
search would be to explore the trade-off between a central-
ized communication infrastructure (e.g. a central backbone
bus topology) and a decentralized topology (e.g. a meshed
type topology).

6. Acknowledgements

The authors gratefully acknowledge Arkadeb Ghosal,
Wei Zheng and Abhijit Davare from UC Berkeley for their
advice on cost and flexibility analysis, and the Metropolis
methodology. Paolo Giusto and Max Chiodo from the GM
Berkeley Labs were instrumental in developing the archi-

tecture exploration methodology for automotive systems.

References

[1] F. Balarin, L. Lavagno, C. Passerone, A. L. Sangiovanni-
Vincentelli, M. Sgroi, and Y. Watanabe. Modeling and de-
signing heterogeneous systems. InConcurrency and Hard-
ware Design, Advances in Petri Nets, pages 228–273, Lon-
don, UK, 2002. Springer-Verlag.

[2] E. Lee and A. Sangiovanni-Vincentelli. A framework for com-
paring models of computations.IEEE Transactions on Com-
puter Aided Design Integrated Circuits, 12(17):1217–1229,
December 1998.

[3] M. McKelvin, G. Eirea, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli. A formal approach to fault tree
synthesis for the analysis of distributed fault tolerant systems.
EMSOFT, 2005.

[4] C. Pinello, L. Carloni, and A. Sangiovanni-Vincentelli. Fault-
tolerant deployment of embedded software for cost-sensitive
real-time feedback-control applications. InProceedings of
Design Automation and Test in Europe, Paris, February 2004.

[5] A. Sangiovanni-Vincentelli. Defining platform-based design.
EEDesign, February 2002.

[6] H. Zeng, S. Sonalkar, S. Kanajan, C. Pinello, A. Davare, and
A. Sangiovanni-Vincentelli. Design space exploration of au-
tomotive platforms in metropolis.Accepted by SAE Congress,
2006.


