UCLA

Posters

Title

Exploring Tradeoffs in Accuracy, Energy and Latency of SIFT in Wireless Camera Networks

Permalink

https://escholarship.org/uc/item/1822q2f9

Authors

Ko, Teresa Charbiwala, Zainul Mohammed Ahmadian, Shaun <u>et al.</u>

Publication Date

2007-10-10

CENS Center for Embedded Networked Sensing

Exploring Tradeoffs in Accuracy, Energy and Latency of SIFT in Wireless Camera Networks

Teresa Ko, Zainul M. Charbiwala, Shaun Ahmadian, Mohammad Rahimi, Mani B. Srivastava, Stefano Soatto, Deborah Estrin Center of Embedded Networked Sensing, Vision Lab, Networked Embedded Systems Laboratory, UCLA

Problem Description: Determine design tradeoffs for vision-based sensing systems.

Context

- Sensor systems collect & interpret sensor data.
- Intuitively, interpreting sensor data locally is better than at the server.
 - Scalability
 - Lower latency
 - Lower energy
- Image capture and transmission are on the same magnitude of energy consumption.
- The complexity of interpreting images relative to transmission is unknown, and is dependent on the application.

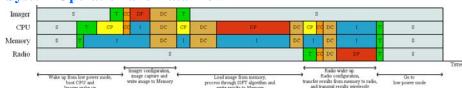
Conclusion

- Generic SIFT is not more efficient in terms of energy and latency than transmitting an image to a server and processing there.
- Application knowledge can result in changes in the location of computation and type of computation for more optimal behavior.
- Image processing/transmission dominates energy and latency budget.

System Model

System Block Diagram

CPU


System Variables

Architecture

- Arithmetic Precision: Floating Point vs 16-bit Fixed Point
- CPU Frequency: 50 MHz → 600 MHz

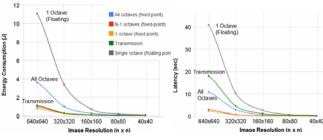
System Operation and Data Flow

Radio

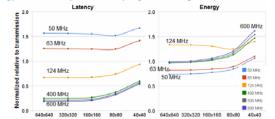
Application

- # of octaves: all, N-1, single
- Scale space sampling: direct, indirect

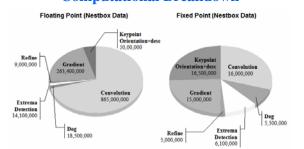
State-wise Power Consumption


Power (mW)	/Imager	CPU	CPU	Memory	Radio
State	_	50MHz	600MHz		
Sleep	1	0.081	0.081	0.018	0.054
Transition	50	13.2	141.3	171	48.8
Data Proc	42	20.8	264	0	47
Data Comm	42	39.8	283	171	48.8
Control Proc	10	20.8	264	0	50.76
Control Comm	42	22.9	266.1	0	48.85
Idle	10	11.2	37.2	0.360	50.76

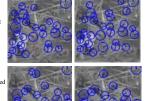
Experimentation Results

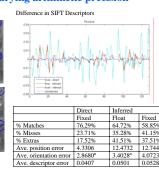

Experimentation

- Ported SIFT to Analog Devices Blackfin DSP (BF-533) w/ floating point & fixed point arithmetic precision
- Built a system model for camera sensor node.
- · Evaluated accuracy from experiments on PC using real life data set.
- Obtained cycle counts using Blackfin simulator
- Used the system model to extract energy consumption & latency from cycle counts.
- Interpreted tradeoffs between accuracy, energy, and latency.


Energy and latency when varying arithmetic precision $% \mathcal{A}$ and # of octaves

Energy and latency when varying CPU frequency




Computational Breakdown

Effects on accuracy when varying arithmetic precision

Floating point Fixed point Difference i

SVM Classification Results							
	Float	Fixed	Float	Fixed			
	Direct	Direct	Inferred	Inferred			
Precision	31.43%	29.23%	24.81%	24.77%			
Recall	46.15%	43.51%	51.59%	53.54%			
Distance	1.25	1.26	1.31	1.36			

UCLA – UCR – Caltech – USC – UC Merced

Direct