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ABSTRACT Since many dynamical processes can be analyzed in the framework of trapping problem, it is
great important to explore trapping problem on diverse complex systems or networks. However, addressing
trapping problem on networks generated by graph products is still less touched. In this paper, by taking
type of random walks and number of traps into account and compiling four different scenarios, trapping
problem is touched more completely on resultant weighted heterogeneous networks of extended corona
product and weight reinforcement mechanism. In more detail, we study standard random walk and delayed
random walk on the network with a deep trap fixed at one initial node in the first and second scenarios
respectively. This two types of random walks are further investigated on the network with three traps placed
at initial three nodes in more challenging third and fourth scenarios. In all this four scenarios, the solutions
of average trapping time(ATT ) are deduced analytically to measure trapping efficiency, which agree well
with their corresponding numerical counterparts and show that ATT grows sub-linearly with network size.
Besides, expressions of ATT obtained in the second and fourth scenarios indicate that the parameter p
governing delayed random walk alters the pre-factor of ATT but has no effect on the leading scaling of ATT .
Furthermore, the comparisons between expression of ATT in first and third scenarios, expression of ATT
in second and fourth scenarios imply that ATT can be lowered and trapping efficiency can be improved
accordingly by introducing more traps. In summary, this work may enrich the clues for understanding
trapping issue and modulating trapping process on more general heterogeneous weighted networks.

INDEX TERMS Random walk, average trapping time, heterogeneous weighted network, corona product.

I. INTRODUCTION
In the past few decades, there has been considerable inter-
est in the research for complex networks in many fields
[1]–[5]. Triggered by the BA scale-free network model [6]
andWS small-world network model [7], extensive researches
show that many different real networks share some strik-
ing structural properties [8]–[11]. To this end, considerable
deterministic network models that can reproduce common
structural properties of real networks had been put forward
to serve as test-bed [12]–[15]. Given the observation that
massive networks are always composed of small pieces such
as communities, modules and motifs [16]–[18], quite a few
deterministic networks had been built out of smaller networks
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by employing graph products such as hierarchical product
[19], [20], corona product [21], [22].

In addition, lots of researches devoted themselves to unveil
the interplay between structural properties and dynamical
processes occurred on networks [4], [23]. As an important
dynamical process, randomwalk has been studied extensively
on various deterministic networks such as fractal networks
derived from Caley trees [24]–[26], T fractal [27]–[29], Sier-
pinski gasket [30], [31] and other non-fractal networks [32],
[33] since they have potential applications in modeling chem-
ical reactions [34], [35], image segmentation [36], normal-
ized Laplacian spectrum [37]–[39] and so on. Except for
standard random walk, the delayed random walk motivated
by the observed phenomenon that there is a delay for the new
structure to influence dynamical processes taking place on
networks has been proposed and explored on some networks
recently [40]–[42].
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Since many dynamical processes can be analyzed in the
framework of trapping problem [43], trapping problem is a
primary issue of random walks. Furthermore, trapping effi-
ciency (transport efficiency) is a preferred readout of trapping
problem. Average trapping time, in turn, is a favorite indicator
of trapping efficiency [44], [45]. It is noteworthy that in most
previous works only one trap is placed at network when
studying trapping problem and computing average trapping
time [24], [41], while only a few works take multiple traps
into account to explore trapping issue [30].

In this paper, we study two types of randomwalks on a fam-
ily of weighted heterogeneous networks induced by extended
corona product [18], [21], [22] with different numbers of
traps. In more detail, we introduce the weighted heteroge-
neous networks proposed by Qi et al in Ref [18] in section
2. We study standard random walk and delayed random walk
on the networks with one trap fixed at a initial node and derive
the analytical expressions of ATT in section 3 and section
4 respectively. Furthermore, this two types of random walks
are addressed on the networks with three traps being placed
at three initial nodes and expressions of ATT are deduced
in section 5 and section 6 respectively. All the obtained
analytical solutions of ATT and the numerical solutions of it
completely agree with each other. All these obtained results
of ATT indicate that it grows sub-linearly with any value
of δ controlling networks’ iteration. In addition, analytical
solutions of ATT also imply that the delay parameter steering
delayed random walk can only modify the pre-factor of ATT ,
but doesn’t impact the leading scaling of ATT . Finally, it can
be found that introducingmore traps could reduce the average
trapping time and improve trapping efficiency to some extent.

II. CONSTRUCTION RULE OF WEIGHTED
HETEROGENEOUS NETWORK
The family of weighted heterogeneous network employed as
test-bed here was proposed by Qi et al in ref [18]. It was
produced iteratively by integrating extended corona product
with weight reinforcement mechanism and parameterized by
δ(δ is a positive integer). Let κ1 be a weighted graph with
two vertices connected by one edge with unit weight. Then
the heterogeneous weighted networks Gn is constructed as
follows. For n = 0, G0 is a triangle in which each pair of
nodes is linked by a edge with unit weight. For n ≥ 1, Gn
is obtained from Gn−1 by performing series of operations
depicted in Fig.1: generate a weight network κ1 } Gn−1
by applying the extended corona product of Gn−1 and κ1,
increase weight of each edge in Gn−1 by δ times. It’s note-
worthy that Gn will reduce to Koch network if δ = 0. Since
the properties of Koch network have been extensively studied,
here we only consider the case of δ > 0. As a result, for node
i created at generation ni, the weight of the edge from node
i to node j at generation n is ωij(n) = (1 + δ)n−ni and the
strength of node i at generation n is [18]

Si(n) =
∑
j

ωij(n) = 2(2+ δ)n−ni (1)

FIGURE 1. The first three generations of weighted heterogeneous
networks when δ = 1. Here, nodes and lines created at generations 0,
1 and 2 are marked with red, blue and black respectively. Besides, nodes
are counted counterclockwise.

III. ANALYTICAL SOLUTION OF ATT FOR STANDARD
RANDOM WALKS WITH A SINGLE TRAP
After introducing the iterative rule of the weighted heteroge-
neous networks, we will study the standard random walk on
this weighted network with a single trap.

A. NUMERICAL FORMULATIONS OF TRAPPING
PROBLEMS
At each time step, the walker starting from its current position
i except the trap moves to any of its nearest neighbors j
with the transition probability pij =

ωij
Si
, which constitutes

entry of the transition matrix P = S−1W , where S is the
diagonal strength matrix andW is weighted adjacency matrix
respectively. In this work, we study the problem with an
immobile trap located at node 1(due to the symmetry, the trap
can be also located at node 2 or 3). Let T ni denotes the trapping
time, which is the expected time for a walker from the node i
to first reach the trap, we have

T ni =
Nn∑
j=1

pij(n)(T nj + 1)

=

Nn∑
j=1

pij(n)T nj +
Nn∑
j=1

pij(n)

=

Nn∑
j=2

pij(n)T nj + pi1(n)T
n
1 + 1

=

Nn∑
j=2

pij(n)T nj + pi1(n)× 0+ 1

=

Nn∑
j=2

pij(n)T nj + 1 (2)

where i 6= 1, which can be recast in matrix form as:

T̄ = T̄ P̄+ ē (3)

where P̄ is a sub-matrix of transition matrix with the row
and the column corresponding to trap being removed, T̄ is
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(Nn − 1)-dimensional vector denoting the trapping time of
all nodes except trap’s location and Nn is the total number
of nodes in this weighted network. Here ē is the (Nn − 1)-
dimensional vector formed by removing the first column
of the Nn-dimensional vector e, where e = (1, 1, . . . , 1).
Solving Eq.(3) leads to

T̄ = (Ī − P̄)−1ē (4)

in which Ī is the (Nn − 1)× (Nn − 1) identity matrix.
Next to, let 〈T 〉n denotes the ATT , which is the average of

T ni over all initial nodes in Gn except the trap. Thus, utilizing
Eq.(4), we obtain

〈T 〉n =
1

Nn − 1

Nn∑
i=2

T ni =
1

Nn − 1

Nn∑
i=2

Nn∑
j=2

τij (5)

Eqs.(4) and (5) show that the problem of calculating T ni
and 〈T 〉n is reduced to find the sum of elements of matrix
(Ī − P̄)−1. However, for large n, it’s difficult to obtain the
numerical results of Eq.(4) by direct calculating. So, we use
it to carry out some simple work. Let δ = 1, we can calculate
T ni for the first several generations using Eq.(4), which were
summarized in Table 1.

TABLE 1. Trapping time for various n when δ = 1. Notice that owing to
the obvious symmetry, some nodes have the same trapping time. All the
values are calculated straightforwardly from Eq.(4).

B. EXPLICIT EXPRESSIONS OF AVERAGE TRAPPING TIME
LetM denotes the first passage time (FPT ) for starting from
node i to any of its old neighbors, and let N represents the
FPT for going from any of the new neighbors of i to one of its
old neighbors. Based on the structure of the network, we have
the following relations

M =
δ + 1
δ + 2

× 1+
1

δ + 2
(1+ N )

N =
1
2
(1+M )+

1
2
(1+ N )

(6)

which lead to M = 4+δ
1+δ . Therefore, we have the following

rule

T n+1i =
4+ δ
1+ δ

T ni (7)

Since the evolutionary rule of FPT depicted by Eq.(7) is
basic quantity for deriving ATT , it is relevant to verify it by
some ways. It is noteworthy that the numerical results listed
in Table 1 obey the equation T n+1i =

5
2T

n
i , which coincides

with the special case of Eq.(7) when δ = 1. Therefore,

the evolutionary rule of FPT depicted by Eq.(7) was verified
initially.

Let 3n denotes the set of nodes belonging to Gn, and
3̄n be the set of nodes created at generation n. Obviously,
3n = 3n−1

⋃
3̄n. In order to evaluate 〈T 〉n, we define two

quantities for g ≤ n,

T ng,tot =
∑
i∈3g

T ni , T̄
n
g,tot =

∑
i∈3̄g

T ni (8)

Then, T nn,tot can be computed as

T nn,tot = T nn−1,tot + T̄
n
n,tot =

4+ δ
1+ δ

T n−1n−1,tot + T̄
n
n,tot (9)

Next we will explicitly determine the quantity T nn,tot . To this
end, we should first determine T̄ nn,tot .
Under the condition of δ = 1, T 1

4 =
1
2 (1 + T 1

1 ) +
1
2 (1 +

T 1
5 ),T

1
5 =

1
2 (1+ T

1
1 )+

1
2 (1+ T

1
4 ),T

1
6 =

1
2 (1+ T

1
2 )+

1
2 (1+

T 1
7 ),T

1
7 =

1
2 (1+ T

1
2 )+

1
2 (1+ T

1
6 ),T

1
8 =

1
2 (1+ T

1
3 )+

1
2 (1+

T 1
9 ),T

1
9 =

1
2 (1+ T

1
3 )+

1
2 (1+ T

1
8 ). Thus,

T̄ 1
1,tot =

∑
i∈3̄1

T 1
i

= T 1
4 + T

1
5 + T

1
6 + T

1
7 + T

1
8 + T

1
9

= 12+ 2T̄ 1
0,tot (10)

similarly, for the case of n = 2, we have

T̄ 2
2,tot =

∑
i∈3̄2

T 2
i =

39∑
i=10

T 2
i = 60+ 2T̄ 2

1,tot + 6T̄ 2
0,tot (11)

Finally,

T̄ nn,tot =
∑
i∈3̄n

T ni = 12× 5n−1 + 2T̄ nn−1,tot

+2× 3T̄ nn−2,tot + . . .+ 2× 3n−1T̄ n0,tot (12)

In the same way, we can derive formulas for any δ,

T̄ nn,tot = 12× (δ + 4)n−1 + 2T̄ nn−1,tot + 2(δ + 2)T̄ nn−2,tot
+ . . .+ 2(δ + 2)n−2T̄ n1,tot + 2(δ + 2)n−1T̄ n0,tot (13)

and

T̄ n+1n+1,tot = 12× (δ + 4)n + 2T̄ n+1n,tot + 2(δ + 2)T̄ n+1n−1,tot

+ . . .+ 2(δ + 2)n−1T̄ n+11,tot + 2(δ + 2)nT̄ n+10,tot (14)

where 12×(δ+4)n−1 and 12×(δ+4)n are the double of num-
bers of nodes created at generations n and n+ 1 respectively.
Eq.(14) minus Eq.(13) times (δ+4)(δ+2)

δ+1 and making use of the
relation T n+1i =

δ+4
δ+1T

n
i , we get

T̄ n+1n+1,tot − 12× (δ + 4)n

= 2T̄ n+1n,tot

+
(δ + 4)(δ + 2)

δ + 1
(T̄ nn,tot − 12× (δ + 4)n−1) (15)
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which may be rewritten as

T̄ n+1n+1,tot =
(δ + 4)2

δ + 1
T̄ nn,tot −

12
δ + 1

(δ + 4)n (16)

Using T̄ 1
1,tot = 12+2(T 1

2 +T
1
3 ), Eq.(16) is solved inductively

as

T̄ nn,tot =
16δ + 40
δ + 1

[
(δ + 4)2

δ + 1
]n−1 + 4(δ + 4)n−1 (17)

Substituting Eq.(17) for T̄ nn,tot into Eq.(9), we have

T nn,tot =
4+ δ
1+ δ

T n−1n−1,tot

+
16δ + 40
δ + 1

[
(δ + 4)2

δ + 1
]n−1 + 4(δ + 4)n−1 (18)

Considering the initial condition T 0
0,tot = 4, Eq.(18) is

resolved by induction to yield

T nn,tot = (
A
B
)n[

(16δ + 40)(An − 1)
A(δ + 3)

+
4B(Bn − 1)

Aδ
+ 4]

(19)

where A = δ + 4,B = δ + 1. From [18], it is known that

Nn =
6(δ + 4)n + 3δ + 3

δ + 3
(20)

Dividing both sides of Eq.(19) by Nn − 1, we arrive at the
accurate formula for the average trapping time at the trap
located at node 1 on the weighted heterogeneous network.

〈T 〉n =
1

Nn − 1
T nn,tot

=
(8δ + 20)(An − 1)

A(3An + δ)
(
A
B
)n

+
2(A− 1)(Bn − 1)

(3An + δ)δ
(
A
B
)n−1 +

2(A− 1)
3An + δ

(
A
B
)n (21)

To verify analytical expression of ATT provided by Eq.(21)
comprehensively, it was compared with numerical solutions
provided by Eq.(5). Both of them agree well with each other,
which was summarized in Fig.2.

FIGURE 2. Average trapping time for four different values of δ on
standard random walk with one trap. The filled symbols represent
numerical results and the empty symbols denote values of analytical
expression given by Eq.(21).

From Eq.(20), we have

An =
(δ + 3)Nn − 3δ − 3

6

(
A
B
)n = [

(δ + 3)Nn − 3δ − 3
6

]
ln AB
lnA (22)

For large networks, combining Eq.(21) with Eq.(22) leads to

〈T 〉n ≈ (
A
B
)n ∼ N

ln AB
lnA
n (23)

Eq.(23) shows that the ATT grows as a power-law function of

network size with exponent θ (δ) =
ln AB
lnA . The exponent θ(δ)is

always smaller than 1, thus the average trapping time grows
sub-linearly with the growth of the network regardless of the
value of weight parameter δ.

IV. ANALYTICAL SOLUTION OF ATT FOR DELAYED
RANDOM WALKS WITH A SINGLE TRAP
In the preceding section, we have obtained the explicit expres-
sions of average trapping time in the context of standard
randomwalk, next to, we will study the delayed randomwalk
[40] on this weighted network with a single trap.

A. NUMERICAL FORMULATIONS OF TRAPPING
PROBLEMS
Before defining delayed random walk on this weighted net-
work, it is beneficial to introduce some relevant definitions.
We have defined 3n and 3̄n in Sec.3. To this end, if a
neighbour of node i on this weighted network belongs to
3n−1, it’s called old neighbors of node i, otherwise it is
called new neighbors of node i. During the process of delayed
random walks in Gn, if the walker currently locates at an old
node i, it’s allowed to jump to any of node i’s old neighbors
or any neighbors, with their respective probabilities p and
(1− p)(0 ≤ p ≤ 1). If the walker locates at a new node now,
it can move to any neighbors inGn. Concretely, the transition
probability pij is defined by:

pij=



p×
ωij(n)∑

k∈3n−1
ωik (n)

+(1−p)×
ωij(n)
Si(n)

, i, j ∈ 3n−1

(1− p)×
ωij(n)
Si(n)

, i ∈ 3n−1, j ∈ 3̄n

ωij(n)
Si(n)

, i ∈ 3̄n

(24)

At each time step, the walker starting from its current position
i moves to any of its neighboring nodes j with this transition
probability pij. In this section, we study the delayed random
walk with a fixed trap located at node 1. Of course, the results
will be the same if the trap is placed at node 2 or 3. Let Fni
denotes the trapping time in Gn, we have

Fni =
Nn∑
j=1

pij(n)(Fnj + 1)

=

Nn∑
j=1

pij(n)Fnj +
Nn∑
j=1

pij(n)
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=

Nn∑
j=2

pij(n)Fnj + pi1(n)F
n
1 + 1

=

Nn∑
j=2

pij(n)Fnj + pi1(n)× 0+ 1

=

Nn∑
j=2

pij(n)Fnj + 1 (25)

which can be written in matrix formulation as:

F̄ = F̄ P̄+ ē (26)

where P̄ represents the transition probability matrix for
delayed random walks in Gn. Transforming Eq.(26) leads to

F̄ = (Ī − P̄)−1ē (27)

We use 〈F〉n to denote the ATT . From Eq.(27), we further
obtain

〈F〉n =
1

Nn − 1

Nn∑
i=2

Fni =
1

Nn − 1

Nn∑
i=2

Nn∑
j=2

τij (28)

Although computing the inverse of a matrix means heavy
computational burden for large networks, we can use Eq.(28)
to check the analytical results. In subsequent sections,
the analytical solution of average trapping time in the context
of delayed random walk will be derived and compared with
numerical solution provided by Eq.(28).

B. EXPLICIT EXPRESSIONS OF AVERAGE TRAPPING TIME
In the following, we will deduce the ATT in the context of
delayed random walk. In order to evaluate 〈F〉n, we define
two quantities for g ≤ n,

Fng,tot =
∑
i∈3g

Fni , F̄
n
g,tot =

∑
i∈3̄g

Fni (29)

Then, the ATT can be written as follows:

〈F〉n =
1

Nn − 1
Fnn,tot (30)

Standard random walk studied in Sec.3 corresponds
to the special case of delayed random walk [42] when
p = 0. To be more convenience of deduction, we intro-
duce Fni ,F

n
g,tot , F̄

n
g,tot , 〈F〉n to denote T ni ,T

n
g,tot , T̄

n
g,tot , 〈T 〉n

respectively.
Before computing Fnn,tot , we first determine the evolution

rule of Fni . Similar to the standard random walks in Gn,
the quantitiesM and N for delayed random walks satisfy the
following relations:

M = p+ (1− p)[
δ + 1
δ + 2

× 1+
1

δ + 2
(1+ N )]

N =
1
2
(1+ N )+

1
2
(1+M )

(31)

which give M = δ+4−2p
δ+1+p . Therefore, we have the following

rule

Fn+1i =
δ + 4− 2p
δ + 1+ p

T ni (32)

which means from iteration n− 1 to iteration n, the FPT for
any node i increases by a factor of δ+4−2p

δ+1+p . For p = 0, Eq.(32)
becomes Eq.(7). Using Eq.(32), Fnn,tot can be computed as

Fnn,tot = Fnn−1,tot + F̄
n
n,tot =

δ + 4− 2p
δ + 1+ p

T n−1n−1,tot + F̄
n
n,tot

(33)

For new nodes u, v ∈ 3̄n, both of them are adjacent and
have a common neighbor x ∈ 3n−1, so trapping times of
these three nodes obey the equations

Fnu =
1
2
(1+ Fnv )+

1
2
(1+ Fnx )

Fnv =
1
2
(1+ Fnu )+

1
2
(1+ Fnx )

(34)

where Fnu = Fnv . So we obtain

Fnu = Fnv = 2+ Fnx (35)

Summing up the trapping times of all nodes in 3̄n, we obtain

F̄nn,tot = 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)× Fni ]

= 2|3̄n|+
∑

i∈3n−1

[Si(n−1)×
δ+4− 2p
δ+1+p

T n−1i ] (36)

Similarly, T̄ nn,tot could also be determined as follows:

T̄ nn,tot = 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)× T ni ]

= 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)×
δ + 4
δ + 1

T n−1i ] (37)

where |3̄n| = 6(δ + 4)n−1.
Combining Eqs.(36) and (37), we obtain

T̄ nn,tot − 2|3̄n|

δ+4
δ+1

=
F̄nn,tot − 2|3̄n|

δ+4−2p
δ+1+p

(38)

from which we further derive

F̄nn,tot=
δ + 1
δ + 4

×
δ + 4− 2p
δ + 1+ p

T̄ nn,tot+
36p(δ + 2)(δ + 4)n−2

δ + 1+p
(39)

On the other hand,

T̄ nn,tot = T nn,tot − T
n
n−1,tot = T nn,tot −

δ + 4
δ + 1

T n−1n−1,tot (40)

Substituting Eqs.(39) and(40) into Eq.(33) leads to

Fnn,tot=
δ + 1
δ + 4

×
δ + 4− 2p
δ + 1+ p

T nn,tot+
36p(δ + 2)(δ + 4)n−2

δ+1+p
(41)

Combining Eq.(41) with Eq.(30), we arrive at the explicit
expression for ATT is

〈F〉n

=
δ + 1
δ + 4

×
δ + 4− 2p
δ + 1+ p

〈T 〉n +
18p(δ + 2)(δ+3)(δ + 4)n−2

(δ+1+p)[3(4+δ)n+δ]
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FIGURE 3. Average trapping time on delayed random walk with one trap.
Here, numerical results are denoted by filled symbols while the empty
symbols represent the values of ATT computed analytically by Eq.(42).

=
F
G
[
(8δ + 20)(An − 1)

A(3An + δ)
(
A
B
)n−1

+
2(A− 1)(Bn − 1)

(3An + δ)δ
(
A
B
)n−2 +

2(A− 1)
3An + δ

(
A
B
)n−1]

+
18p(A− 1)(B+ 1)An−2

G(3An + δ)
(42)

where A = δ+4,B = δ+1,F = δ+4−2p,G = δ+1+p.
Eq.(42) shows that when p = 0, 〈F〉n reduces to the

expression of ATT obtained in Sec.3, which initially verified
the expression of ATT deduced here. We also further com-
prehensively verified the exact expressions of ATT given by
Eq.(42) by comparing it with numerical solution provided by
equation Eq.(28). For different combinations of values of δ
and p, the analytical and numerical results agree well with
each other, which was summarized in Fig.3.
Eq.(42) shows that for trapping process in Gn, the ATT of

the network is controlled by parameters p and δ. In the fol-
lowing, we will analyze how they impact the leading behavior
and pre-factor of ATT .
Since the total number of nodes in Gn is Eq.(20), we get

An−1 =
(δ + 3)Nn − 3δ − 3

6(δ + 4)

(
A
B
)n−1 = [

(δ + 3)Nn − 3δ − 3
6(δ + 4)

]
ln AB
lnA (43)

For large networks and n → ∞, plugging Eq.(43) into
Eq.(42) leads to

〈F〉n ≈
F
G
(
A
B
)n−1 ∼ N

ln AB
lnA
n (44)

We can observe from Eq.(44) that the average trapping time
grows sub-linearly with the growth of the network regardless
of the value of weight parameter. The reason is that the

exponent
ln AB
lnA is always smaller than 1when δ > 0 in the range

of 0 ≤ p ≤ 1. Simultaneously, the delayed parameter p keeps
the leading scaling unchanged. However, as shown inEq.(44),
the parameter p can significantly modify the pre-factor of
ATT . When p grows from 0 to 1, the pre-factor continuously
drops, which implies that the delay parameter p can improve
the trapping efficiency to some extent.

V. ANALYTICAL SOLUTION OF ATT FOR STANDARD
RANDOM WALKS WITH THREE TRAPS
In this section, we will explore standard random walk on this
weighted network with three traps being fixed at node 1,2,
3 and calculate the average trapping time.

A. NUMERICAL FORMULATIONS OF TRAPPING
PROBLEMS
Let Dni denotes the trapping time, we have

Dni =
Nn∑
j=1

pij(n)(Dnj + 1)

=

Nn∑
j=1

pij(n)Dnj +
Nn∑
j=1

pij(n)

=

Nn∑
j=4

pij(n)Dnj +
3∑
j=1

pij(n)Dnj + 1

=

Nn∑
j=4

pij(n)Dnj + 1 (45)

which can be written in matrix form as:

D̄ = D̄P̄+ ē (46)

Solving Eq.(46) leads to

D̄ = (Ī − P̄)−1ē (47)

We use 〈D〉n to denote the ATT . From Eq.(47), we further
obtain [30]

〈D〉n =
1

Nn − 3

Nn∑
i=4

Dni =
1

Nn − 3

Nn∑
i=4

Nn∑
j=4

τij (48)

Eqs.(47) and (48) show that the problem of calculating Dni
and 〈D〉n are reduced to find the sum of elements of matrix
(Ī − P̄)−1.

B. EXPLICIT EXPRESSIONS OF AVERAGE TRAPPING TIME
Since the procedure for deducing ATT with three traps being
fixed at the network is similar to that in Sec.3, so we simplify
the description of deduction process.

In order to evaluate 〈D〉n, we define two quantities for g ≤
n,

Dng,tot =
∑
i∈3g

Dni , D̄
n
g,tot =

∑
i∈3̄g

Dni (49)

Then, the 〈D〉n can be written as follows:

〈D〉n =
1

Nn − 3
Dnn,tot (50)

From Eq.(15), we know

D̄n+1n+1,tot =
(δ + 4)2

δ + 1
D̄nn,tot −

12
δ + 1

(δ + 4)n (51)
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In the case of three traps, D̄1
1,tot = 12 + 2(D1

2 + D1
3) = 12,

Eq.(51) is solved inductively as

D̄nn,tot = 8[
(δ + 4)2

δ + 1
]n−1 + 4(δ + 4)n−1 (52)

On the another way,

Dnn,tot = Dnn−1,tot + D̄
n
n,tot =

δ + 4
δ + 1

Dn−1n−1,tot + D̄
n
n,tot (53)

Substituting Eq.(52) into Eq.(53), we have

Dnn,tot =
4+ δ
1+ δ

Dn−1n−1,tot + 8[
(δ + 4)2

δ + 1
]n−1 + 4(δ + 4)n−1

(54)

Considering the initial condition T 0
0,tot = 0, Eq.(54) is

resolved by induction to yield

Dnn,tot = (
A
B
)n[

(8δ + 8)(An − 1)
A(δ + 3)

+
4B(Bn − 1)

Aδ
] (55)

where A = δ + 4,B = δ + 1. Plugging Eq.(55) into Eq.(50),
we arrive at the accurate formula for the ATT at the traps
located at nodes 1,2 and 3 on this weighted heterogeneous
network.

〈D〉n = (
A
B
)n−1[

4
3
+

(A− 1)(Bn − 1)
(6An − 6)δ

] (56)

we also verify the exact expressions given by Eq.(56) with
numerical ones given by Eq.(48), which agree well with each
other and summarized in Fig.4. At the same time, we could
find 〈D〉n is quantitatively less than the analytical expression
of ATT given in Eq.(21) for any n, which indicates that intro-
ducing more traps on this weighted network in the context
of standard random walk may improve trapping efficiency to
some extent.

FIGURE 4. Average trapping time on standard random walk with three
traps. The filled symbols and the empty symbols represent numerical
results and the analytical values of ATT respectively.

When n→∞, plugging Eq.(43) into Eq.(56) results in

〈D〉n ≈
4
3
(
A
B
)n−1 ∼ N

ln AB
lnA
n (57)

From this equationwe find that theATT grows as a power-law
function of network size and exponent is same as that in the
case of introducing one trap. Therefore, average trapping time

in the case of introducing three traps onto the network in the
context of standard randomwalk also grows sub-linearly with
the growth of the network regardless of the value of weight
parameter δ.

VI. ANALYTICAL SOLUTION OF ATT FOR DELAYED
RANDOM WALKS WITH THREE TRAPS
In this section, we will introduce three traps onto the network
in the context of delayed random walk and deduce average
trapping time analytically.

A. NUMERICAL FORMULATIONS OF TRAPPING
PROBLEMS
As for the transition probability pij, it fully complies with
Eq.(24). In addition, the numerical formulations of trapping
problems could be in accordance with the Sec.5 except the
transition probability.

Let Lni denotes the trapping time, 〈L〉n denote the ATT ,
we could obtain from Ref [30] that

Lni =
Nn∑
j=4

pij(n)Lnj + 1

〈L〉n =
1

Nn − 3

Nn∑
i=4

Lni =
1

Nn − 3

Nn∑
i=4

Nn∑
j=4

τij (58)

Although computing the inverse of a matrix means heavy
computational burden for large networks, we can use Eq.(58)
to check the analytical results.

B. EXPLICIT EXPRESSIONS OF AVERAGE TRAPPING TIME
In the following, we will deduce the ATT in the context of
delayed random walk with three traps. In order to evaluate
〈L〉n, we define two quantities for g ≤ n,

Lng,tot =
∑
i∈3g

Lni , L̄
n
g,tot =

∑
i∈3̄g

Lni (59)

Similarly in Sec.4, we introduce Lni ,L
n
g,tot , L̄

n
g,tot , 〈L〉n to

denote the values of Dni ,D
n
g,tot , D̄

n
g,tot , 〈D〉n respectively.

Similarly to Eq.(32), we obtain

Ln+1i =
δ + 4− 2p
δ + 1+ p

Dni (60)

Using Eq.(60), Lnn,tot can be computed as

Lnn,tot = Lnn−1,tot + L̄
n
n,tot =

δ + 4− 2p
δ + 1+ p

Dn−1n−1,tot + L̄
n
n,tot

(61)

Summing up the trapping times of all nodes in 3̄n, we obtain

L̄nn,tot = 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)× Lni ]

= 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)×
δ + 4− 2p
δ + 1+ p

Dn−1i ]

(62)
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Similarly, D̄nn,tot could also be determined as follows:

D̄nn,tot = 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)× Dni ]

= 2|3̄n| +
∑

i∈3n−1

[Si(n− 1)×
δ + 4
δ + 1

Dn−1i ] (63)

where |3̄n| = 6(δ + 4)n−1.
Combining Eqs.(62) and (63), we obtain

D̄nn,tot − 2|3̄n|

δ+4
δ+1

=
L̄nn,tot − 2|3̄n|

δ+4−2p
δ+1+p

(64)

from which we further derive

L̄nn,tot=
δ + 1
δ + 4

×
δ + 4− 2p
δ + 1+ p

D̄nn,tot+
36p(δ + 2)(δ + 4)n−2

δ+1+p
(65)

On the other hand,

D̄nn,tot=D
n
n,tot−D

n
n−1,tot=D

(n)
n,tot −

δ + 4
δ+1

Dn−1n−1,tot (66)

Substituting Eqs.(65) and(66) into Eq.(61) leads to

Lnn,tot=
δ + 1
δ + 4

×
δ + 4− 2p
δ + 1+ p

Dnn,tot+
36p(δ+2)(δ + 4)n−2

δ+1+ p
(67)

Dividing both sides of Eq.(67) by Nn − 3, we arrive at a
formula for the ATT , which leads to

〈L〉n =
1

Nn − 3
Lnn,tot

=
δ + 1
δ+4

×
δ+4−2p
δ+1+p

〈D〉n+
18p(δ+2)(δ+3)(δ + 4)n−2

(δ + 1+ p)(3An − 3)

=
F
G
[
4
3
(
A
B
)n−2 +

(A− 1)(Bn − 1)
(6An − 6)δ

(
A
B
)n−2]

+
6p(A− 1)(B+ 1)An−2

G(An − 1)
(68)

where A = δ+4,B = δ+1,F = δ+4−2p,G = δ+1+p.
We still compared analytical results obtained from Eq.(68)

with the numerical solution of ATT and summarized the
comparison in Fig.5. It can be seen from Fig.5 that both ana-
lytical results of ATT and numerical ones still coincide with
each other. In addition, by comparing Eq.(68) with Eq.(42),
we also find the value of 〈L〉n decreases significantly for any
n, which implies that placing more traps on the network in
the context of delayed random walk also can elevate trapping
efficiency to some extent.

From Eq.(20), it can be deduced that

An−2 =
(δ + 3)Nn − 3δ − 3

6(δ + 4)2

(
A
B
)n−2 = [

(δ + 3)Nn − 3δ − 3
6(δ + 4)2

]
ln AB
lnA (69)

FIGURE 5. Average trapping time with four different combinations of
values of p and δ on delayed random walk with three traps. Here, we use
the empty symbols to represent the values of ATT computed analytically
and the numerical results of ATT are denoted by filled symbols.

Plugging Eq.(69) into Eq.(68) and taking n → ∞ into
account brings about

〈L〉n ≈
F
G
(
A
B
)n−2 ∼ N

ln AB
lnA
n (70)

From Eq.(70), we found that the average trapping time grows
sub-linearly with the growth of the network regardless of the
value of parameter δ. In addition, the delayed parameter p
keeps the leading scaling unchanged, but it can significantly
modify the pre-factor of ATT .

VII. CONCLUSION
In this paper, we studied both standard random walk and
delayed random walk on a family of weighted heterogeneous
networks with one or three deep traps and analytically com-
puted the average trapping time(ATT ) as indicator of trapping
efficiency in four distinct schemes respectively. In all the four
cases, the analytical expressions of ATT coincide with corre-
sponding numerical solution of ATT . Furthermore, the ana-
lytical solutions of ATT obtained collectively lead to the
following conclusions. Firstly, ATT grows sub-linearly with
network size no matter what type of random walk employed
and how many deep traps fixed on the network. Secondly,
parameter p steering delayed random walk only modifies the
pre-factor of ATT and leaves the leading scaling of ATT
unchanged. Thirdly, introducing more traps can lower ATT
and improve trapping efficiency. To some extent, conclusions
made here and in previous works such as [30], [40], [41],
[46]–[48] may collectively serve as pieces of puzzles for
illuminating trapping issue and related dynamical processes
on more general networks or systems.
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