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ABSTRACT Automatic segmentation of prostatic zones on multi-parametric MRI (mpMRI) can improve

the diagnostic workflow of prostate cancer. We designed a spatial attentive Bayesian deep learning network

for the automatic segmentation of the peripheral zone (PZ) and transition zone (TZ) of the prostate with

uncertainty estimation. The proposed method was evaluated by using internal and external independent

testing datasets, and overall uncertainties of the proposed model were calculated at different prostate

locations (apex, middle, and base). The study cohort included 351 MRI scans, of which 304 scans were

retrieved from a de-identified publicly available datasets (PROSTATEX) and 47 scans were extracted from

a large U.S. tertiary referral center (external testing dataset; ETD)). All the PZ and TZ contours were drawn

by research fellows under the supervision of expert genitourinary radiologists. Within the PROSTATEX

dataset, 259 and 45 patients (internal testing dataset; ITD) were used to develop and validate the model.

Then, the model was tested independently using the ETD only. The segmentation performance was evaluated

using the Dice Similarity Coefficient (DSC). For PZ and TZ segmentation, the proposed method achieved

mean DSCs of 0.80±0.05 and 0.89±0.04 on ITD, as well as 0.79±0.06 and 0.87±0.07 on ETD. For both

PZ and TZ, there was no significant difference between ITD and ETD for the proposed method. This DL-

based method enabled the accuracy of the PZ and TZ segmentation, which outperformed the state-of-art

methods (Deeplab V3+, Attention U-Net, R2U-Net, USE-Net and U-Net). We observed that segmentation

uncertainty peaked at the junction between PZ, TZ and AFS. Also, the overall uncertainties were highly

consistent with the actual model performance between PZ and TZ at three clinically relevant locations of the

prostate.

INDEX TERMS Prostate zones, automatic segmentation, Bayesian deep learning, attentive modules.

I. INTRODUCTION

Prostate cancer (PCa) is the most common solid organ

malignancy and is among the most common causes of

cancer-related death among men in the United States [1].

Multi-parametric MRI (mpMRI) is the most widely avail-

able non-invasive and sensitive tool for the detection of

clinically significant PCa (csPCa), 70% and 30% of which

are located in the peripheral zone (PZ) and transition zone

The associate editor coordinating the review of this manuscript and

approving it for publication was Kok-Lim Alvin Yau .

(TZ) respectively [2], [3]. The clinical reporting of mpMRI

relies on a qualitative expert consensus-based structured

reporting scheme (Prostate Imaging-Reporting and Data Sys-

tem (PI-RADS)). The interpretation is based primarily on

diffusion-weighted imaging (DWI) in the peripheral zone

(PZ) and T2-weighted (T2w) imaging in the transitional zone

(TZ) since csPCa lesions have different primary imaging

features [2], [3].

Accurate segmentation of PZ and TZwithin the 3TmpMRI

is essential for localization and staging of csPCa to enable

MR targeted biopsy and guide and plan further therapy such
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as radiation, surgery, and focal ablation [4]. Segmentation

of the prostate zones on mpMRI is typically done manu-

ally, which can be time-consuming and sensitive to readers’

experience, resulting in significant intra- and inter-reader

variability [5]. Automated segmentation of prostatic zones

(ASPZ) is reproducible and beneficial for consistent location

assignment of PCa lesions [6]. ASPZ also enables automated

quantitative imaging feature extraction related to prostate

zones and can be used as a pre-processing step to improve

the computer-aided diagnosis (CAD) of PCa [7].

ASPZ was previously proposed by the atlas-based method

[8]. Later, Zabihollahy et al. [9] proposed a U-Net-based

method for ASPZ. Clark et al. [10] developed a staged

deep learning architecture, which incorporated a classifica-

tion into U-Net, to segment the whole prostate gland and TZ.

However, the U-Net-based segmentation sometimes resulted

in inconsistent performance because the anatomic structure

of the prostate can be less distinguishable, and the bound-

aries between PZ and TZ may distort semantic features [5].

Liu et al. [5] recently improved the encoder of the U-Net by

using the residual neural network, ResNet50 [11], followed

by feature pyramid attention to help capture the information

at multiple scales. Furthermore, Rundo et al. [12] proposed an

attentive deep learning network for ASPZ via incorporating

the squeeze and excitation (SE) blocks into U-Net. SE adap-

tively recalibrated the channel-wise features to potentially

improve inconsistencies in the segmentation performance.

Moreover, segmentation outcomes from ASPZ are typi-

cally deterministic; there is a lack of knowledge on the confi-

dence of the model [13]. Providing uncertainties of the model

can improve the overall segmentation workflow since it easily

allows refining uncertain cases by human experts [13]. The

uncertainty can be estimated by the Bayesian deep learning

model, which not only produces predictions but also provides

the uncertainty estimations for each pixel. This can be done

by adopting probability distributions of weights rather than

the deterministic weights of the model.

In this study, we propose an ASPZ with an estimation of

pixel-wise uncertainties using a spatial attentive Bayesian

deep learning network. Different from Rundo et al. [12],

we adopt a spatial attentive module (SAM), which models

the long-range spatial dependencies between PZ and TZ by

calculating the pixel level response from the image [14]. The

proposed model incorporates four sub-networks, including

SAM, an improved ResNet50 with dropout, a multiple-scaled

feature pyramid attention module (MFPA) [5], and a decoder.

The SAM forces the entire network focusing on specific

regions that havemore abundant semantic information related

to prostatic zones. We use the improved ResNet50 to handle

the heterogeneous prostate anatomy with semantic features.

The MFPA is designed to enhance the multi-scale feature

capturing. Finally, the spatial resolution is recovered by the

decoder. We also implement the Bayesian model through

both training the proposed model with dropout and Monte

Carlo (MC) samples of the predictions during the inference,

inspired by prior work by Gal and Ghahramani [15]. The

dropout can be regarded as using Bernoulli’s random vari-

ables to sample the model weights [15].

We evaluate the proposed model’s performance using

internal and external testing datasets and compared it with

previously developed ASPZ methods. The segmentation per-

formance is compared to investigate the discrepancy between

two MRI datasets. The importance of each individual mod-

ule within the proposed method is also examined. Finally,

the overall prostate zonal segmentation at apex, middle, and

base slices are computed to illustrate the uncertainty of seg-

mentation at different positions of the prostate.

II. MATERIALS

This study was carried out in compliance with the United

States Health Insurance Portability and Accountability Act

(HIPAA) of 1996 with approval by the local institutional

review board (IRB). The MRI datasets were acquired from

two sources. For model development and internal testing

(n = 259 and n = 45)—internal testing dataset (ITD)—we

used the Cancer ImagingArchive (TCIA) data from the SPIE-

AAPM-NCI PROSTATE X (PROSTATE X) challenge. [16]

For independent model testing, we used an external testing

dataset (ETD) (n = 47; age 45 to 73 years and weight 68 to

113 kg) retrieved from our tertiary academic medical cen-

ter. For the ETD, the pre-operative MRI scans, which were

acquired between October 2017 and December 2018 using

one of the three 3T MRI scanners (Skyra (n = 39), Prisma

(n = 1), and Vida (n = 7); (Siemens Healthineers, Erlangen,

Germany)) were collated.

For both ITD and ETD data, both PZ and TZ were con-

toured using OsiriX (Pixmeo SARL, Bernex, Switzerland) by

MRI research fellows. Then, two genitourinary radiologists

(10-19 years of post-fellowship experience interpreting over

10,000 prostate MRI) cross-checked the contours. The axial

T2 TSE (turbo spin-echo) MRI sequence was used for both

ITD and ETD segmentation (Table 1). Prior to the training

and testing, all the images in both datasets were normalized

to an interval of [0,1] and were also resampled to the common

in-plane resolution (0.5 × 0.5 mm).

III. METHODS

A. PROPOSED MODEL FOR AUTOMATIC PROSTATIC

ZONAL SEGMENTATION

The overall workflow of the proposed network is shown

in Figure 1, which consists of four sub-networks. By joining

the four sub-networks together, a fully end-to-end prostatic

zonal segmentation workflow was formed. Both PZ and TZ

segmentations were done simultaneously using a single net-

work.

1) SPATIAL ATTENTIVE MODULE (SAM)

Inspired by Wang et al. [14], the SAM was designed to

make the network intelligently pay attention to the regions,

which had more semantic features associated with PZ and TZ

(shown in Figure 1.a).
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FIGURE 1. A whole workflow of the proposed model. Input is a 2D T2w MRI slice, and output is a segmentation mask, which has
the PZ and TZ segmentation result (Gray and white colors indicate PZ and TZ, respectively), and a pixel-wise uncertainty map
(yellow pixel indicates large uncertainty and blue indicates low uncertainty). There are four sub-networks in the network, which
are (a) spatial attention module (SAM), (b) improved ResNet50, (c) multiple-scaled feature pyramid attention (FPA), and (d)
decoder.

TABLE 1. Detailed T2w TSE protocols from two MRI datasets.

Inside the images, there existed some spatial dependencies

of PZ and TZ pixels. For instance, TZ was always surrounded

by PZ in the bottom of the prostate, and the urinary bladder

region was always above PZ and TZ in the image and TZ

was usually in the image center. SAM helped the network to

model such spatial dependent information through global fea-

tures. Specifically, the response at each pixel was computed

by considering all the pixels in the image. Higher priorities

were then adaptively assigned to the pixels, which had more

informative semantic features.

Detailed processes regarding spatial attention are shown

in the left bottom of Figure 1. After going through a con-

volution layer and reshaping, three kinds of vectors - query

vector α(x), key vector β (x) and representative vector g (x),

were formed. Then, we performed the matrix multiplication

between the transpose of the query vector and the key vector,

and after that, we applied a soft-max layer to compute the

weight matrix which models the spatial relationship between

any two pixels of the features. Next, we again performed

a matrix multiplication between the weight matrix and the

representative vector and reshaped the result to the size of

original features. These processes can be formulated by:

y = softmax
(

α(x))T∗ (β (x))
)

∗ g (x) (1)

where x and y represent the raw image and attentive map

of the raw image, respectively. ∗ means matrix multipli-

cation. Finally, an element-wise sum operation between

the result above and the original features was performed

to obtain the final result which reflected the long-range

dependencies.
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2) IMPROVED RESNET50 WITH DROPOUT

Improved ResNet50 (shown in Figure 1.b) was served as the

bone structure of the network. ResNet50 in this paper was

improved by the following three steps, which followed the

methods of Liu et al. [5]. First, the initial max-pool was

removed since it was proved to compromise the performance

of segmentation. Bottleneck block at stride one as the first

block in the 4th layer was replaced with the regular block.

Then, we used the dilated bottleneck to serve as the second

block in the 4th layer so as to minimize the potential loss

to the spatial information. Finally, the dropout layer was

inserted after each block within the improved ResNet50 to

transform the current neural network to the bayesian neural

network [17].

3) MULTI-SCALED FEATURE PYRAMID ATTENTION (MFPA)

Feature pyramid attention (FPA) module (shown in the bot-

tom right of Figure 1) was applied after each layer within

Resnet50 to help capture the features from themultiple scales.

Next, featuremaps after each FPAwere then upsampled to the

same size and then concatenated in the decoder.

4) DECODER

The decoder (Figure 1.d) was used to recover feature maps’

spatial resolution. In the decoder, the total features calculated

in the 3) went through two 3×3 convolutional layers and one

1 × 1 convolutional layer, followed by an up-sampling (by a

factor of 4). In the end, the multi-class softmax classifier was

performed for the simultaneous segmentation of TZ and PZ.

B. UNCERTAINTY ESTIMATION FOR PROSTATE ZONAL

SEGMENTATION

Figure 1 shows the uncertainty estimation workflow by the

proposed method. Monte Carlo dropout [15] was served as

the method for approximate inference.

Usually, a posterior distribution p(W |X ,Y ) placed over

weights W of the neural network is computed to capture the

uncertainty in the model, where X is the training samples,

and Y is the corresponding ground truth labels of prostate

zones [18]. However, it is intractable to compute the posterior.

The posterior can be approximated by the variational dis-

tribution q(W ), which minimizes the Kullback-Leibler (KL)

divergence between the actual posterior and the variational

distribution: KL (q (W )) |
∣

∣p(W |X ,Y )
)

[18]. It is noted that

performing dropout on a hidden layer is equivalent to placing

the variational distribution – Bernoulli distribution over the

weights of that layer [15]. Also, the effect of minimizing

the cross-entropy loss is the same as the minimization of

the KL-divergence. Therefore, training with dropout allows

the approximate inference. These dropouts are also required

to be kept active during the testing. As the dropout is the

same as placing a Bernoulli distribution over the network

weights, the sample from a dropout network’s outputs can

be used to approximate the posterior. A Monte Carlo sample

from the posterior distribution is produced by performing a

stochastic forward pass through a trained dropout network.

There are two types of uncertainties: epistemic uncertainty

— caused by the ineptitude of the model because of the lack

of training data; aleatoric uncertainty— caused by the noisy

measurements in the data [15]. Epistemic uncertainty can be

mitigated by increasing the training samples. Aleatoric uncer-

tainty can be restrained by increasing the sensor precision.

Aleatoric uncertainty occurs during measuring the inherent

noise in the samples and is reflected in the uncertainty over

the model’s parameters [19]. A model with the precise set

of parameters will lower down the aleatoric uncertainty [19].

The combination of aleatoric and epistemic uncertainty forms

the predictive uncertainty [18]. In this paper, we focused on

the exploring of predictive uncertainty for the prostate zonal

segmentation, which can be measured by the entropy of the

predictive distribution [18], [19] and is formulated as:

−

C
∑

c=1

1

T

T
∑

t=1

p(y = c|x,wt ))log(
1

T

T
∑

t=1

p (y = c|x,wt)) (2)

where y is the output variable, T is the number of stochastic

forward passes (50 was chosen is the experiments (Figure 1)),

C is the number of classes (C=3, for background, PZ and

TZ), p (y = c|x,wt) is the soft-max probability of input x

being in class c, wt represents model’s parameters on the tth
forward pass.

C. AVERAGE UNCERTAINTY MAPS FOR THE PROSTATE

ZONAL SEGMENTATION

The average uncertainty map tells the overall zonal uncer-

tainty in different positions on the prostate image. Fig-

ure 2 shows the processes of obtaining the average uncer-

tainty map.

In order to obtain the average uncertainty map at the

prostate apex, middle portion, and base, three template

prostate images at the three sections were chosen by a radi-

ologist after inspecting all the prostate images. Next, for

each prostate section, zonal boundary points on non-template

prostate images (sample images) were then registered to those

on the prostate template image within the section using a

non-rigid coherent point drift method (CPD) [20]. Within

non-rigid CPD, alignment of two-point sets was thought of

as a probability density estimation problem where one point

set serves as the centroids of the gaussian mixture model

(GMM), and the other represents the data points. By max-

imizing the likelihood, GMM centroids were then fitted to

the data. Also, GMM centroids were forced to move coher-

ently to preserve the topological structure by regularizing

the displacement field and utilizing the variational calculus

to obtain the optimal transformation.The thin plate spline

(TPS) method [21] was then used to warp the sample uncer-

tainty maps to the template uncertainty map based on the

corresponding zonal boundary points (Figure 2). In doing

so, the average was computed among all the warped sample

prostate uncertainty maps, including the template uncertainty

map, yielding an average uncertainty map in this prostate
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FIGURE 2. The overall workflow for the registration of the sample (one of the non-templates) uncertainty map to the
template uncertainty map. A1 and A2 are a template image and its uncertainty map. B1 and B2 are a sample image and its
uncertainty map, respectively. C shows the result after the zonal boundary registration between the sample and the
template. Red and blue points represent the zonal boundaries on the template and the sample images, respectively. D is the
warped uncertainty map based on the corresponding zonal points after the registration. E and F show the overlapping of
zonal boundary points and uncertainty maps before and after registration.

section. In the end, three average uncertainty maps were

obtained for the prostate apex, middle portion, and base.

In addition, the prostate zonal average uncertainty score for

each prostate section was calculated by averaging all of the

pixels’ uncertainties in the zone.

D. MODEL DEVELOPMENT AND TESTING

Cross entropy (CE) served as the loss function to train the

proposed model. For each given pixel, cross-entropy was

formulated as,

CE =
1

3

∑2

i=0
−yi log (pi) − (1 − yi) log (1 − pi) (3)

where yi ∈ {0, 1} is the ground-truth binary indicator, corre-

sponding to the 3-channel predicted probability vector pi ∈

[0, 1].

Training and evaluation were performed on a desktop com-

puter with a 64-Linux system with 4 Titan Xp GPU of 12 GB

GDDR5 RAM. Pytorch was used for the implementation of

algorithms. The learning rate was initially set to 1e-3. The

model was trained for 100 epochs with batch size 8. The loss

was optimized by stochastic gradient descent with momen-

tum 0.9 and L2-regularizer of weight 0.0001. The central

regions (80mm × 80mm) were automatically cropped from

the original images of the prostate. This is because prostate

areas are always located in the middle. On-the-fly data aug-

mentation approaches included random rotation between [-

3◦, 3◦], flipped horizontally, and elastic transformations. For

the elastic transformation, there are three steps: 1) A coarse

displacement grid with a random displacement for each grid

point was generated. 2) Displacement for each pixel (defor-

mation field) in the input image was computed via a thin plate

spline (TPS) method on the coarse displacement grid. 3) The

input image and the corresponding segmentation mask were

deformed according to the deformation field. (Bilinear and

nearest-neighbor interpolation methods were used to handle

the non-integer pixel locations on the warped input image

and segmentation mask). Totally, we used 308 unique sub-

ject MRIs from PROSTATE X for model development and

internal testing. The model was trained by 70% (N = 218)

of the dataset, with 15% (N = 45) held out for validation

and 15% (N= 45) for internal testing (internal testing dataset

(ITD)). For external testing (external testing dataset (ETD)),

47 unique subject MRI from the large U.S. tertiary academic

medical center were used. No endorectal coil was used in the

study.

Patient-wised Dice Similarity Coefficient (DSC) [21] was

employed to evaluate the segmentation performance and to

compare with baseline methods, which is formulated as:

DSC =
2|A ∩ B|

|A| + |B|
(4)

where A is the predicted 3D zonal segmentation, which is

stacked by the 2D algorithmic prostate zonal segmentation

and B is the ground-truth of 3D zonal segmentation stacked

by the 2D manual segmentation on the prostate slices.

Patient-wise Hausdorff Distance (HD) [21] was also

used to evaluate the segmentation performance, which is
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FIGURE 3. Two representative examples of the zonal segmentation by the proposed method, DeeplabV3+ USE-Net, U-Net. Yellow
lines are the manually annotated zonal segmentation, and the red lines are algorithmic results. The top two and bottom two rows
represent the segmentation examples from two different subjects.

formulated as:

HD (X ,Y ) = (h (X ,Y ) , h(Y ,X )) (5)

where h (X ,Y ) is the directed HD, which is given by

h(X ,Y ) = max
x∈X

min
y∈Y

‖x − y‖, X and Y are the point sets on

the A and B (defined in the Patient-wised DSC).

E. STATISTICAL ANALYSIS

The distribution of DSCswas described by themean and stan-

dard deviation. Paired sample t-test test was used to compare

the performance difference between the proposedmethod and

baselines on both ITD and ETD. The performance difference

of the proposed method was also tested by paired sample

t-test.

IV. RESULT

A. PERFORMANCE USING INTERNAL TESTING DATASET

(ITD) AND EXTERNAL TESTING DATASET (ETD)

Figure 3 shows two typical examples of prostate zonal seg-

mentation results by the proposed method and the three

comparison methods, including Deeplab V3+ [22], USE-

Net [12], U-Net [23], Attention U-Net [24] and R2U-

Net [25]. USE-Net was proposed by Rundo et al for the

prostate zonal segmentation, which embeds the squeeze-

and-excitation (SE) block into the U-Net and enables the
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TABLE 2. Performance (DSC) of the proposed method and baselines on
internal testing dataset (ITD) and external testing dataset (ETD). P values
are the comparisons between the proposed methods and baselines in ITD
and ETD.

adaptive channel-wise feature recalibration. Attention U-Net,

proposed by Ozan et al, which incorporates attention gates

into the standard U-Net architecture to highlight salient

features that passes through the skip connections. Deeplab

V3+ [22] is one of the state-of-art deep neural networks

for image semantic segmentation, which takes the encoder-

decoder architecture to recover the spatial information and

utilizes multi-scale features by using atrous spatial pyramid

pooling (ASPP). Convolutional features at multiple scales are

probed by ASPP via applying several parallel atrous convolu-

tions with different rates. R2U-Net is an extension of standard

U-Net using recurrent neural network and residual neural

networks.

Means and standard deviations of DSCs for PZ and TZ

on ITD and ETD are shown in Table 2. Mean DSCs for

PZ and TZ of the proposed method were 0.80 and 0.89 on

ITD, 0.79 and 0.87 on ETD, which were all higher than the

results obtained by the comparison methods with significant

difference.

Means and standard deviations of Hausdorff Distance

(HD) are shown in Table 3. The proposed method achieved

the lowest mean HD among all the methods for both PZ and

TZ segmentation.

Figure 4 showed the superior and inferior cases for the PZ

and TZ segmentation. The superior case had DSC > 0.90 for

PZ segmentation andDSC> 0.95 for TZ segmentation. DSCs

of the inferior case were lower than 0.60 and 0.50 for the PZ

and TZ segmentations, respectively.

FIGURE 4. Superior and inferior cases for PZ and TZ segmentation.
Superior and inferior cases for PZ and TZ are shown in the first
and second row.

TABLE 3. Average Hausdorff Distance (mm) of the proposed method and
baselines on internal testing dataset (ITD) and external testing dataset
(ETD). P values are the comparisons between the proposed methods and
baselines in ITD and ETD.

B. PERFORMANCE DISCREPANCY BETWEEN THE

INTERNAL TESTING DATASET (ITD) AND EXTERNAL

TESTING DATASET (ETD)

There was no significant difference (p<0.05) between ITD

and ETD for the performance of PZ segmentation for the

proposed method. However, there was a 2.2% difference for

the TZ segmentation (Table 2).
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FIGURE 5. The pixel-by-pixel uncertainty estimation of the zonal segmentation at the apex, middle, and base slices of the prostate (top). The orange
color indicates high uncertainties, and blue color indicates low uncertainties. Bottom: Average uncertainty scores (bottom left) and average
normalized DSCs (bottom right; normalized by TZ DSC – 0.87 shown in in Table 4) with the standard deviation at the apex, middle, and base slices of
the prostate (x-axis).

FIGURE 6. Prostate zonal anatomy at apex, middle, and base slices of the
prostate.

C. PERFORMANCE INVESTIGATION FOR EACH

INDIVIDUAL MODULE IN THE PROPOSED METHOD

We carried out the following ablation studies to investigate

the importance of each module within the proposed net-

work. TABLE 4 indicates which module was used (a check-

mark) or not used (a cross) in each experiment. We showed

that the best model performance is achieved when both SAM

and MFPA are used in the model for the zonal segmentation.

In experiment 1, DSCs for both zones on ITD and ETD

decreased and were lower than the proposed model when

SAM was removed from the proposed model, which proved

that SAM helped improve the overall segmentation perfor-

mance. In experiment 2, DSCs for PZ on ITD, and both

zones on ETD decreased when MFPA was removed from

the proposed model, indicating that that GFM was essential

within the model.

TABLE 4. Performance investigation for each individual module of the
proposed method. Average DSCs with standard deviation are shown in
the table. SAM is the spatial attention module. MFPA is the multi-scale
feature pyramid attention. Apart from the proposed method, there are
two additional independent experiments, where

√
and × under each row

indicates whether the experiment contains the module or not.
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TABLE 5. First two rows: Average uncertainty scores for all prostate,
apex, middle, and base slices in PZ and TZ. Last two rows: DSCs for all
prostate, apex, middle and base slices in PZ and TZ.

D. THE OVERALL UNCERTAINTY FOR THE PROSTATE

ZONAL SEGMENTATION OF THE PROPOSED METHOD

Figure 5 and TABLE 5 shows the overall uncertainties of

the proposed method for the prostate zonal segmentation.

The pixel-by-pixel uncertainty maps showed that the zonal

boundaries had higher uncertainties than the interior areas at

the three prostate locations (apex, middle, and base slices).

Also, highest uncertainties were observed at the intersection

between the PZ, TZ and the AFS.

The TZ segmentation had lower overall uncertainties than

the PZ segmentation, and the proposed method achieved bet-

ter segmentation in TZ (DSC=0.87) compared to PZ (0.79).

We used a normalized DSC (DSCnorm, normalized by TZ

DSC – 0.87) to show relative differences at different locations

of the prostate. For PZ segmentation, the highest overall

uncertainty was observed at base, consistent with the worst

model performance at base (DSCnorm = 72.4%). For TZ

segmentation, the highest overall uncertainty was observed at

the apex, matched with the worst segmentation performance

of the model at apex (DSCnorm = 55.2%). Figure 5 bottom-

left shows the average uncertainty estimation at different

prostate locations, and the trend is well matched with the

actual model performance (Fig. 5 bottom-right).

V. DISCUSSION

In this study, we proposed an attentive Bayesian deep learn-

ing model that accounts for long-range spatial dependencies

between TZ and PZ with an estimation of pixel-wise uncer-

tainties of the model. The performance discrepancy between

ITD and ETD of the proposed model was minimal. There

was no difference in PZ segmentation between ITD and ETD,

and a 2.2% discrepancy in TZ segmentation. The average

uncertainty estimation showed lower overall uncertainties

for TZ segmentation than PZ, consistent with the actual

segmentation performance difference between TZ and PZ.

We attribute this to the complicated and curved shapes of PZ.

The PZ boundaries generally have bilateral crescentic shapes,

while the TZ boundaries are ellipsoid in shape.

SAM aided the model to focus on certain spatial areas in

the zonal segmentation. This was done by the modeling of

spatial dependencies with the help of global features. Since

spatial attention was inserted adjacent to the raw images,

large GPU memory was required to obtain the global spatial

features during the training and evaluation. The SAM can

be inserted into other positions within the network, but we

observed that the zonal segmentation performed the best

when the SAM followed directly after the raw image.

There exist high segmentation uncertainties on the zonal

boundaries. This may be explained by the inconsistent man-

ual annotations since the boundaries between TZ and PZ are

hard to be defined precisely due to partial volume artifact.

This resembles the ‘‘random error’’, which persists through-

out the entire experiment, so we call such uncertainty ‘‘ran-

dom uncertainty’’ in the prostate zone segmentation.

The areas with the highest uncertainty are located at the

junction of AFS, PZ and TZ. One possible reason is that it is

hard for theMRI to distinguish the tissue around the junction.

There is probably a significant reduction of signal by themore

severe partial volume artifacts caused by PZ with the high

pixel intensity, TZ with the intermediate pixel intensity and

AFS with lower pixel intensity.

The overall uncertainties were higher at apex slices than

those at base slices for the TZ segmentation. This may be

caused by the fact that the size of TZ gradually increases from

apex to base slices, making it hard to recognize the zone for

the model. In contrast, the overall uncertainties for PZ were

higher at the base slices than at the apex and middle slices.

Similar to TZ, we attributed the low uncertainties to the large

PZ structure between apex and middle slices [26] (Figure 6).

The estimation of pixel-wise uncertainties of the prostate

zonal segmentation would provide confidence and trust in

an automatic segmentation workflow, which allows a simple

rejection or acceptance based on a certain uncertainty level.

This can be implemented as a partial or entire rejection of the

automatic segmentation results when presenting to experts,

and future research will be needed to determine the level

of uncertainties to be acceptable to experts. We believe that

this additional confidence would enable more natural adap-

tion or acceptance of the automatic prostate segmentation

than the one without it when the prostate segmentation is

integrated into the downstream analysis decision.

We observed that simple incorporation of the inter-slice

information by 3D U-Net was not sufficient to improve the

segmentation performance. Our prostate MRI data had a

lower through-plane resolution (3-3.6 mm) than the in-plane

resolution (0.5-0.65 mm), resulting in a conflict between the

anisotropism of the 3D images and isotropism of the 3D

convolutions [27], [28]. This may be the main reason that the

model’s generalization was compromised. Specifically, vox-

els in the x-z planewill correspond to the structurewith differ-

ent scales along x- and z-axes after the 3D convolution [26].

Moreover, the performance was more significantly different

when both ITD and ETD were used for testing, potentially

due to the difference in the imaging protocol. Further study

may be needed to investigate advanced approaches that incor-

porate the inter-slice information into the 3D convolution
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when there exists a difference between in-plane and through-

plane resolutions while minimizing sensitivities to different

imaging protocols.

The significant effect of including SAM and MFPA was

investigated in the ablation study. The average DSCs of the

proposed method were higher than the experiments in the

ablation study for PZ and TZ in both datasets. However,

there were no significant differences between DSCs obtained

by the experimental methods and the proposed method for

both zones in the ablation study when a paired t-test was

used. Based on the power analysis, we need 100, 253, 143,

and 194 cases for Experiment 1 in Table 4 (when SAM is

removed) and 394, 253, 143, and 194 cases for Experiment 2

(when MFPA is removed) to achieve 80% power with alpha

= 0.05.

We also compared the uncertainty of the proposed method

and that of the U-Net. We found that average uncertainty

scores of the proposedmethod for both PZ and TZ at three dif-

ferent prostate locations are all smaller than U-Net (Table 6).

TABLE 6. Row 2 - 4: Average uncertainty scores for all prostate, apex,
middle, and base slices in PZ and TZ under the proposed method. Row 5 -
7: Average uncertainty scores for all prostate, apex, middle, and base
slices in PZ and TZ under U-Net.

Our study still has a few limitations. First, the training

time was long due to small batch sizes to extract the global

features which also required a largeGPUmemory. Second, all

MR images were acquired without the use of an endorectal

coil in the study. This mirrors general clinical use since the

use of endorectal coil is decreasing due to patients’ pref-

erence. Also, studies showed no significant difference for

the detection of PCa between MR images acquired with and

without the endorectal coil [27], [28] due to the increased

signal-to-noise ratios (SNRs) and spatial resolution of 3T

MRI scanners, compared to 1.5T.We can apply pixel-to-pixel

translation techniques such as cycle-GAN to handle the cases

with an endorectal coil since the images with the endorec-

tal coil contain large signal variations near the coil. Third,

the study considered the slices that contain the prostate, which

could potentially reduce the false positives of the non-prostate

slices and increase the overall segmentation performance.

VI. CONCLUSION

We proposed a spatial attentive Bayesian deep learningmodel

for the automatic segmentation of prostatic zones with pixel-

wise uncertainty estimation. The study showed that the pro-

posed method is superior to the state-of-art methods (U-Net

and USE-Net) on the segmentation of two prostate zones,

such as TZ and PZ. Both spatial attention and multiple-scale

feature pyramid attention modules had their merits for the

prostate zonal segmentation. Also, the overall uncertainties

by the Bayesian model demonstrated different uncertainties

between TZ and PZ at three prostate locations (apex, middle

and base), which was consistent with the actual model perfor-

mance evaluated by using internal and external testing data

sets.
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