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Abstract. Most innovation builds closely on existing knowledge and technology, delivering
incremental advances on existing ideas, products, and processes. Sometimes, however,
inventorsmake discoveries that seem very distant fromwhat is known andwell understood.
How do individuals and firms explore such uncharted technological terrain? This paper
extends research on knowledge networks and innovation to propose three main processes
of knowledge creation that are more likely to result in discoveries that are distant from
existing inventions: long search paths, scientific reasoning, and distant recombination. We ex-
plore these processes with a combination of a large and unique data set on outlier patents
filed at the U.S. Patent and Trademark Office and interviews with inventors of outlier
patents. Our exploratory analysis suggests that there are significant differences in the in-
ventor teams, assignees, and search processes that result in outlier patents. These results
have important implications for managers who wish to encourage a more exploratory
search for breakthrough innovation.
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NoDerivatives 4.0 International License. You are free to download this work and share with
others, but cannot change in any way or use commercially without permission, and you
must attribute this work as “Organization Science. Copyright © 2020 The Author(s). https://
doi.org/10.1287/orsc.2019.1328, used under a Creative Commons Attribution License: https://
creativecommons.org/licenses/by-nc-nd/4.0/.”
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Introduction
The universe of existing and potential technology is
often conceived of as a landscape within which in-
novators search (Levinthal 1997; Kauffman et al. 2000;
Fleming and Sorenson 2001, 2004; Rosenkopf and
Almeida 2003; Ahuja and Katila 2004).1 This land-
scape has peaks of exceptional opportunity, and valleys
where opportunities are small or sparse. Innovators
seek out the peaks of opportunity, drawing from their
own experience and following the clues left by others.

Most innovators will search in the “neighborhood”
of prior successful innovations—practicing what is
termed “local search” (Cyert andMarch 1963, Nelson
and Winter 1982, Dosi 1988, Cohen and Levinthal
1990). As knowledge and inventions are accumu-
lated in a domain, they reveal the relationships be-
tween different technological elements and provide
insight into new directions or permutations likely to
be valuable. Well-trodden areas of the technology land-
scape are therefore more efficient to search. Even
if the innovator does not have direct experience in
the area, he or she reaps some advantages of the
experience of others by searching in the vicinity of

prior successful innovations. In essence, any in-
ventor’s progress up an opportunity peak provides
valuable guideposts for other inventors to follow.
Furthermore, the amount of innovation activity in an
area is likely to be an indicator of the perceived quality
of the underlying opportunities. This leads most in-
novators to build on established lines of inquiry, in-
crementally expanding or refining a technological
domain (March and Simon 1958, Nelson and Winter
1982, Helfat 1994, Rosenkopf and Nerkar 2001).
Consistent with this, if one examines the topology and
evolution of the patent landscape, one finds that most
patents are formed in close technological proximity
to other patents (Aharonson and Schilling 2015).
It is also possible, however, for inventors to pioneer

uncharted territory in the technology landscape and
to even make discoveries that are very distant from
what is known and well understood—that is, they
make “long jumps” (Kauffman 1993, Levinthal 1997).
Inventors might stumble upon a new peak through
serendipitous discovery, such as in 1928, when Al-
exander Fleming noticed how a spot of mold on a
laboratory culture of bacteria was surrounded by an
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area in which the bacteria did not grow, leading to
the development of antibiotics (Koestler 1973). This
serendipitous discovery is closest to Kauffman’s origi-
nal concept of a long jump being a random draw on
dimensions of a fitness landscape (Kauffman 1993,
p. 212). Other times, inventorsmightmore purposefully
explore uncharted technological space.

Understanding the processes by which inventors
can explore uncharted technological space is impor-
tant. Unknown domains are likely to have more
untried technological combinations and thus offer
more opportunity for breakthrough discovery precisely
because they reveal opportunity in a new domain
(Fleming 2001). Though it is typically assumed that
exploring unknown spaces (“exploratory search”)
will result in a higher failure rate because there is less
knowledge upon which to build, exploring unknown
spaces is also assumed to yield more radical inno-
vations, and some proportion of those will turn out to
be exceptionally important, opening up new fields of
scientific opportunity and creating new directions
for technological advance. This suggests that the
ability to make long jumps is important for break-
through discovery. But other than random serendip-
ity, how do inventors identify opportunities in what
appears to be unknown space? What are the non-
random search processes that enable inventors to make
long jumps? This leads to our research question here:
Can we identify systematic differences in the search
processes underlying outlier innovation from non-
outlier innovation?

To explore these questions, we draw from a cog-
nitive network perspective. In several areas of cog-
nitive science, the cognitive process is conceptualized
as a process of building a network of associations that
form mental representations of what the individual
knows or believes (Fahlman 1989, Martindale 1995,
Simonton 1999, Steyvers and Tenenbaum 2002). In-
dividuals form their ownmental “maps” of the world
and are continually adding, deleting, revising, or
reinforcing elements of this map.

There are important similarities and differences
between this cognitive network map and the tech-
nological landscape construct typically used in the
innovation search research. Although both are rep-
resentations of what is believed to be reality, a tech-
nology landscape perspective assumes that there can
be some objective representation of technological
opportunity that is common to all (or most) and at-
tempts to represent what has already been discovered
by anyone, whereas cognitive networks are repre-
sentations that are specific to the knowledge in the
minds of individuals. Cognitive networks vary across
individuals and may differ substantively from what
is assumed to be known about the technology land-
scape. Individuals, for example, do not know the

whole landscape—their mental representations of the
landscape are more complete or accurate in areas in
which they have experience and expertise, and are
sparse or inaccurate in others. Furthermore, an in-
dividual may know or suspect more than what has
been publicly demonstrated and have hypotheses
about relationships between dimensions on the land-
scape that are different fromwhat others believe. Both
the cognitive network and the technology landscape
perspective may be incomplete or biased. The former,
however, is in the mind and is personally constructed
and idiosyncratic to the individual, whereas the latter
is intended to be impersonal and to represent a col-
lective agreement about what is known and where
technology opportunities are likely to be.
Much of the previous research on innovation search

has tended to focus on how inventors or firms balance
exploration versus exploitation, such as through
temporal sequencing or ambidexterity (e.g., Brown
and Eisenhardt 1998, Nickerson and Zenger 2002,
SiggelkowandLevinthal 2003,O’Reilly and Tushman
2016), creating subgroups within the firm (e.g., Fang
et al. 2010), the way decisions are delegated or ag-
gregated in organizations (e.g., Rivkin and Siggelkow
2003, Siggelkow and Rivkin 2006, Csaszar 2012), or
choices of partners (e.g., Rosenkopf and Almeida
2003, Rothaermel and Deeds 2004). Our work here
has a different focus. We are explicitly interested in
the processes that underlie exploration. Work in this
domain is sparser but includes important studies,
such as work on deduction (Fleming and Sorenson
2004), work on how structure can influence oppor-
tunity detection (Csaszar and Eggers 2013), work on
imperfect imitation or information distortion (e.g.,
Rivkin 2000, Csaszar and Siggelkow 2010, Schilling
and Fang 2016), and work on mental representa-
tions (e.g., Gavetti and Levinthal 2000, Csaszar and
Levinthal 2016). We extend this latter body of work
by using a cognitive perspective to show how in-
dividuals can build a pattern of associations that
enables them to arrive at a mental representation of
reality that is very different from what they and others
believed before. These associations may be influenced
by others, thus team structure and expertise are de-
cidedly relevant, but our focus is explicitly on the
cognitive mechanism: the long jump in the mind of
an individual.
In the sections that follow, we first use a technology

landscape method to identify “outlier” inventions.
We then utilize a cognitive network approach to de-
rive ways in which inventors might make such outlier
discoveries, and explore these ideas with qualitative
comments from interviews with inventors and quan-
titative data on patents. In the final section, we discuss
our conclusions from this exploratory analysis and
their implications for future research and practice.
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Outlier Patents
Consistent with the definition of “outliers” as “that
which lies, or is away from, themain body” (Merriam-
Webster 2019), we define “outlier patents” as patents
that occupy technological positions that are away
from the body of existing patents at their time of
filing—that is, they are unusual in terms of their
technological combinations. Specifically, we first iden-
tified all patents applied for (and subsequently granted)
between 1990 and 2000, inclusive, from the U.S. Patent
and Trademark Office (USPTO) database. We then
utilized a novel technology position measure created
by Aharonson and Schilling (2015) that produces
individual vectors for each patent with binary indi-
cators for each of the 9,864 mainline subclasses. The
binary indicators represent a possible 29,864 potential
technology positions. Patents are considered “adja-
cent” to other patents that differ by only one main-
line subclass. In other words, adjacent patents can be
thought of as one technological step away from one
another. Outlier patents are those with no adjacencies
at the time of granting—that is, their binary vectors
have at least two different mainline subclasses from
any other existing patent in the entire USPTO data-
base, indicating that they represent a novel combi-
nation of technological components that is at least
two steps away from all preexisting patents at the
time of filing (Aharonson and Schilling 2015) (for a
more detailed explanation, please see Appendix A).
This is, we believe, the first use of this fine-grained
measure of identifying outlying patents. Of all the
utility patents applied for (and subsequently granted)
between 1990 and 2000 (1,535,878 patents), 120,957
(7.88%) of all patents in that time period were iden-
tified as outliers at their time of filing.2

Using the aforementioned binary vector measure,
we are also able to identify the distance of outlying
patents from the nearest occupied position. As noted
earlier, our minimum criteria for being an outlier
patent is two technological steps away, but some
outliers were as distant as 18 steps away. We supple-
mented the USPTO data with data from the National
Bureau of Economic Research (NBER), the Patent Name-
Matching Project (Hall 2008),3 the Disambiguated

Inventor Database (Li et al. 2014), and the Patent
Citation to Science Project (Marx 2019, Marx and
Fuegi 2019). Table 1 compares descriptive means
between the outlier patent population and nonoutlier
patents on key dimensions, including the size of the
inventing team and the number of allowed claims
on the patent. Although our focus is on the processes
involved in the creation of outliers, it worth noting
that outlier patents end up garnering more forward
citations, on average, as compared with nonoutlier
patents (t = 39.517, p < 0.001).4 Table 2 compares the
technological subcategories (based on category def-
initions provided by Hall et al. 2001) in which outlier
and nonoutlier patents are most common. Although
the categories are more similar than we might have
expected, outliers are more concentrated within these
technological categories (65% across the top 10 sub-
categories) as compared with nonoutlier patents (54.5%
across the top 10 subcategories).
To gain a richer contextual understanding of the

invention of outlier patents, we attempted to track
down the inventors of the 30 patents that were most
technologically distant from any other existing patent
at their time of filing for interviews. These patents
ranged in distance from 11 to 18 steps away from any
other existing patent. Of the 93 inventors represented
on these 30 patents, we succeeded in finding contact
information for 20 of these inventors and conducted
10 in-depth interviews with one or more inventors
from nine of themost technologically distant outlying
patents (see Appendix B for additional details). The
interviews were unstructured and began with our
explaining that we wanted to understand how in-
ventors made unusual discoveries, our definition of
outlier patents, and identification of their outlier
patent that prompted our contact. We then asked
them, “Can you please tell us the story of how you
came to make the discovery represented in this pat-
ent?” From that point on, we asked only clarifying
questions such as an explanation of a term or an
approximate date of an event. These interviews lasted
between 20 minutes and an hour and a half and (in
most cases) resulted in detailed inventor narratives.5

We did not ask the inventors about the dimensions

Table 1. Mean Comparisons of Outlier to Nonoutlier Patents, 1990–2000

Nonoutlier Outlier Difference t

Forward citations 16.969 20.802 −3.833** −39.517
Individual inventor assignee 0.144 0.186 −0.043** −40.246
Time to grant (years and months) 2.246 2.300 −0.054** −13.374
Allowed claims 15.613 16.528 −0.915** −19.880
Number of inventors 2.298 2.238 0.060** 12.078
Number of prior patents (team) in previous 10 years 21.731 17.285 4.446** 31.519
N 1,414,921 120,957

**p < 0.001.
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we thought would be theoretically relevant based on a
cognitivenetworkperspective, though several inventors
made unsolicited comments that clearly evoke these
dimensions, as detailed further in the next sections.

Knowledge Creation and
Technological Search
Technological invention is the creation and application
of new knowledge in the form of a useful new idea,
device, ormethod. To really understand the dynamics
of technological invention, then, we must start by
understanding how knowledge is created. Knowledge
creation at both the individual and supraindividual
(e.g., team, organization) levels can be usefully rep-
resented as a cognitive network process.6 New infor-
mation (e.g., individual facts, data, or signals) only
becomes knowledge when it is integrated into a
pattern of associations that give it meaning (Bartlett
1932, Mayer and Greeno 1972). When individuals are
confronted with new information, they search for
connections between the new information and their
existing knowledge network; the network of patterns
within which the information is embedded structures
how that information is understood, and how that
information relates to what is believed to be true
(Nonaka 1994). Knowledge creation is thus the pro-
cess of integrating new information into a network
of associations, or recombining existing information
in new ways. In network terms, knowledge creation
is the addition or change of “nodes” (e.g., ideas,
facts) and/or “links” (i.e., the relationships between
the nodes). Both the amount and diversity of new
information integrated into the network, or the de-
gree of change in the way existing knowledge is
combined, will influence how novel the individual
perceives the new knowledge to be (Schilling 2005).

Most knowledge creation will be incremental ad-
ditions and modifications of the existing knowledge
network. New information can be more readily as-
similated when it has many obvious connections to
the existing network (Ellis 1965, Cohen and Levinthal

1990, Schilling 2005). Incrementally extending or re-
vising an existing knowledge network is thus much
more efficient than attempting to search for and un-
derstand information that has fewer or less obvious
connections to an individual’s existing knowledge
base. Analogously, and in part a result of the preced-
ing, most technological searches will be in the vicinity
of existing inventions (March 1991, Fleming 2001, Katila
and Ahuja 2002, Aharonson et al. 2007, Aharonson
and Schilling 2015). Inventors tend to build on the
existing knowledge base that is manifest in the formof
existing inventions because the opportunities may be
more obvious and the search process more efficient.
Patents help to make the knowledge base under-

lying an invention public and, thus, contribute to
the knowledge networks of other inventors. Existing
patented inventions can provide inventors knowl-
edge about both the inputs to the invention (e.g.,
design, materials, processes) and outcomes (e.g., what
worked,what the potential uses of the technology are),
in essence transferring some of the learning benefits
accrued by the inventor of the existing invention to
many other potential inventors. Existing patented in-
ventions are thus repositories of knowledge upon
which other inventors can build; they provide a
scaffolding that inventors can incorporate into their
own knowledge networks. As a result of searching
this grafted knowledge network, inventors are more
likely to make discoveries that are within or adjacent
to known technological terrain rather than to explore
uncharted territory (Aharonson and Schilling 2015).
But how do inventors come upwith inventions that

are not only new to the world but are also distant
from the existing knowledge base? We first discuss
the role of serendipity in discovery. We then explore
three search processes that might be used alone or in
combination: long search paths, scientific reasoning, and
distant recombination. We use interview data to fur-
ther develop our ideas about the roles of the three
search processes before using patent data to refine
empirically the prevalence and magnitude of scientific

Table 2. Top 10 NBER Technological Subcategories for Outlier and Nonoutlier Patents,
1990–2000

Nonoutlier % Outlier %

1. Miscellaneous chemical 7.83 Miscellaneous chemical 12.98
2. Communications 7.62 Miscellaneous others 12.64
3. Miscellaneous others 7.28 Materials processing and handling 7.16
4. Drugs 6.48 Computer hardware and software 6.63
5. Computer hardware and software 6.21 Drugs 5.90
6. Surgery and medical instruments 4.05 Communications 5.30
7. Semiconductor devices 4.03 Semiconductor devices 4.83
8. Miscellaneous mechanical 3.90 Miscellaneous electrical 3.49
9. Materials processing and handling 3.58 Miscellaneous mechanical 3.22
10 Information storage 3.52 Information storage 2.92
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reasoning and distant recombination. For reasons we
explain in the next section, we do not attempt to em-
pirically examine long search paths with patent data
and instead rely on theory and the qualitative state-
ments that arose from the inventor interviews. There
have been previous studies that have considered
the role of scientific reasoning in unusual discoveries
(e.g., Fleming and Sorenson 2004) and distant re-
combination (e.g., Barirani et al. 2015, Keijl et al.
2016). Our paper, however, is the first we know of
to articulate and explore the role of long search paths
in outlier patents, to compare multiple search pro-
cesses that may result in outlier discoveries, and to
disentangle the roles of individual breadth of expe-
rience and team breadth of experience in distant
recombination.

Serendipity

Occasionally, an unusual invention is the result of
serendipitous discovery—or “luck.” A prime exam-
ple is the development of cyanoacrylate compounds
into superglue. During World War II, Harry Coover
was working in the Kodak Research Laboratories
searching for an optically clear plastic for casting
precision gunsight lenses. Coover first worked with
cyanoacrylate compounds, but because they tended
to stick to everything they touched, he abandoned
them. Then in 1951, when one of Coover’s colleagues
was apologizing for ruining a $700 refractometer by
inadvertently gluing two prisms together with cya-
noacrylate, Coover suddenly realized the potential of
the compound as an adhesive, noting,

Serendipity had given me a second chance but this time
the mental process led to inspiration. Immediately I
asked Fred for a sample of his monomer and began
gluing everything I could lay my hands on [. . .]. Ev-
erything stuck to everything, almost instantly, and
with bonds I could not break apart. In that one afternoon,
cyanoacrylate adhesives were conceived, purely as the
result of serendipity. (Coover 1983, p. 59)

As noted previously, serendipitous discovery is the
process that is closest to Kauffman’s (1993, p. 212)
original concept of a long jump being a random draw
on dimensions of a fitness landscape.

Our interviews with inventors revealed instances
of serendipity even in situations where other pro-
cesses were also at play. For example, in describing
the process that led to a method for detecting glucose
using a surface plasma and resonance method (patent
#6576430), one of the inventors, Bruce Pitner, noted,

My colleague Helen Hsiehwas using the Beacore device
to characterize some protein when she noted something
unusual. She said, ‘This is really odd, it gives a negative
signal.’ We thought, ‘That’s not right, let’s try this
again.’ Several experiments later we still found the
same thing.

They did not initially pursue the idea but kept it
on the back burner as a curiosity. Later, they gave the
project to Jason Gestwicki, a student with a National
Institutes of Health (NIH) fellowship that required an
industry internship. Bruce felt that the student ought to
work on something he could publish so that he would
be rewarded from the internship. The negative signal
result was perfect for this, and as Bruce noted, “It
wasn’t a path to a commercial project so it made sense
to bring in a student.” Bruce highlighted the role of
serendipity in the discovery: “If it hadn’t been a
negative signal, we probably wouldn’t have pursued
it, but it was interesting because it goes against the
convention of how surface plasma resonance is used
to have a negative signal.”
Surachai Supattapone (patent #6322802) similarly

described an unusual finding in an experiment as
the catalyst for pursuing the line of inquiry into how
dendrimers might be used in both therapy and in
the sterilization of prions:

I notedwhenwe did the experiment that the amount of
protein that we could see—it appeared that all of the
samples thatwe transfected failed to convert into theprion
form. Okay, we noticed that first. And, interestingly this
was true even for the control experiment where we just
used the normal form of the prion protein. We did not
change it in anyway, we did not mutate it. So, that was
weird, right? We expected that one to convert normally
because it hadn’t been changed.

However, although there is ample evidence that
many discoveries have been, at least in part, un-
intentional, luck is rarely the entire answer. There has
been a long historical debate on the degree to which
any major discovery can truly be considered seren-
dipitous (Merton and Barber 2004). First, a personmay
require training and expertise in an area to recognize
a discovery (captured eloquently in the famous quote
by Louis Pasteur in 1854, “chance only favours the
mind which is prepared”), suggesting that a discovery
is in part a result of a previous search. Second, particular
discoveries may be ripe for the making—almost in-
evitable in fact—because the state of related science
has brought us to their brink. This is the argument
often made in studies of simultaneous discoveries
(Merton and Barber 2004, Bikard 2017).

Long Search Paths

We propose here a second process that may lead to
identification of a technology position that is not ad-
jacent to any other known technology position: long
search paths (see Figure 1, panel (b) and Table 3).
Sometimes an outlier invention that appears to be
a long jump is not really the result of a long jump
from the perspective of the inventor (Adner and
Levinthal 2008). Instead, it may be the result of a
very long or atypical search path through a knowledge
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network that would not occur to most other people
(Schilling 2005). Rather than the discovery appearing
as if out of thin air as in serendipity (Figure 1, panel
(a)), it is many small steps on a technological trajec-
tory that is understood by the inventor but un-
observed by the outsider. The result appears to be
disconnected from previous work because collec-
tively it enables a very large leap forward, in-
corporating multiple improvements that set it well
apart from its neighboring technologies (see Figure 1,
panel (a)).

A remarkable example is illustrated in the devel-
opment of BioSteel. In 1993, a McGill University bio-
technology professor named Jeffrey Turner isolated
the cells in mammary glands responsible for milk
production. Based on his understanding of these cells,
Turner quickly realized that dairy animals could be
genetically manipulated to make different kinds of
proteins. Turner left his tenured position to start a
business using goats to produce better, cheaper en-
zymes for making lactose-free milk. Soon, however,
he realized that there was a potentially higher-value

Figure 1. (Color online) Knowledge Creation Processes for Outlying Technological Positions
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opportunity: spider silk proteins. Since at least the
1700s, it was well-known that spider silk has special
mechanical properties. Spiders can produce several
kinds of silk, and one of these—dragline silk—is one of
the toughest materials known (Gosline et al. 1999).
Spiders, however, are aggressive and very difficult
to farm. DuPont, which claimed that a spider silk
line the size of a pencil could stop a Boeing 747 in
flight, had a project underway to produce spider
silk proteins with genetically modified bacteria
(Austen 2000). Its process, however, was slow and

produced less-than-perfect clones of spider silk pro-
teins. Turner believed that spider silk proteins could
be made much more easily, and in greater quantity,
by genetically modified goats. Turner and his team,
which included fellow scientists Costas Karatzas
and Anthoula Lazaris-Karatzis, began developing a
strategy for modifying goats to produce spider silk
protein. Turner licensed a spider silk cloning tech-
nology from Dr. Randy Lewis of the University of
Wyoming, and the world’s first “spider goats” were
born in 1999.

Table 3. Search Processes, Definitions, Indicators, and Quotes

Mechanism Definition Indicators from patent data
Representative quotes from interviews

with inventors of outlier patents

Long search
paths

A process of following a very long or
atypical search path through a
knowledge network. This process may
be on a known technological trajectory
but appear to be disconnected from
previous work because it is a very large
leap forward, incorporating multiple
improvements.

• NA “It was a long research path.”
(Soini 2017)

“[There were] lots of small incremental
steps along the way. You go from a
piece of DNA all the way to
something soluble, but that’s not the
end of it. All of the other companies
would stop there. Here, you have the
goat, but you’re way way far from the
final product.” (Karatzas 2017)

Scientific
reasoning

A process of reasoning that uses a
generalized theory or set of
assumptions from which a more
specific hypothesis is derived.

• Scientific articles cited in patents “I approached the problem solving from
a fundamental chemical perspective
without worrying about what was
already known.” (Liebeskind 2017)

• University assignees “Due to the biomimicry, you start with
something from nature, and you try to
do it with biotechnology. You try to
build a bridge from learning with
nature—like a mirror. With
biomimicry you use models from
nature and try to recreate it but
improve upon it.” (Karatzas 2017)

“We found that and it made me start to
think that, you know, under slightly
acidic conditions—I’m not talking
about acid like all the way like
hydrochloric acid or something, it’s
just mildly acidic, under those
conditions different thing like
dendrimers could enhance the
disinfection of prions.” (Supattapone
2019)

Distant
recombination

A process of combining two or more
different trajectories—resulting in an
unusual fusion of disparate knowledge
domains.

• Collective team breadth “I have a very different training than
most people in the field, so I
approached the problem with a
distinct point of view.” (Gestwicki
2018)

• Maximum individual inventor
breadth

“So, I have my scientific experience but
I also have all my life stuff and the
things I’m interested in. It’s very
unusual to find somebody who can
put that together, and that’s what I’ve
always tried to do. . .” (Murto 2019)

•Additional breadth of team over max
individual

[About the research paths]: “It’s not one
of them; it’s several of them at the
same time. . .” (Soini 2017)

Note. NA, not applicable.
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The path to spider goats was long and circuitous,
and the path to eventual applications was not im-
mediately clear. As described by Costas Karatzas in
our interview with him,

Our target had always been the mammary gland of the
animal. . . . What we had done at the University those
years back was developmammary cells, immortalized in
vitro thatwouldmimic lactation inapetri dish.Wewould
then go from in vitro to a mouse, and then to a goat. The
idea was to fail cheaply fairly quickly so that we could
move on to the next stage of our evolution. We started by
creating growth hormone and TPA but there were some
technical complications.At that time Jeff Turnerwalks into
my office and says “what if we tried to make something
difficult? How about spider silk?” I said “Of course
spider silk, that’s interesting.” That’s part of being in a
small young team—you never say “No.” When God
gives you lemons you don’t just make lemonade; you
go out and find 999 other things to do with lemons.

After the team succeeded in demonstrating that
spider silk proteins could bemade inmilk, they had to
develop bioreactors that could serve as factories of
spider silk monomers. Then these monomers would
be processed into stronger fibers that could be spun.
Though each step of this path was novel and po-
tentially patentable, the team was focused on pro-
gressing until they had a commercializable product:

Natick [a U.S. Army Research and Development
Center in Massachusetts] was already trying to pro-
duce fibers, and they helped us produce the spinning
method. It was revolutionary. We could make it in
gram quantities in these holofibers and then they could
be spun, and these spun proteins gave us enough
confidence to move to the next stages. That was the
seminal work. That was about the time we went public;
investors were very intrigued. . . . The next step was to
go to mice to reduce the risk. 99% of the time we fail, so
you need to reduce the risk.We usedmice, targeting the
specific elements in their milk (we never spun anything
out of their milk because the quantity is too small).

Having shown that spider silk proteins could suc-
cessfully be made in the milk of mice, the team next
applied their technique to the breed-early-lactate-early
(BELE) pygmy goats they had already created:

We stumbled here because the more the mammary
gland was making these proteins, the more their lac-
tation was compromised. At high concentrations the
silk has the ability to crystallize. The spider, she has all
these things in her belly and when she pulls there is an
automatic cord. It crystallizes upon sheer force. We
were smart enough to have separated the two com-
ponents of the dragline silk, but even these individual
components had this property. They precipitated,
which gave the goat a feedback mechanism to shut off
the milk. If the lactation is compromised, you need
more goats.” [The team subsequently scaled up to a
much larger herd of BELE goats.]

Their product, BioSteel, encountered both eager
interest (notably from the U.S. military, which wanted
spider silk bulletproof vests) and sharp criticism (from
animal rights groups, amongothers). Turner’s company,
Nexia Biotechnologies, went bankrupt in 2009 before
reaching commercial scale production, but Dr. Randy
Lewis, who had supplied the initial spider protein
cloning technology, continued the research on spider
goats. In 2013, he received $1.15 million in grants from
the U.S. Naval Research Office to develop spider silk
production methods, followed by a $1 million grant in
2015 from the U.S. Army Research Office to scale up
manufacturing. As Karatzas notes, “From saying
‘yes’ to Jeff to where we brought it with investment
and research was quite a ride,” adding,

[There were] lots of small incremental steps along the
way. You go from a piece of DNA all the way to
something soluble, but that’s not the end of it. All of the
other companies would stop there. Here, you have the
goat, but you’re way way far from the final product. Be-
cause the goat is now your starting material. You need
to take it andmodify it to become a fiber, and that fiber
has to become a product. . . . When you are on these
innovative paths, you never know what’s going to
happen. . . . Many ideas die on the vine. You have all of
these ideas that never see the light of day.

The creation of a spider silk–lactating goat at first
sounds like fantastical fiction from a movie plot, but
if one follows the long search path from the isolation
of mammary cells, to genetically modified goats, to
producing highly sought-after spider silk proteins
from goat milk, the reasoning sequence does not
appear at all random.
The use of long search paths was also amply evident in

our interview with Juhani Soini, one of the inventors on
patent #6361956, “Biospecific, two photon excitation,
fluorescence detection and device.” As Soini noted,

This is a long story [emphasis added], it is part of my
family history. My father has been working in the
high-tech industry since the ‘60s. . . . At that time there
was a breakthrough in the diagnostics industry using
radio assay [a method of precisely measuring con-
centrations of substances like hormones or glucose
in blood or on cell surfaces]. My father started de-
veloping a similar technology here [in Finland], for
detecting minute amounts of radioactivity. . . . There
was a desire to reduce the amount of radioactive ma-
terial used in hospitals because there was too much
gamma waste. Everyone wanted to find a way to make
more sensitive immune assays with less material; to
make it smaller, cheaper, and with less waste.

Juhani Soini’s father, Erkki Soini, took a sabbatical
year at the end of the 1980s in Heidelberg, where
he was exposed to emerging technologies in cell
counting and microscopy. He began working on a
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way to combine image processing, microscopy, and
computerized cell counting. He also began collabo-
rating with other scientists:

There was heavy competition from other university
groups. Russiawas breaking down and research teams
had been sent to Siberia where they had no resources,
so we invited a Russian team to join us and we sup-
ported them. We also invited from Heidelberg a
young researcher, Stefan Hell. . . . We were hunting
for solutions.

The team finally landed on “functional flow cytom-
etry,” but in the course of thiswork, they also improved
the microscopy significantly, and Stefan Hell was ulti-
mately awarded a Nobel Prize for the development of
superresolved fluorescent microscopy:

We took the methodology and combined them into
in-vitro diagnostics. . . . Some of the steps on the way
weren’t patentable. . . . We tried to protect only the
immunoassays. . . . We have a long-term research tra-
dition, from the ‘60s. It was a long research path [em-
phasis added]. My father, my brother, myself. . . . My
father is so stubborn. The intuition is so strong, and the
will to do is was just so strong. It’s a way of thinking.

Soini’s story not only illustrates a very long search
path but also shows the possibility that inventors
will choose not to patent some of the claims they
encounter, or that claims will end up in other pat-
ents that do not appear proximate to the outlying
patent.

When inventors are traveling down a long search
path, it can result in a patent that appears discon-
nected from existing technologies because we do
not observe the intermediate steps in the discovery
process—that is, they were not patented. These in-
termediate steps may have been disclosed by other
means, such as through academic publications, or
not disclosed at all. The nondisclosure of these in-
termediate steps may be strategic (e.g., the inventor
may believe that disclosing the intermediate steps
would lead to earlier competition) or an inadvertent
consequence (e.g., inventors in pursuit of a solution
to a particular problem might not be interested in
investing the time or effort in disclosing intermediate
steps on their search path). If we could observe the
knowledge network of the inventor rather than the
technology landscapemanifest in granted patents, we
might realize an invention was, from the perspective
of the inventor, not an outlier at all. Although occa-
sionally it might be possible to document a long
search path by, for example, tracing published articles
or other archival evidence of the search process, often
there may be no archival evidence of the path that
is accessible. We thus do not attempt to empirically
examine the long search path mechanism in our
patent data, though developing a way to trace long

search paths would be a valuable area for future
research.

Scientific Reasoning

Inventors might use scientific reasoning—induction,
deduction, or both—to predict that a fruitful com-
bination exists, despite the fact that there has been
no work proximate to that combination. A scientific
theory or model may give us insight into solutions
that ought to work, even if nothing proximate to that
solution has ever been tried before, thus yielding
solutions that are not adjacent to prior experiments.
Einstein’s revolutionary general theory of relativity,
for example, made predictions about the travel of
light thatwere not derivative extensions of priorwork
in the measurement of light; rather, they were con-
sequences of his more general reasoning that light
was actually tiny particles (“photons”) and would be
subject to gravity. This was quite a radical departure
from the existing theory that light was a continuous
electromagnetic wave. Einstein’s hypotheses about
light were subsequently verified by Sir Arthur
Eddington during a complete solar eclipse, much to
the amazement of the physics community. Fleming
and Sorenson (2004) also provide an example of re-
searchers predicting that single-wall carbon nanotubes
would either conduct or semiconduct, depending on
the angles of the carbon bonds. This helped inventors
target a specific position on the technology landscape
that was previously unknown, and that gave rise to a
new generation of chip technology.
The preceding illustrates that scientific reasoning

can point to where a solution ought to be, even if no
one has yet explored that space. Theory can provide a
structure of cause-and-effect relationships that helps
us identify patterns in incomplete information (see
Figure 1, panel (c) and Table 3). For example, by using
arguments about when and why a relationship exists
(or should exist) between two events or things, sci-
entists can generate predictions about the results of
untried experiments (Fleming and Sorenson 2004).
For example, when it was discovered that Clustered
Regularly Interspersed Short Palindromic Repeats –

protein nuclease Cas9 (CRISPR-Cas9) was an adap-
tive immune system of bacteria that defended the
single-celled prokaryote by modifying its genetic
code, Feng Zhang (who had previously worked with
other more complicated gene-editing tools) correctly
deduced that CRISPR-Cas9 could be adapted for use in
eukaryotes (including humans). Zhang set about
proving his hypothesis and, in 2014, was granted the
first patent for a CRISPR-Cas9 engineered for use in
living mammalian tissues. This breakthrough tech-
nology offered the potential for correcting genetic
disorders, even in adult humans. As alluded to, there
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were other genetic-editing tools in development, but
they were expensive, difficult to produce, and posed
major challenges for delivering them to the target cells.
CRISPR-Cas9, on the other hand, was a simple, in-
expensive, and elegant solution that was rapidly
adopted by researchers around the world and named
Science Magazine’s 2015 Breakthrough of the Year.

The preceding does not imply that the use of sci-
entific theory is more likely to generate outlier in-
ventions than nonoutliers; outlier patents are un-
common, and the vastmajority of patent applications,
whether they are based on scientific reasoning or not,
are for inventions that are not outliers (i.e., scientific
reasoning does not always lead to a giant leap—it
often leads to incremental advance). However, be-
cause scientific reasoning can sometimes enable an
inventor to identify an invention opportunity that is
very distant from existing occupied technology po-
sitions, we might expect to see it figure more prom-
inently in the origination of outlying patents than
nonoutlying patents (i.e., of the small number of
patents that are outliers, we might expect a larger
percentage of them to exhibit scientific reasoning
relative to the percentage of nonoutlier patents that
exhibit scientific reasoning).

Scientific reasoning can also be part of a long path
search; it is therefore useful to note the conceptual
difference between these two processes. Long path
search means that the individual might have made
no long jumps at all, but rather had many incre-
mental steps that were unobserved by others. The
outcome could look like a discovery that emerged out
of thin air, even though it was actually the accumu-
lation of many small steps. Some of these steps may
have been based on scientific reasoning, some may
have arisen through serendipity, some may be trial
and error, etc. In some cases, scientific reasoning
and long path search might overlap completely, as
when the scientific reasoning process can be bro-
ken into many steps. However, there can also be long
path searches that do not use scientific reasoning,
and there can be scientific reasoning that leads to
leaps of understanding that are not easily divisible
into many small steps. Scientific reasoning can also
be the impetus for distant recombination, and dis-
tant recombination can be an element of long path
search. These processes are different, but they are
not mutually exclusive; they can occur in tandem,
and they can interact with each other.

It is relatively easy to identify the use of scientific
reasoning in a search process if one talks to the in-
ventor directly. For example, one of the far outly-
ing patents, #6632805, “Methods for using water-
stabilized organosilanes,” is a method for giving
objects an antimicrobial surface that is stable in

water. This invention yielded a way of creating an
antimicrobial surface on many kinds of products,
including food containers; medical devices; latex
gloves; heating,ventilation,andairconditioning(HVAC)
systems; and more. The technological distance of this
patentwas 13 steps away from the nearest existing patent
when it was filed. According to Lanny Liebeskind, a
chemistry professor at Emory University and one of the
two inventors on the patent, prior to making this dis-
covery, he had been workingwith simple molecules that
are antimicrobial—they disrupt cell membranes of
microbes. Liebeskind noted,

People asked me, ‘Is there a way to stabilize it so you
could use it in water? And make it more environ-
mentally friendly?’ So I took it on as a side project.
It was outside of what I normally do in the lab. . . . I
approached the problem solving from a fundamental chemical
perspective without worrying about what was already known.
[emphasis added]We conceived of a way to stabilize it
in water—once attached to the surface it polymerizes. . . .
We came up with this unusual solution to polymerize in
water, anditworked. Itwas lowtechenoughthatanybody
out there could reproduce it, which is what happened. It
wasn’t worth prosecuting the patent cases.

Another inventor, Jonathan Stamler, described
his use of scientific reasoning in the discovery of a
method of coating medical devices with nitric ox-
ide, thereby inhibiting infection and tissue damage
(patent #6255277). As he noted,

[Nitric oxide] was thought to have a lifetime in the
body of less than one second. . . . The atoms of that
molecule were very famous—theywere not thought to
be controllable. It was heresy that nitric oxide could
last. . . . I argued that you can control it. . . . Its chemistry
was such that it should be amenable to binding to an amino
acid called cysteine, and I demonstrated that to be the case.
I deduced that with some chemistry it would happen—I
turned out to be right. [emphasis added] It was amagical
molecule. I could attach it to any protein. If a protein
was causing injury, I could put this on it and change its
function. It worked. You can block re-stenosis with it.

Surachai Suppattapone (#6322802) discussed a sim-
ilar process of reasoning that took his team from a
biological understanding of the ways in which a cell
interacted with a dendrimer to a set of testable hy-
potheses (which his team subsequently verified with
experiments) about ways in which dendrimers might
be useful in both therapy and sterilization processes
to prevent prion infection:

And what was interesting is that when you gave the
dendrimers to the cells, the dendrimers were taken up
into part of the cell called the lysosome, which is an
acidic organelle. It’s the part of the cell that contains
acid, and it also contains prions and enzymes that can
degrade proteins. So, we think what was happening is
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that the dendrimers get into the lysosomes and under
the acidic pH that helps to unfold the infectious form
of the prion, and maybe the dendrimers help that
unfolding process and then maybe the enzymes that
are there degrade it.

It might also be possible to identify use of scientific
reasoning using archival evidence from patents. One
rough proxy thatwe explore is the use of science in the
form of citations to academic articles. Because aca-
demic science is a source of theories that inventors
may use to deduce inventive solutions in uncharted
spaces, we might see more references to academic
articles cited in outlying patents than in nonoutliers.
Academic articles are not, of course, the only source of
theories, so this is a rough measure, but it is a place to
start our exploration. The use of scientific theory in
innovation also suggests that we might expect more
university assignees on outlier patents. Drawing from
Brooks (1994), we anticipate that universities may be
disproportionately represented as assignees on out-
lier patents because of their focus on basic science.
Whereas firms generate a significant portion of their
revenue on commercial applications of existing tech-
nologies and derivative enhancements of existing prod-
ucts, university researchers are typically rewardedbased
on their scientific contribution and impact, and are far
more likely to work on basic science and to explore
newly emergent technological areas, or areas of un-
known commercial opportunity (Jiang et al. 2010,
Arora et al. 2015).

In the empirical evidence section of this paper, we
explore the independent and joint effects of relying
on scientific reasoning using academic articles and
having university assignees. We find support for these
arguments, with both citations to academic articles
and university assignees independently predicting
higher likelihood of outlier patent creation.

Distant Recombination

One of the ways that inventors might create inven-
tions that appear distant from known inventions is
through distant recombination—that is, a combination
that fuses two or more disparate knowledge domains
(see Figure 1, panel (d) and Table 3). Other studies
have similarly posited that distant recombination
might lead to inventions that are more basic or fun-
damental in their nature, or that have greater impact
(e.g., Barirani et al. 2015, Keijl et al. 2016). An excel-
lent example is the development of the camera pill.
Gavriel Iddan was an electrooptical engineer de-
veloping the “eye” of a guided missile for the Israeli
military when he befriended Eitan Scapa, a gastro-
enterologist (Iddan and Swain 2004). Scapa educated
Iddan about the devices used to image the inside of
the gastrointestinal system and their limitations. With
Scapa’s help and encouragement, Iddan developed a

very small guidedmissile–like device that could travel
through the intestinal system with a tiny camera eye
that broadcast the images to a video pack worn by the
patient. The unlikely fusion of gastroenterology knowl-
edge and guided missile knowledge resulted in a break-
throughproductcalledthePillCam,whichreceivedFood
and Drug Administration (FDA) approval in 2001.
The role of distant recombination was evoked in

several of our interviews. For example, Jason Ges-
twicki (one of the inventors on patent #6576430, a
surface plasma and resonance method for detecting
glucose) noted, “I have a very different training than
most people in the field, so I approached the problem
with a distinct point of view.” Another inventor,
Juhani, when asked about the research path that had
led to the invention of the method for detecting mi-
croparticles in biospecific fluorometric assays, re-
plied, “It’s not one of them; it’s several of them at the
same time,” and then explained that the invention
had been due to the team’s ability to merge research
streams on image processing, fluorescent micros-
copy, and computerized cell counting.
James Murto (#6689615) explained how he and his

coinventor, Mike Salvati, approached solving the prob-
lem of how to extract platelets from a blood sample
without an expensive centrifuge:

He and I, we didn’t limit ourselves to the industry
norm. We look at things from a little bit of a different
mindset. I work with a lot of different scientists, and
it’s very unusual to find scientists that, um, will take
things they’ve learned fromworking on their car or on
their plumbing at home. . . . It’s very unusual to go and
find people who will go and look outside of their—I’m
probably saying this terribly—their scientific experi-
ence. So, I have my scientific experience but I also have
all my life stuff and the things I’m interested in. It’s
very unusual to find somebody who can put that to-
gether, and that’s what I’ve always tried to do.

Murto and Salvati ultimately invented and patented
a process through which coating superparamagnetic
microparticles with a lectin (a type of protein that can
bind to carbohydrates) allows a simple, inexpensive
magnet to separate platelets from the other elements in
a blood sample.
If an outlying patent is formed because of an un-

usual combination between knowledge domains, we
might expect to see more diversity of expertise in the
individual inventor or team of inventors that created
it. Aswith a long search path, this could be strategic or
inadvertent: an inventor or inventor team that intends
to create an invention that fuses disparate bodies of
knowledge is more likely to seek members with the
diverse expertise needed (strategic choice), and an in-
ventor or inventor team that happens to have diverse
expertise is more likely to identify inventions that fuse
disparatebodiesofknowledge(inadvertentconsequence).
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Though there is a growing body ofmanagement research
examining whether the combination of diverse knowl-
edge domains leads to highly impactful innovations
(e.g., high citation rates to articles or patents, or high
economic value) (e.g., Ahuja and Lampert 2001,
Fleming 2001, Rosenkopf andNerkar 2001, Hargadon
2003, Singh and Fleming 2010, Schilling and Green
2011), there is far less work examining whether
combining diverse knowledge domains results in
innovations that are highly unusual in their form
or function. An exception is Kaplan and Vakili
(2015), who found (contrary to our expectation) that a
broader search in nanotechnology does not directly
result in innovations of greater novelty. Their context,
however, is a single industry and utilizes very different
measures, so we believe there is still much to be gained
by examining this question.

There is a second, related issue here. If it turns
out that breadth of experience matters, does it mat-
ter whether that breadth inheres at the individual
or team level? Individuals might have particularly
broad expertise because they had a varied career
history that brought them into contact with multiple
technological domains. Alternatively, they might have
worked in an area of basic science that could be ap-
plied to multiple technological domains, or worked
in a field that sits at the intersection of multiple
domains, either of which could have made them a
“technology broker” (Hargadon 2003). However, pat-
ents are also created by teams of inventors who inte-
grate their knowledge through a transactive memory
system (Wegner 1987, Moreland and Argote 2003)
that does not require each inventor to possess the
knowledge of the other. Individuals could thus each
have relatively narrow prior technological experi-
ence, yet a team composed of multiple specialists
could collectively exhibit quite diverse experience if
the individuals worked in different technological
domains.

At the heart of this contextually specific question is
a more general question: To what degree is inven-
tion a process driven by individual ideation versus
integration across a group?Many studies have shown
that individuals working alone generate more varied
or novel outcomes than those in a group (Dahlin et al.
2004, Fleming 2007, Stroebe et al. 2010). Groups can
inhibit creative ideation due to fear of judgment, norms
of convergence, and production blocking (i.e., when
one person is speaking, that person prevents others
from contributing) (Stroebe et al. 2010). This implies
that teams diminish both number and variance in
ideas. On the other hand, Singh and Fleming (2010)
argue that teams might influence variance in ideas
asymmetrically by selecting out the really bad novel
ideas without diminishing the really good novel
ideas. They found that, comparedwith lone inventors,

teams of inventors generated more extremely good
patent outcomes and fewer extremely bad ones, though
it is important to note that their dependent variable is
impact, not novelty.
Melero and Palomeras (2015) took a different ap-

proach and studied the effect of having a generalist
(an individual with particularly broad experience)
on an inventing team. They found that generalist
inventors are very valuable (i.e., create economically
valuable patents that are jointly filed in the European,
Japanese, and U.S. patent offices) when inventing
in areas of high uncertainty. Generalists may have a
better “big picture” of the technological landscape
that helps them make better choices (consistent with
Fleming and Sorenson 2001 and Gruber et al. 2013)
and play a bridging role that helps integrate the
knowledge of specialists (similar to work by Rulke
and Galaskiewicz 2000).
We do not expect there to be one answer that ap-

plies to all teams; every inventive team has a different
structure, composition, and process. It should be
immediately apparent that the type of diversity of
experience, power structure of the team, length of
time working together, domain of the invention, and
more can all influence the type of outcomes obtained.
In the following section, our objective, then, is merely
to explore whether individual-level breadth of ex-
perience and group-level breadth of experience each
has a significant independent effect. We find sug-
gestive empirical evidence that both processes play
a role in predicting outlier creation, although the
individual-level breadth has a comparatively larger
effect.

Empirical Evidence
In this section, we aim to identify the presence of the
focal search processes and their role in generating
outlying innovation.We empirically explore how two
of the search processes, scientific reasoning and distant
recombination, are used in the creation of outlier
patents.Wedo not attempt to examine empirically the
long search path mechanism in our patent data be-
cause there may be no reliable or consistent archival
evidence of the path. From the population of utility
patents applied for (and subsequently granted) be-
tween 1990 and 2000 (1,535,878 patents), we use
the previously described method to identify 120,957
outlier patents (7.88%), which represent distant tech-
nological invention. We first examine scientific rea-
soning and distant recombination as independent pro-
cesses before exploring their combined effects and
relative magnitudes.

Scientific Reasoning

To explore the possibility that scientific reasoning
may facilitate the discovery of outlier patents, we first
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examined the relationship between the likelihood of
a patent being an outlier and citations to science.
Following Fleming and Sorenson (2004), who studied
the use of scientific deduction, we measure scientific
articles cited as a simple count of academic articles
referenced by the focal patent. We add one to this
value and take the log (base 2) due to the heavily
skewed distribution of values, ranging from 0 to 807
with the mean close to two before transformation.7

This count is a sum of the unique scientific articles
identified by a linking algorithm developed by Marx
and Fuegi (2019), through which items listed in the
“other references” section of the front page of each
patent were matched to a specific article within pro-
prietary databases, such as Web of Science, as well as
open source databases.8

We also examinedwhether outlier patents aremore
likely when the assignee is an academic institution.
University is a binary variable that takes the value of
1 for patents assigned to academic institutions. The
coding of assignee types was developed by The Pat-
ent Name-Matching Project (Hall 2008), which clas-
sifies the first assignee into one of six mutually ex-
clusive categories.9 The intuition behind this variable
is that the use of scientific theory and/or a greater
interest in basic science in academia may motivate
exploration of unusual technological coordinates.

We also included several controls (see Table 4 for
summary statistics and correlations). First, we use data
from the disambiguated inventor database (Li et al.
2014) to match the inventors on our sample patents to
all of their prior patents. Prior patents is a logged count
of granted patents of the inventor(s) over the previ-
ous 10 years at the time of the focal patent’s appli-
cation date to capture patenting experience at the
team level.10 We also calculated a sum of number of
inventors, a count of the number of the inventors on
the patent, ranging from 1 to 41. This variable is
designed to ensure the prior patenting history of
the team is not driven by the size of the team.

We further include a control for the field of the
invention. Field is a set of dummy variables for the 38
industryclassifications createdbyNBER(Hall et al. 2001)

in which the 400 patent classes were sorted into 38
categories. The classification usedwas from the data set
updated in 2012.11We include these dummy variables
for field to account for patenting differences across
technological areas. Patents cited is the logged (base 2)
count of the number of patents listed as prior art upon
which the patent builds. We also include application
year dummy variables to capture time effects.
Because outlier is a binary dependent variable, we

estimate the coefficients using the following logit model:

P(yi � 1|Xi) �
exp

(

X
′

iβ
)

1 + exp
(

X
′

iβ
),

where yi � 1 is the likelihood that patent i is a tech-
nological outlier, Xi is a vector of variables at the
patent level, and β is the vector of coefficients of in-
terest. Table 5 shows the coefficient estimates and
standard errors for logit models predicting the like-
lihood of an outlier. Model 1 includes only the con-
trols, including year, field, size of the team, and the
collective number of approved patents filed in the
previous 10 years, as these are likely to affect search
processes. Model 2 includes scientific articles cited
and patents cited. We separated out the scientific
articles cited and the patents cited to see how the ref-
erencing of prior art independently influences the
likelihood of being an outlier patent. We find that the
number of scientific articles cited is positively asso-
ciated with outlier patents (z = 14.30, p < 0.001), and
exponentiating the coefficient indicates that, for each
doubling of articles cited, a patent’s odds of being an
outlier increases by about 1.05 times—a modest but
significant effect.12 The count of patents cited is also
positively associated with outlier patents (z = 65.20,
p < 0.001): each doubling of the number of pat-
ents cited increases the odds of a patent being an
outlier by about 1.20 times. Overall, then, we find
that controlling for field of invention, year of appli-
cation, team size, and prior patenting experience,
outlier patents cite both more articles and more
patents.
We include university in Model 3 (Table 5) and find

that universities are significantly more likely to be

Table 4. Descriptive Statistics and Correlations

Variables Mean SD Min Max 1 2 3 4 5 6 7 8

1. Outlier 0.08 0.27 0 1
2. Scientific articles cited 0.48 1.12 0 9.66 −0.00
3. Patents cited 3.04 1.20 0 10.19 0.06 0.03
4. University 0.02 0.14 0 1 0.01 0.26 −0.05
5. Collective breadth 3.11 2.96 1 37 0.01 0.02 0.04 −0.03
6. Max individual breadth 2.90 2.68 1 37 0.01 0.02 0.04 −0.02 0.98
7. Difference in breadth 0.21 0.66 0 14 0.01 0.01 0.03 −0.02 0.52 0.33
8. Number of inventors 2.29 1.65 1 41 −0.01 0.14 −0.01 0.03 0.32 0.24 0.44
9. Prior patents (10 years) 3.34 1.69 1 10.71 −0.04 0.15 0.03 −0.01 0.70 0.67 0.40 0.56

Notes. N = 1,535,878. SD, standard deviation.
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the assignees on outlier patents (z = 14.75, p < 0.001).
The odds of a university filing an outlier patent are
1.36 (EXP(0.311)) times greater than a nonuniversity
assignee. Our results are consistent when including
both scientific articles cited and university assignee
in Model 4 (Table 5). These results are also robust
to using a different data indicator of university as-
signees, with amore inclusive range of what counts as
a university patent.13

Overall, then, the data suggest that one of the ways
inventors may pioneer new areas of the technology
landscape is through application of scientific reason-
ing, and future research should explore how andwhen
this strategy will be most valuable.

Distant Recombination

We begin exploring distant recombination by creat-
ing several breadth measures based on the number of
unique fields in which the inventor(s) has successfully
patented within the 10 years prior to and inclusive of
the year of application of the focal patent (see Table 4
for descriptive statistics). We created this measure
using the disambiguated inventor database (Li et al.
2014) and NBER’s 38 industry classifications (Hall
et al. 2001) as our fields. We first identified the patent
portfolio of each individual inventor in the USPTO
database that filed any patent between 1981 and 2000.
For each inventor-patent pair, we then identified each
unique field represented in the patent portfolio for the
10 years leading up to and including the focal patent.
Each field is counted only once; thus, our breadth
measures can theoretically range from 1 to 38. These
individual patent portfolios were constructed in the
same spirit as the Fleming et al. (2007) measure of
focal inventor experience to capture the “breadth of

experience that the inventor brings to the creative
effort” (Fleming et al. 2007, p. 454). Our measure,
however, is based on NBER’s technology categories,
which are significantly broader than the subclasses
used in the Fleming et al. paper. This approach is more
consistent with the concept of distant recombina-
tion representing a fusion of disparate technology
domains.
We next calculate a measure of the collective

breadth of the inventor team (breadth) by aggregat-
ing the individual portfolios up to the inventor team
level, treating each of the 38 fields as a dummy
variable to retain the identity of unique fields. We
counted the total number of unique fields represented
by the inventor team for each focal patent. In our data,
we find that the maximum number of subcategories
an inventing team has a history of patenting in is 37
(mean = 3.11). Our team-level measure of experience
departs from the collaborative breadth measure of
Fleming et al. (2007) in that they consider prior ex-
perience of all past collaborators, not just those on the
focal patent. We believe our measure is appropriate
for our purposes of exploring the cognitive search
processes of a team.
To examine the importance of breadth at the in-

dividual level, we constructed the variable max in-
dividual breadth, which is a count of the technology
categories in which the broadest inventor on the team
has patented in the previous 10 years. For patents
filed by individual inventors, this value is equal to the
previously described breadth measure; however, for
a team it represents the broadest patenting experience
of any single individual on the team. In our data, we
find that the maximum individual breadth is also
37 (mean = 2.90). To test if team breadth explains

Table 5. Logit Regressions Predicting Outlier Patents with Use of Scientific Reasoning

Models

Variables 1 2 3 4

Articles cited 0.046** 0.038**
[0.003] [0.003]

Patents cited 0.179** 0.181**
[0.003] [0.003]

University 0.311** 0.270**
[0.021] [0.022]

Number of inventors 0.042** 0.043** 0.041** 0.043**
[0.002] [0.002] [0.002] [0.002]

Prior patents (10 years) −0.093** −0.107** −0.092** −0.105**
[0.002] [0.002] [0.002] [0.002]

Constant −2.020** −2.436** −2.030** −2.447**
[0.048] [0.048] [0.048] [0.048]

Field dummies (37) Yes Yes Yes Yes
Application year dummies (10) Yes Yes Yes Yes

Notes. Logit coefficients shown with standard errors in brackets. N = 1,529,701.
**p < 0.001.
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additional variance above and beyond the broadest
inventor on the team, we created difference in breadth,
measuring the difference between the breadth of the
broadest individual and the collective team breadth.
This variable captures the additional, unique fields of
experience on the teamnot captured by the individual
with the greatest breadth of experience. In our data,
the maximum value for difference in breadth is 14
(mean = 0.21).

To explore the roles of inventor and inventor team
breadth in the knowledge search process, we add
our breadth variables to our controls in Models 1–3
in Table 6. First, we look at collective team-level
breadth, collective breadth, measured by the sum of
uniqueNBER subcategories the inventors on the team
have previously patented in during the prior 10 years.
The result is significant and positive (z = 68.30, p <
0.001), and the marginal effects indicate that at the
mean breadth, an additional 10 fields of experience
more than double the probability of being an outlier,
from 0.067 to 0.162 (Model 1, Table 6). This suggests
that an individual or team with diverse prior expe-
rience is more likely to generate an unusual combi-
nation of technologies. Notably, our breadth measure
is not being driven by the number of inventors on the

team, as we have controlled for this separately. It
is also interesting to note that although breadth could
be an indirect measure of prior patenting experience
(those who have filed more patents in the past have
more opportunities to file in different fields, thus
accumulating both breadth and more experience
generally), we find that prior patenting experience
is consistently significant and negative across all
models. This suggests that the inventor(s) of outlier
patents has significantly less patenting experience
than those generating patents in closer proximity
to preexisting technological inventions. This is an
interesting finding and lends support to argu-
ments made by Schilling (2005) that experience can
be somewhat double-edged: an individual with ex-
tensive experience in an area is more likely to become
trapped in known paradigms and may be less likely
to generate breakthrough ideas. Repeated experience
at a task can cause a phenomenon known as “ein-
stellung,” or functional fixedness, whereby learners
form a problem-solving set that mechanizes their prob-
lem solving, constraining them fromdeveloping creative
solutions (Luchins 1942, Mayer 1995).
Next, we disaggregate the breadth measure to disen-

tangle the roles of individual breadth and team breadth.

Table 6. Logit Regressions Predicting Outlier Patents with Distant Recombination and
Full Model

Models

1 2 3 4 Marginal effectsa

Articles cited 0.045** 0.045
[0.003]

Patents cited 0.188** 0.227
[0.003]

University 0.243** 0.243
[0.022]

Collective breadth 0.098**
[0.001]

Max individual breadth 0.105** 0.103** 0.109** 0.303
[0.002] [0.002] [0.002]

Difference in team/individual breadth 0.066** 0.064** 0.030
[0.005] [0.005]

Number inventors 0.050** 0.066** 0.056** 0.059** 0.091
[0.002] [0.002] [0.002] [0.002]

Prior patents (10 years) −0.228** −0.228** −0.231** −0.251** −0.333
[0.003] [0.003] [0.003] [0.003]

Constant −1.858** −1.908** −1.873** −2.320**
[0.048] [0.048] [0.048] [0.048]

Field dummies (37) Yes Yes Yes Yes
Application year dummies (10) Yes Yes Yes Yes

Notes. Logit coefficients shown with standard errors in brackets. N = 1,529,701.
aMarginal effects are calculated after Model 8. Each marginal effect represents a one-standard-

deviation increase in the likelihood of a patent being an outlier. The exception is for the independent
variable for university, which is a binary indicator for which the marginal effect is the increase from zero
to one.

**p < 0.001.
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Model 2 (Table 6) looks at the maximum individual
breadth of experience, measured by the greatest
number of subcategories any one inventor on the
team had previously patented in over the prior 10
years, and we find evidence of a significant effect
of themaximum individual breadth (z = 67.96, p< 0.001).
Marginal effects indicate that, at themean ofmaximum
individual breadth, a standard deviation for the vari-
able (i.e., roughly three fields of experience) increases
the probability of an outlying patent from 0.067 to
0.087 (a 30% increase), and an additional 10 fields
(which is well within the range of the maximum in-
dividual breadth) increases the probability to 0.171 (a
155% increase)—a large amount given the generally
low likelihood of filing an outlier patent.

To investigate whether additional breadth of ex-
perience offered by the team matters, we add the
difference between team and maximum individual
breadth into Model 3. We find that although indi-
vidual breadth is still highly significant, additional
units of breadth above and beyond the broadest in-
ventor are a significant predictor of creating tech-
nologically outlying patents (z= 12.95, p< 0.001),with
the marginal effects of the additional team breadth
being large (but smaller than those for maximum in-
dividual breadth); that is, an additional 10 fields above
the mean increase the probability of being an outlier to
0.122, an increase of 82%. A more modest increase of 3
additional fields yields an increase of 21%. These re-
sults suggest strong support for our arguments about
distant recombination: inventors may make discov-
eries in uncharted technological space by making
unusual fusions between disparate technology do-
mains. Furthermore, our findings suggest that both
individual-level breadth and team-level breadth con-
tribute to the process of generating novel combinations.

As noted previously, these processes are not mu-
tually exclusive, and many instances of knowledge
creation will combine elements of multiple processes.
Some of the steps in a long search path, for example,
might be applications of scientific reasoning, distant
recombination, or serendipity. Furthermore, scientific
reasoning may enable distant recombination. We thus
did not intend to identify inventions as the outcome
of a single process, nor are we posing a “horse race”
about which process yields the most radical inven-
tions. Rather, these processes likely co-occur within
the inventing process. Model 4 (Table 6) includes
all variables associated with the scientific reasoning
process and with the distant recombination vari-
ables, along with their respective marginal effects
for comparison. The combined model yields results
consistent with previous estimates, further substan-
tiating the independence of these two processes while
not ruling out the simultaneous or sequential use of
these processes. Our empirical results are robust to

using a higher threshold of four technological steps
away (instead of two) to define outliers (top 13.48% of
most distant outliers) as well as to using a continuous
measure of technological distance as the dependent
variable (Appendix C). Our sole purpose is to explore
processes that are more likely to be observed in out-
lying inventions than nonoutlying inventions. An-
swering that question is a prerequisite for future re-
search that may have more normative implications for
inventors and organizations.

Discussion and Conclusions
Most technological invention builds closely on
existing inventions; this is highly efficient because the
knowledge and resources in a known technological
domain tend to spillover, at least in part, to adjacent
domains. That is, what is known about an existing
technology can be leveraged in pursuit of other closely
related technologies, lowering the cost of a search
and improving the likelihood of its success. Existing
technological inventions also provide signals of the
value of potential opportunities in the technological
domain and thus serve as guideposts that guide future
search. However, sometimes inventors make discov-
eries that are (or at least appear to be) quite remote
from existing inventions, and sometimes these dis-
coveries turn out to be important, path-breaking in-
novations. We were thus interested in the following
question: How do inventors explore these uncharted
technological regions?
We built upon work on knowledge networks to

identify search processes that are more likely to yield
discoveries that are distant from existing inven-
tions. These processes include using long search paths
that cumulate a series of unobserved steps on a
technological trajectory, use of scientific reasoning, and
use of distant recombination that fuses disparate
knowledge domains. We hoped to be able to identify
systematic differences in the search processes lead-
ing to outlier inventions using a unique—and very
large—data set on outlier patents. Consistent with the
idea that use of scientific reasoning might facilitate
discoveries in uncharted technological space, we
found that outlier patents are significantly more likely
to cite scientific articles, and that outlier patents are
more likely to be associated with university assignees.
The effect of a university assignee was particularly
large: accounting for the other search processes in our
full model, the odds of a university assignee patent
being an outlier were 24% higher than the odds for a
nonuniversity assignee, which is a large and mean-
ingful difference.
We also found evidence supporting the idea that

unusual inventions might be the result of distant
recombination: inventors or inventor teams who had
patented in a greater breadth of fields in the 10 years
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leading up to the focal patent were much more likely
to produce outlier patents, even when controlling for
number of inventors on the inventing team and their
degree of prior patenting experience. These results
differ from those of Kaplan and Vakili (2015), who
found a negative relationship between breadth and
novelty using their text analysis approach. We do not,
however, believe that these findings are necessarily at
odds with one another. Their measure of breadth was
about the content of the patent based on the subclasses
of the patents cited by the focal patent (and it is im-
portant to note that not all prior art citations come from
the inventing team—roughly 40% of prior art citations
are added by patent examiners as reported by Alcacer
et al. 2008). Our breadth measure is based on a
broader construct of technology domains (vs. their
use of subclasses), and ourmeasure captures the prior
experience of the inventing team, which may or may
not be reflected in the prior art citations of the focal
patent. Kaplan and Vakili’s (2015) work also focused
on a single technology domain, which may have
significantly influenced the likelihood of observing
fusion of technology domains.

One of the most important findings in our data was
that the maximum breadth of any single individual
on the team had a particularly strong influence on
the probability of an outlier patent, highlighting
the fact that synthesis of diverse knowledge might be
facilitated by having an individual on a team whose
experience is broad—the renaissance woman or man
(Melero and Palomeras 2015). This has extremely im-
portant implications for managing inventor teams,
which we will discuss at greater length in the “Con-
tributions and Implications for Managers” section.

This paper also pioneers the use of a novel measure
of outlier patents. Aharonson and Schilling (2015)
motivated and conceptualized the computation of
geodesic distances between binary vectors of main-
line subclasses; however, this is the first application
of the method for identifying outlying innovation.
Our measure of an outlier is based on the underly-
ing technological components of the innovation at
the time of application rather than either the subse-
quent forward citations of the patent (an outcome
measure of success) or the prior art included in the
patent (backward citations as a proxy for knowledge
drawn upon). Research that has used prior art citation
measures of novelty (such as an unusual combina-
tion of backward citations) suffers from issues of
sequential interdependence (i.e., you can only cite
what has come before you) and biases from patent
examiners adding cites to patents (Alcacer and
Gittelman 2006). Using the patent subclass system
ensures “historical consistency” as USPTO updates
how the patents are classified based on the current
understanding of the technologicalfield (Fleming 2001).

Our measure improves our ability to conceptual-
ize the extent of novelty in a spatial manner (as op-
posed to “familiarity” based on the frequency of
combination of subclasses) and enables us to in-
troduce relative concepts between patents, such as
adjacency and neighboring technology. We believe
this measure will prove useful for many future
studies, as it is not constrained by domain, yields
discrete identification of outliers and a continuous
measure of technological distance, and is readily
updated to account for technology evolution.
Finally, by drawing on a cognitive network model

of search, we developed a simple and visual way of
thinking about how inventors can arrive at hitherto
unknown areas of the technological landscape. Al-
though there has been considerable work assessing
the importance of exploratory versus exploitative
search, there is relatively little work (either conceptual
or empirical) that examines how inventors achieve
exploratory search. We hope that this framework will
prove useful for many future studies.
We were conservative in our expectations of being

able to find evidence for the knowledge search pro-
cesses described here; it is difficult to directly mea-
sure the knowledge search processes that lead to a
patent, the processes described here are not mutually
exclusive (i.e., multiple processes may be at work
simultaneously), and some outlier inventions are
the result of serendipitous discovery or may arise
through processes we have not yet identified. Fur-
thermore, inventors may draw from work that they
do not cite, and they may have experience that is not
evident in patents. All of these factors made it less
likely that our models would yield significant evi-
dence for the processes we identified. However, de-
spite these obstacles, we obtained preliminary evi-
dence that (a) the search processes that lead to outlier
inventions are often different from those that lead to
nonoutlying inventions, and (b) we can identify in-
dividual search processes useful for exploring un-
charted technological domains.

Future Research Agenda

Our objective here was to generate theory about how
inventors explore uncharted technology space and
to subject our ideas to some preliminary empirical
investigation. Our findings are encouraging and
suggest that these arguments warrant more in-depth
assessment. There are a number of ways that future
research could broaden our knowledge of existing and
potential knowledge search processes, deepen our
knowledge about how and why such search processes
are used, and give us a better understanding of when
they are likely to be useful.
First, it might be useful to try to tease out the

temporal effects within a given firm or within a given
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inventor’s inventive career. It would be interesting,
for example, to see whether a firm that switches be-
tween processes reaps concomitant differences in pat-
ent outcomes, and what the benefits or costs of those
outcomes are. There may also be interesting relation-
ships between the use of scientific reasoning and dis-
tant recombination. For example, Gruber et al. (2013)
found that inventors with a scientific education are
more likely to generate patents that span techno-
logical boundaries, and Barirani et al. (2015) found
that the use of basic science moderated the relation-
ship between distant recombination and “basicness”
of invention in Canadian nanotechnology. Second, it
might be possible to gain a richer perspective of the
search processes described here by using a multiple
case study approach with a matched case design where
outlying patents and nonoutlying patents from the
samefield and time period are compared inmore depth.

Third, an experimental design could also be useful.
For example, to examine the long search path argu-
ment, an experimental setting could prime the use of
search paths of different lengths by giving teams
significantly different time periods to generate a so-
lution to a problem. The resulting solutions could be
compared for their novelty. Semantic analysis of re-
cordings of conversations held within the team could
also be used to attempt to trace the search path, so
that path lengths could be compared across different
teams. The role of team diversity and its decompo-
sition between the individual and collective diversity
could also be assessed in a laboratory setting. In a
laboratory setting, we could examine not only how
the structure of diversity influences outcomes but
also how that influence plays out. Do generalists
dominate the ideation in a team, for example, or do
they primarily help the team form a transactive mem-
ory system that helps them to synthesize their collec-
tive ideas? When is having a generalist valuable, and
does having some degree of expertise overlap among
team members obviate the value of having a general-
ist? There are many interesting questions to be asked
and answered here.

Contributions and Implications for Managers

Our results also provide direction for managers who
wish to encourage exploration of uncharted techno-
logical terrain. First, bringing together people with
more diverse experience on the inventing team may
increase the likelihood of teams pursuing and pat-
enting breakthrough technology. Notably, breadth of
disciplinary experience may not manifest in direct ap-
plication on the focal patent in the form of a citation to
prior art, as studied by Kaplan and Vakili (2015).
Rather, we provide suggestive evidence that breadth
of experience shapes the thinking, exploration, and
identification of potential recombination that results

in a technologically distant patent. We show that
breadth operates at both the team level, which lends
itself to implications for how teams should be staffed,
and the individual level, which may speak to hiring
decisions of whom to bring into the firm. Our data
suggest that having a generalist with broad experience
on the team is particularly valuable for generating
outlier inventions, offering one of the most straight-
forward ways managers may be able to improve the
likelihood of successful exploratory search.
Second, several of our interviews highlighted the

crucial role of bringing on a younger member to the
team, sometimes a graduate student, who was given
the latitude to take an anomalous finding and probe
for its potential value or application. Although we
were unable to test for the age range within the team,
anecdotally we find support that a range of age on the
team allowed for outside-of-box thinking—either in
the identification of a technologically distant idea or in
the willingness to pursue it. For managers, it would be
prudent to think of diversity not only in technological
knowledge but also in the complementarity of mental
elasticity and expertise that can reside within a team.
Third, managers should create opportunities and

incentives for teams to make greater use of academic
research in their innovative efforts, as well as deeper
engagement with the scientific community, which is
less driven by the potential commercial value of its
endeavors. The developments in the basic sciences
may allow for technological breakthroughs in distant
areas of the landscape in a way that relying on prior
patents does not. Although we have highlighted the
role that academic research plays in enabling outlier
patent creation, several of the inventors mentioned
being influenced by seemingly unrelated sources, in-
cluding how the natural world solves related problems.
Managers ought to welcome nontraditional sources of
inspiration into problem-solving conversations. These
novel sources of information from distant domains
may contribute to creating outlier patents in relation
to preexisting technologies and may also contribute to
helping organizations distinguish themselves in rela-
tion to their competition. If the majority of organiza-
tions are relying on similar sources of information from
which to create recombinant solutions, embracing di-
versity of team composition and of sources of inspira-
tion may provide a competitive advantage in creating
breakthrough innovations.
Finally, our results highlight that managers should

give teams the freedom to follow unusual paths of
inquiry when they stumble upon an atypical finding.
Several of the inventors we interviewed noted that an
unexpected or counterintuitive finding sparked the
search that ultimately yielded an outlier patent, and
the value of being able to pursue an unusual path, as
articulated by inventor JamesMurto: “The other thing
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that helps is if you work for a company that doesn’t
dictate how you develop a product. If they leave you
to solve problems without totally narrowing it down,
it opens up your opportunities and the way you look
at things.”

Conclusion

The purpose of this exploratory paper is to develop a
better understanding of how inventors purposefully
explore uncharted technological space, where greater
opportunities of untried technological combinations
might yield important breakthroughs. We extend
research in this domain by taking a cognitive per-
spective, and by doing so, we bridge the existing lit-
eratures on innovation, landscapes, and cognition. We
theorize about three specific search processes (long
search paths, scientific reasoning, and distant recom-
bination) and present qualitative and quantitative
evidence that suggests these processes facilitate inno-
vation in areas of the technological landscape which
are distant fromwhat is well understood. This research
presents a novel framework on which future research
can build to further our collective understanding of
the important processes that underlie exploration.
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Appendix A. Measuring Technology Distance

and Outliers
For each patent, we create a vector of binary indicators
of the 9,864 mainline subclasses. This vector represents
a patent’s technology position (there are a possible 29,864

potential technological positions). The vast majority of
patents are filed in technology positions in which there

are already other patents (i.e., their vector of mainline
subclasses is the same as those of other patents). A smaller
number of patents are filed in positions that have no other
patents, but are adjacent to occupied positions (i.e., their
vector has one difference from the nearest occupied tech-
nology positions). We use these adjacencies to create a
network of technology positions that enables us to measure
the technological distance from every position (and the
patents in it) to every other position. Outliers have no
technological adjacencies at the time of application (i.e., their
vectors have at least two differences from every other
existing patent); they are isolated technology positions. For
example, consider the binary vectors for the following four
patents (only the first eight mainline subclasses are shown;
the remaining would have “0s”):

a. 0 0 0 1 1 1 0 0 . . .
b. 0 0 0 1 1 1 0 0 . . .
c. 0 0 0 0 1 1 0 0 . . .
d. 0 0 0 1 1 0 0 0 . . .

Patents a and b are in the same technology position.
Patents b and c are adjacent, and Patents b and d are adja-

cent. Patents c and d are at a network distance of two from

each other. In network form, they can be represented like

panel (a) of Figure A.1. If this were the universe of patents,

and a new patent was filed with the following vector,
e. 0 0 1 0 1 0 0 0,

it would be an outlier that was at a distance of two positions
from the nearest occupied position. In network form, it can
be represented like panel (b) of Figure A.1.

Our concept of an outlier patent is temporally conditioned—
that is, whether something is an outlier when it is filed
depends uponwhat has beenfiled before. A patent that is an
outlier when filed in 1982, for example, may not have been
an outlier if filed in 1994, as illustrated by the biotechnology
“bloom” graphicallydepicted in theAharonson and Schilling
(2015) paper. Therefore, the outlier measure is calculated
on a yearly basis, from 1976 forward (these data were
obtained from the authors of the Aharonson and Schilling
(2015) paper).

Appendix B

Figure A.1. Example of Network Diagram with New
Unconnected Node

Table B.1. Additional Interview Information

Name of interviewed inventor
(assignee in parentheses)

Outlier patent
number

Number of technological steps at
time of application Patent description

Length of
interview

Constantinos Karatzas 5780009 2a Direct gene transfer into the
ruminant mammary gland

95 minutes
(Nexia Biotechnologies, Inc.) (2 interviews)
Surachai Supattapone 6322802 11 Method of sterilizing 24 minutes
(The Regents of the University of

California)
Jeremy W. Steitz 6422938 11 Pressure seal C-Z fold 16 minutes
(Moore North America, Inc.)
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Appendix C. Robustness Analyses
Model 1 uses a higher threshold for defining outliers
(four or greater technological steps away at the time of ap-
plication, as compared with two steps in the main analyses).

This cutoff represents the top 13.48% of the most distant
outlier patents. Not only are the results consistent with the
main analyses presented in Table 6 of the paper, but mar-
ginal effects are actually stronger for more distant outliers.

Table C.1. Robustness Analyses

Outlier

Marginal effects

Distance

Marginal effects1 2

Articles cited 0.057** 0.066 0.012** 0.005
[0.008] [0.003]

Patents cited 0.277** 0.390 0.057** 0.026
[0.007] [0.003]

University 0.354** 0.354 0.070* 0.070
[0.049] [0.021]

Collective breadth
Max individual breadth 0.121** 0.381 0.015** 0.016

[0.004] [0.002]

Difference in team/individual breadth 0.091** 0.062 0.011* 0.003
[0.013] [0.005]

Number of inventors 0.068** 0.119 0.010** 0.006
[0.006] [0.002]

Prior patents (10 years) −0.288** −0.385 −0.030** −0.019
[0.008] [0.003]

Constant −4.536** 2.493**
[0.125] [0.047]

Field dummies (37) Yes Yes
Application year dummies (10) Yes Yes
N 1,529,701 120,480

Notes. Logit coefficients shownwith standard errors in brackets. Marginal effects are calculated after the
preceding model. Each marginal effect represents a one-standard-deviation increase in the likelihood of
a patent being an outlier. The exception is for the independent variable for university, which is a binary
indicator for which the marginal effect is the increase from zero to one.

**p < 0.001; *p < 0.05.

Table B.1. (Continued)

Name of interviewed inventor
(assignee in parentheses)

Outlier patent
number

Number of technological steps at
time of application Patent description

Length of
interview

James Murto 6689615 11 Methods and devices for
processing blood samples

19 minutes
(individually owned patent)
Donald Elbert 6884628 12 Multifunctional polymeric surface

coatings in analytic and sensor
devices

32 minutes
(Universitat Zurich)

Jonathan Stamler 6255277 13 Localized use of nitric oxide
adducts to prevent internal
tissue damage

50 minutes
(Brigham and Women’s Hospital;
NitroMed, Inc.)
Juhani Soini 6361956 13 Biospecific, two photon

excitation, fluorescence
detection and device

65 minutes
(individually owned patent)

J. Bruce Pitner 6576430 13 Detection of ligands by refractive
surface methods

65 minutes
(Becton, Dickinson)
Jason E. Gestwicki 6576430 13 Detection of ligands by refractive

surface methods
20 minutes

(Becton, Dickinson)
Lanny S. Liebeskind 6632805 13 Methods for using water-

stabilized organosilanes
75 minutes

(Emory University)

Notes. In total, we attempted to track down 93 inventors from 30 patents.Wewere able to find contact information for 20 inventors on 16 patents,
and we conducted interviews with 10 of those inventors (representing 9 patents), for an overall response rate of 50%.

aThough patent #5780009 did not appear on our list of most distant patents, the spider goat story had been important in motivating our study,
and we had extensive conversations with one of the inventors. We thus include them here.
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For more distant outliers, scientific reasoning (article cita-
tions and university) and distant recombination are stron-
ger predictors on the likelihood of being an outlier.

Model 2 is an ordinary least square regression predicting
the number of technological steps away at the time of ap-
plication (between 2 and 18) within the outlier patent pop-
ulation (N = 120,480). Within this group of outlier patents,
these processes predict comparatively smaller effects in
how distant the patent is from preexisting technology; how-
ever, the direction of the effects is entirely consistent with the
theoretical arguments in this paper.

Endnotes
1The idea of a technology landscape is derived from Sewall Wright’s
(1932) concept of a fitness landscape within which evolution occurs.
In Wright’s conception, each attribute of an organism relates to a
dimension of the space, and a final dimension of the space represents
the organism’s fitness—that is, likelihood of survival and re-
production (Levinthal 1997).
2We chose the 1990–2000 time frame so that we could gather 10 years
of previous patenting expertise for each of the inventors and complete
forward citation data for 10 years after the patents are granted (the
data set from which we draw patent class and forward citation data
extends from 1981 to 2014).
3 See https://eml.berkeley.edu/~bhhall/patents.html, accessed
March 16, 2020.
4The distribution of forward citations is highly skewed; however,
this difference is consistent when comparing the median of forward
citations between outliers (10) and nonoutliers (8).
5We did not interview inventors with the intention of conducting a
rigorous qualitative analysis—that would have necessitated finding a
much larger set of representative inventors, which is beyond the
scope of the current study. Our interviews were merely intended to
give us a richer sense of these inventors’ outlier discovery process.
6Note, we refer here to networks of cognitive associations in the mind,
not social networks. For simplicity, we will describe knowledge cre-
ation only at the individual level, but these arguments are straight-
forward to generalize to the transactive memory systems of groups.
7Using a base 2 log transformation makes interpretation of the co-
efficients in a logit analysismore straightforward than using a natural
log transformation.
8Our results are robust to using a simple count of the material in
the other references section, following the approach of Fleming and
Sorenson (2004). Notably, with increased precision of the mea-
sure from the Patent Citations to Science project (Marx 2019, Marx
and Fuegi 2019), we find stronger results with larger marginal
effect sizes.
9Though this measure is based on only the first assignee, we are
reasonably confident this does not introduce bias into the results,
as only just over 1% of utility patents are filed with multiple as-
signees. We are indebted to Juan Alcacer for this statistic.
10As expected, the correlation between our breadth measures and
prior patents is high, however it serves as an important control of past
experience. We ensure that in all of our models the independent
variables of interest (collective breadth, max individual breadth, and
difference in breadth) have variance inflation factor (VIF) scores
below 5.
11 See https://sites.google.com/site/patentdataproject/Home, accessed
March 5, 2020.
12Our results are robust to using a dummy indicator for having any
references to scientific articles, consistent with the approach used by
Fleming and Sorenson (2004).

13Notably, we are using both citations to academic research and
university assignees as proxies for the scientific reasoning. Although
the correlation between these two measures (0.26, p < 0.001) is not
high enough to consider them multiple measures of the same con-
struct, patents with university assignees were significantly more
likely to cite at least one article (0.75 versus 0.20, p < 0.001) and cited
significantly more articles (13.37 versus 1.46, p < 0.001). Thus, al-
though we believe it is valuable to include both of these measures of
scientific reasoning, the relationship between them slightly dampens
the results we obtain for each. The variables are tested separately in
Model 2 and Model 3 and tested together in Model 4.
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