
EXPLORING UNKNOWN ENVIRONMENTS∗

SUSANNE ALBERS† AND MONIKA R. HENZINGER‡

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1164–1188

Abstract. We consider exploration problems where a robot has to construct a complete map
of an unknown environment. We assume that the environment is modeled by a directed, strongly
connected graph. The robot’s task is to visit all nodes and edges of the graph using the minimum
number R of edge traversals. Deng and Papadimitriou [Proceedings of the 31st Symposium on the
Foundations of Computer Science, 1990, pp. 356–361] showed an upper bound for R of dO(d)m and
Koutsoupias (reported by Deng and Papadimitriou) gave a lower bound of Ω(d2m), where m is the
number of edges in the graph and d is the minimum number of edges that have to be added to make
the graph Eulerian. We give the first subexponential algorithm for this exploration problem, which
achieves an upper bound of dO(log d)m. We also show a matching lower bound of dΩ(log d)m for our
algorithm. Additionally, we give lower bounds of 2Ω(d)m, respectively, dΩ(log d)m for various other
natural exploration algorithms.

Key words. directed graph, exploration algorithm

AMS subject classifications. 05C20, 68Q20, 68Q25, 68R10

PII. S009753979732428X

1. Introduction. Suppose that a robot has to construct a complete map of an
unknown environment using a path that is as short as possible. In many situations
it is convenient to model the environment in which the robot operates by a graph.
This allows us to neglect geometric features of the environment and to concentrate
on combinatorial aspects of the exploration problem. Deng and Papadimitriou [12]
formulated thus the following exploration problem. A robot has to explore all nodes
and edges of an unknown, strongly connected directed graph. The robot visits an edge
when it traverses the edge. A node or edge is explored when it is visited for the first
time. The goal is to determine a map, i.e., the adjacency matrix of the graph, using
the minimum number R of edge traversals. At any point in time the robot knows (1)
all visited nodes and edges and can recognize them when reencountered, and (2) the
number of unvisited edges leaving any visited node. The robot does not know the
head of unvisited edges leaving a visited node or the unvisited edges leading into a
visited node. At each point in time, the robot visits a current node and has the choice
of leaving the current node by traversing a specific known or an arbitrary (i.e., given
by an adversary) unvisited outgoing edge. An edge can be traversed only from tail to
head, not vice versa.

If the graph is Eulerian, 2m edge traversals suffice [12], where m is the number
of edges. This immediately implies that undirected graphs can be explored with
at most 4m traversals. In fact, using depth-first-search they can be explored using
2m edge traversals. For a non-Eulerian graph, let the deficiency d be the minimum
number of edges that have to be added to make the graph Eulerian. Deng and

∗Received by the editors July 14, 1997; accepted for publication (in revised form) February 12,
1999; published electronically February 10, 2000. A preliminary version of this paper was presented
at the 29th Annual ACM Symposium on the Theory of Computing (STOC), El Paso, TX, 1997.

http://www.siam.org/journals/sicomp/29-4/32428.html
†Lehrstuhl Informatik II, Universitaet Dortmund, 44221 Dortmund, Germany (albers@

ls2.cs.uni-dortmund.de). The work of this author supported in part by the Deutsche Forschungs-
gemeinschaft, project Al 464/1-1.
‡Systems Research Center, Compaq Computer Corporation, 130 Lytton Ave, Palo Alto, CA 94301

(monika@pa.dec.com). The work was supported by the NSF CAREER Award, grant CCR-9501712.

1164

EXPLORING UNKNOWN ENVIRONMENTS 1165

Papadimitriou [12] suggested studying the dependence of R on m and d and showed
the first upper and lower bounds: they gave a graph such that any algorithm needs
Ω(d2m/ log d) edge traversals, and they also presented an algorithm that achieves
an upper bound of dO(d)m. Koutsoupias [16] improved the lower bound to Ω(d2m).
Deng and Papadimitriou asked the question whether the exponential gap between the
upper and lower bound can be closed. Our paper is a first step in this direction: we
give an algorithm that is subexponential in d; namely, it achieves an upper bound of
dO(log d)m. We also show a matching lower bound for our algorithm and exponential
lower bounds for various other exploration algorithms.

Note that d arises also in the complexity of the “offline” version of the problem:
Consider a directed cycle with one edge replaced by d + 1 parallel edges. On this
graph any Eulerian traversal requires Ω(dm) edge traversals. A simple modification
of the Eulerian online algorithm solves the offline problem on any directed graph with
O(dm) edge traversals.

Related work. Exploration and navigation problems for robots have been stud-
ied extensively in the past. The exploration problem in this paper was formulated
by Deng and Papadimitriou based on a learning problem proposed by Rivest [19].
Betke, Rivest, and Singh [8] and Awerbuch et al. [1] studied the problem of exploring
an undirected graph and requiring additionally that the robot returns to its start-
ing point every so often. Bender and Slonim [9] showed how two cooperating robots
can learn a directed graph with indistinguishable nodes, where each node has the
same number of outgoing edges. Subsequent to the work in [12], Deng, Kameda, and
Papadimitriou [11] investigated a geometric exploration problem, whose goal is to
explore a room with or without polygonal obstacles. Hoffmann et al. [15] gave an im-
proved exploration strategy for rooms without obstacles. More generally, theoretical
studies of exploration and navigation problems in unknown environments were initi-
ated by Papadimitriou and Yannakakis [18]. They considered the problem of finding
a shortest path from a point s to a point t in an unknown environment and pre-
sented many geometric and graph-based variants of this problem. Blum, Raghavan,
and Schieber [7] investigated the problem of finding a shortest path in an unfamiliar
terrain with convex obstacles. More work on this problem includes [2, 5, 6].

Our results. Our main result is a new robot strategy that explores an arbitrary
graph with deficiency d and traverses each edge at most (d + 1)7d2 log d times; see
section 3. The algorithm does not need to know d in advance. The total number
of traversals needed by the algorithm is also O(min{nm, dn2 + m}), where n is the
number of nodes. At the end of section 3 we show that any exploration algorithm
that fulfills two intuitive conditions achieves an upper bound of O(min{nm, dn2+m}).
A depth-first search strategy obtaining this bound was independently developed by
Kwek [17].

In section 4 we demonstrate that our analysis of the new robot strategy is tight:
There exists a graph that is explored by our algorithm using dΩ(log d)m edge traversals.
We also show that various variants of the algorithm have the same lower bound. In
section 2, we present lower bounds of 2Ω(d)m, respectively, dΩ(log d)m for various other
natural exploration algorithms, to give some intuition for the problem.

Our exploration algorithm tries to explore new edges that have not been visited so
far. That is, starting at some visited node x with unvisited outgoing edges, the robot
explores new edges until it gets stuck at a node y, i.e., it reaches y on an unvisited
incoming edge and y has no unvisited outgoing edge. Since the robot is not allowed
to traverse edges in the reverse direction, an adversary can always force the robot to

1166 SUSANNE ALBERS AND MONIKA R. HENZINGER

visit unvisited nodes until it finally gets stuck at a visited node.
The robot then relocates, using visited edges, to some visited node z with

unexplored outgoing edges and continues the exploration. The choice of z is the
only difference between various algorithms and the relocation to z is the only step
where the robot traverses visited edges. To minimize R we have to minimize the total
number of edges traversed during all relocations. It turns out that a locally greedy
algorithm that tries to minimize the number of traversed edges during each relocation
is not optimal: it has a lower bound of 2Ω(d)m (see section 2).

Instead, our algorithm uses a divide-and-conquer approach. The robot explores
a graph with deficiency d by exploring d2 subgraphs with deficiencies d/2 each and
uses the same approach recursively on each of the subgraphs. To create subgraphs
with small deficiencies, the robot keeps track of visited nodes that have more visited
outgoing than visited incoming edges. Intuitively, these nodes are expensive because
the robot, when exploring new edges, can get stuck there. The relocation strategy
tries to keep portions of the explored subgraphs “balanced” with respect to their
expensive nodes. If the robot gets stuck at some node, then it relocates to a node
z such that “its” portion of the explored subgraph contains the minimum number of
expensive nodes.

2. Lower bounds for various algorithms. In this section we prove a lower
bound of 2Ω(d)m for a locally greedy, a depth-first, and a breadth-first algorithm. We
also give a lower bound of dΩ(log d)m for a generalized greedy strategy.

A related problem, for which lower bounds have been studied extensively, is the
s–t connectivity problem in directed graphs; see [3, 4, 14] and references therein.
Given a directed graph, the problem is to decide whether there exists a path from a
distinguished node s to a distinguished node t. Most of the results are developed in
the JAG model by Cook and Rackoff [10]. The best time–space tradeoffs currently
known [4, 14] only imply a polynomial lower bound on the computation time if no
upper bounds are imposed in the space used by the computation. Given the current
knowledge of the s–t connectivity problem it seems unlikely that one can prove super-
polynomial lower bounds for a general class of graph exploration algorithms.

In the following let G be a directed, strongly connected graph and let v be a
node of G. Let in(v) and out(v) denote, respectively, the number of incoming and
outgoing edges of v. Let the balance bal(v) = out(v) − in(v). For a graph with
deficiency d there exist at most d nodes si, 1 ≤ i ≤ d, such that bal(si) < 0. Every
node si with bal(si) < 0 is called a sink. Note that −∑s,bal(s)<0 bal(s) = d. We
use the term chain to denote a path. A chain is a sequence of nodes and edges
x1, (x1, x2), x2, (x2, x3), . . . , (xk−1, xk), xk for k > 1.

Greedy: If stuck at a node y, move to the nearest node z that has new outgoing
edges.

Generalized-Greedy: At any time, for each path in the subgraph explored so far,
define a lexicographic vector as follows. For each edge on the path, determine its
current cost, which is the number of times the edge was traversed so far. Sort these
costs in nonincreasing order and assign this vector to the path. Whenever stuck at
a node y, out of all paths to nodes with new outgoing edges traverse the path whose
vector is lexicographic minimum.

Depth-First: If stuck at a node y, move to the most recently discovered node z
that can be reached and that has new outgoing edges.

Breadth-First: Let v be the node where the exploration starts initially. If stuck at
a node y, move to the node z that has the smallest distance from v among all nodes

EXPLORING UNKNOWN ENVIRONMENTS 1167

with new outgoing edges that can be reached from y.

Theorem 1. For Greedy, Depth-First, and Breadth-First, and for every d, there
exist graphs of deficiency d that require 2Ω(d)m edge traversals.

Proof (Greedy). Basically Greedy fails since it is easy to “hide” a subgraph (see
Figure 1). Whenever Greedy discovers this subgraph, the adversary can force it to
repeat all the work done so far.

The graph G consists of two parts: (1) a cycle C0 of three edges and nodes v,
v1(C0), and v2(C0), and (2) a recursively defined problem P d. A problem P δ, for any
integer δ ≥ 2, is a subgraph that has two incoming edges whose startnodes do not
belong to P δ but whose endnodes do, and δ outgoing edges whose startnode belongs
to P δ but whose endnodes do not. A problem P 1 is defined in the same way as a
problem P δ, δ ≥ 2, except that P 1 has only one incoming edge. In the case of P d, the
two incoming edges start at v1(C0) and v2(C0), respectively; the d outgoing edges all
point to v.

For the description of P δ we also need recursively defined problems Qδ. These
problems are identical to P δ except that, for δ > 2, Qδ has exactly δ incoming edges.

A problem P δ, δ = 1, 2, consists of δ chains of three edges each. The first edge
of each chain is an incoming edge into P δ; the last edge of each chain is an outgoing
edge. A problem Qδ, δ = 1, 2, is the same as P δ.

We proceed to define P δ, for δ > 2. One of the incoming edges of P δ is the first
edge of a chain Dδ consisting of three edges and the other incoming edge is the first
edge of a long chain Cδ. For each of these chains Cδ and Dδ, the last edge is an
outgoing edge of P δ. If δ = 3, the last interior node of each of the chains Cδ and Dδ

has an additional outgoing edge pointing into a problem P 1. If δ ≥ 4, then (a) the
last two interior nodes of Cδ each have an additional outgoing edge pointing into a
subproblem P δ−2, and (b) the last two interior nodes of Dδ each have an additional
outgoing edge pointing into a subproblem Qδ−2. There are δ− 2 edges leaving P δ−2,
exactly max{0, δ − 4} of which point to nodes of Qδ−2 such that each node in Qδ−2

that has k more outgoing than incoming edges, for some 0 ≤ k ≤ max{0, δ − 4},
receives k incoming edges from P δ−2. The remaining outgoing edges of P δ−2 point to
the interior nodes of Dδ that have additional outgoing edges. The problem Qδ−2 has
δ−2 outgoing edges all of which are outgoing edges of P δ. The total number of edges
in Cδ is 2 plus the number of edges of Dδ plus the total number of edges contained
in the subproblem Qδ−2 below Dδ.

A problem Qδ, δ > 2, is the same as P δ except that the subproblem P δ−2 is
replaced by another Qδ−2 problem. That is, Qδ is composed of chains Cδ, Dδ, and
problems Qδ−2

i , i = 1, 2. As mentioned before, Qδ has exactly δ incoming edges.

Greedy is started at node v and traverses first chain C0. Then it either explores
Cd or Dd. In either case, afterwards Greedy explores all edges of Qd−2 since Cd

is prohibitively long. Thus, P d−2 is “hidden” from Greedy. We exploit this in the
analysis: Let N(δ) be the number of times that Greedy explores edges of a problem
P δ or Qδ, gets stuck at some node, and cannot relocate to a suitable node by using
only edges in P δ, respectively, Qδ. We show that N(δ) ≥ 2δ/2. Since the edge leaving
v is traversed every time the algorithm cannot relocate by using only edges in P d, the
bound follows.

A problem P δ contains two subproblems P δ−2 and Qδ−2. Note that (a) because
of chain Dδ, no node in Qδ−2 can reach a node of P δ−2 without leaving P δ, and
(b) Qδ−2 is completely explored when the exploration of P δ−2 starts and all paths
starting in P δ−2 lead through Dδ or Qδ−2. Thus, every time Greedy gets stuck in

1168 SUSANNE ALBERS AND MONIKA R. HENZINGER

C0

v

Qd−2Pd−2

Cd Dd

Fig. 1. The graph for Greedy.

a subproblem P δ−2 or Qδ−2 and has to leave P δ−2, respectively, Qδ−2 in order to
resume exploration, it also has to leave P δ. For Qδ−2 the statement follows from (a);
for P δ−2 it follows from (a) and (b). In the same way, we can argue for a problem
Qδ. Thus, N(δ) ≥ 2N(δ − 2). Since, for δ = 1, 2, N(δ) ≥ 1, we obtain N(δ) ≥ 2δ/2.

This implies that the edge e on C0 leaving v is traversed 2Ω(d) times. The desired
bound follows by replacing e with a path consisting of Θ(m) edges.

Depth-First: We can use the same graph as in the case of the Greedy algorithm.
Depth-First will explore all edges in Qd−2 before it will start exploring P d−2.

Breadth-First: Again we can use the same graph as in the lower bound for Greedy.
The last two interior nodes of Cd have a larger distance from the initial node v than all
nodes on Dd and in Qd−2. Thus Qd−2 is finished before Breadth-First starts exploring
P d−2.

Theorem 2. For Generalized-Greedy and for every d, there exists a graph of
deficiency d that requires dΩ(log d)m edge traversals.

Proof. The graph used for the lower bound is outlined in Figure 2. The basic
idea in the lower bound construction is as follows. Generalized-Greedy explores each
subgraph Qγi and its sibling Rγi “in parallel.” Without loss of generality we can
assume that the last chain traversed in the two subgraphs lies in Qγi and the algorithm
continues to explore Qγi+1 and Rγi+1. Let N(γ) denote the number of times that the
algorithm has to leave Rγi and traverse the root. We will show that N(4γ) ≥ γN(γ),
which implies that the root has to be traversed N(d) ≥ dΩ(log d) times.

To be precise we show the bound for d being a power of 4. The bound for all values
of d follows by rounding down to the largest power of 4 smaller than d. The graph
G consists of two parts: (1) a cycle C0 with nodes v, v1(C0) and v2(C0), and (2) a
recursively defined subproblem P d. Problem P d has two incoming edges, one starting
at v1(C0) and one starting at v2(C0). It also has d outgoing edges, all pointing to v.
The subproblem P d is a union of chains C, each of which consists of three edges, a
startnode, an endnode, and two interior nodes v1(C) and v2(C). The interior nodes
have at most one additional outgoing edge. We proceed to define P δ and the “sibling”
graphs Qδ and Rδ, for all δ ≤ d that are a power of 4, and then show the lower bound
on this graph.

A problem P δ, δ > 1, is a graph with two incoming edges and exactly δ outgoing
edges. A problem Rδ, δ > 1, consists of P δ with δ−2 additional incoming edges. The
problem Qδ consists of Rδ with two additional incoming and two additional outgoing
edges.

δ = 1: A problem P 1 consists of one chain. The incoming edge of P 1 is the first

EXPLORING UNKNOWN ENVIRONMENTS 1169

C0

Q
γ
1

Q
γ
2

Q
γ
γ−1

R
γ
1

R
γ
2

R
γ
γ−1

P
γ
γ

P
γ
γ+1

Fig. 2. The graph for Generalized-Greedy.

D1
1

C1
1

P 1
1

P 1
2

Fig. 3. The subproblem P 4.

edge of the chain and the outgoing edge of P 1 is the last edge of the chain. In P 1,
the interior nodes of the chain have no additional outgoing edges; in Q1, each interior
node has one additional incoming and one additional outgoing edge. Problem R1 is
equal to P 1.

δ = 4: A problem P 4 consists of two subproblems P 1
1 and P 1

2 and chains C1
1 and

D1
1, whose first interior nodes have one additional outgoing edge (see Figure 3). The

outgoing edge of C1
1 is the incoming edge of P 1

1 and the corresponding edge of D1
1 is

the incoming edge of P 1
2 . The last edge of C1

1 and D1
1 and the outgoing edges of P 1

1

and P 1
2 are outgoing edges of P 4. A problem R4 is P 4 with two additional incoming

edges, one at the startnode of P 1
1 and one at the startnode of P 1

2 . A problem Q4 is
R4 with two additional incoming and outgoing edges; each interior node of P 1

1 has an
additional incoming and outgoing edge.

δ = 4l, for some l ≥ 2: Let γ = δ/4. It is simpler to describe Qδ first. The
construction is depicted in Figure 4. Every node has the same indegree as outdegree,
i.e., there are no sinks. Problem Qδ consists of subproblems Qγi and Rγi , for 1 ≤ i ≤ γ,
connected by chains Cγi and Dγ

i , for 1 ≤ i ≤ γ, whose interior nodes each have an
additional outgoing edge.

The C-chains andQ-subproblems are interleaved as follows. The two edges leaving
the interior nodes of Cγ1 point into Qγ1 . In general, the edges leaving the interior nodes

1170 SUSANNE ALBERS AND MONIKA R. HENZINGER

C
γ
2

A problem P δ
Dδi

D
γ
1

R
γ
1

D
γ
2

R
γ
γ−1

Q
γ
γ−1

P
γ
γ+1

P
γ
γ

D
γ
1

R
γ
1

D
γ
2

C
γ
1

Cδi

Q
γ
1

C
γ
2

R
γ
γ−1

R
γ
γ

Q
γ
γ

Q
γ
γ−1

A problem Qδ
C
γ
1

Q
γ
1

Fig. 4. The subproblems Qδ and P δ.

of Cγi point into Qγi . The same holds for the D-chains and R-subproblems. The first
edge of Cγi and of Dγ

i are incoming edges of Qδ, for i = 1, and start in Qγi−1, for
1 < i ≤ γ, on a node of the leftmost subproblem Q1 contained in Qγi−1. Recall that
this problem consists of one chain with two additional incoming and outgoing edges.
One of these outgoing edges is the first edge of Cγi and the second outgoing edge is
the first edge of Dγ

i .

Additionally, the subproblems are connected as follows. Recall that γ edges leave
Rγi . For i = 1, the edges leaving Rγi are outgoing edges of Qδ. For 1 < i ≤ γ, two
edges leaving Rγi point to the interior edges of Dγ

i−1. Additionally, there are γ − 2
edges leaving Rγi and pointing into Rγi−1 such that every node in Rγi−1 that has k more
outgoing than incoming edges, for k > 0, receives k edges from Rγi . The same holds
for Qγi with Cγi−1. The problem Qγγ has γ incoming edges which are incoming edges

for Qδ; the problem Rγγ has γ − 2 incoming edges which are incoming edges for Qδ.

There are 4γ + 2 = δ + 2 outgoing edges in Qδ: the last edge of Cγi and the last
edge of Dγ

i , for 1 ≤ i ≤ γ, all edges leaving Rγ1 , all but two edges leaving Qγ1 (the
other two are the incoming edges of Dγ

2 and Cγ2), and two edges leaving Qγγ . There
are also δ + 2 incoming edges: the first edge of Cγ1 and of Dγ

1 , the edges pointing to
the two interior nodes of Cγγ and Dγ

γ , the γ incoming edges of Qγγ , the γ− 2 incoming
edges of Rγγ , and 2γ − 2 incoming edges ending at the startnodes of Cγi and Dγ

i , for
2 ≤ i ≤ γ.

A problem P δ consists of 2γ chains Cγi and Dγ
i , 1 ≤ i ≤ γ, as well as two

subproblems P γi , γ ≤ i ≤ γ + 1, and 2(γ − 1) subproblems Qγi and Rγi , 1 ≤ i ≤ γ − 1.
These components are assembled in the same way as in Qδ, except that Qγγ is replaced
by P γγ+1 and Rγγ is replaced by P γγ . Problems P γγ and P γγ+1 each have only two
incoming edges from Cγγ and Dγ

γ , respectively.

There are 4γ = δ outgoing edges in P δ: the last edge of Cγi and the last edge
of Dγ

i , for 1 ≤ i ≤ γ, all but two edges leaving Qγ1 (the other two are the incoming
edges of Dγ

2 and Cγ2), all edges leaving Rγ1 . There are two incoming edges in P δ. The
first edge of Cγ1 and of Dγ

1 are incoming edges in every problem P δ. The following

EXPLORING UNKNOWN ENVIRONMENTS 1171

δ − 2 nodes are sources for P δ: the two interior nodes of Cγγ and of Dγ
γ , the 2γ − 2

startnodes of Cγi and Dγ
i , for 2 ≤ i ≤ γ, the γ−2 sources of P γγ , and the γ−2 sources

of P γγ+1.

A problem Rδ is a problem P δ with an incoming edge into every source of P δ.
Thus there are δ incoming and δ outgoing edges.

We analyze Generalized-Greedy on G. For simplicity we only discuss the explo-
ration of a problem Qδ. The argument for P δ and Rδ is analogous. As before, let
γ = δ/4. We show inductively that the symmetric construction of Qγi and Rγi at-
tached to Cγi and Dγ

i as well as the definition of Generalized-Greedy imply that Qγi
and Rγi are explored symmetrically. That is, during two consecutive traversals of
C (in order to resume exploration in Qγi or Rγi), Generalized-Greedy proceeds once
into Qγi and once into Rγi , where C is the chain at which chains Cγi and Dγ

i start.
This obviously holds for i = 1. Assume it holds for i and we want to show it for
i + 1. Note that Qγi and Rγi differ only in the last chain that Generalized-Greedy
explores in Qγi , respectively, Rγi . Thus, until the traversal of the earlier of the last
chain of Qγi and the last chain of Rγi , Generalized-Greedy does not distinguish Qγi
from Rγi . Hence we can assume without loss of generality that Generalized-Greedy
traverses first the last chain of Rγi , and afterwards the last chain of Qγi . (Think of an
adversary “giving” to Generalized-Greedy first the last chain of Rγi and then the last
chain of Qγi .) Then Generalized-Greedy explores Cγi+1 and Dγ

i+1, and afterwards Qγi+1

and Rγi+1 symmetrically. Thus, when Generalized-Greedy explores a subproblem Rγi ,
1 ≤ i ≤ γ, subproblems Rγj with 1 ≤ j < i are already finished.

Whenever Generalized-Greedy gets stuck in Rγi , 1 ≤ i ≤ γ, and has to leave Rγi in
order to resume exploration, it also has to leave the “parent problem” Qδ (or P δ, Rδ).
This is because the chains Dγ

i , 1 ≤ i ≤ γ, prevent the algorithm from reaching a chain
in Qγj , 1 ≤ j ≤ i, from where unfinished chains in Qδ, (P δ, Rδ) can be reached. On
the way from Rγi to an outgoing edge of the parent problem, Generalized-Greedy can
traverse problems Rγj , j ≤ i. As shown in Figure 4, the subproblems are finished; no
further exploration of Rγj is possible. The same arguments hold when the algorithm
gets stuck in a problem P γγ .

For any δ, 4 ≤ δ ≤ d, let N(δ) be the number of times Generalized-Greedy
generates a chain in P δ or Rδ, gets stuck, and has to leave P δ or Rδ in order to
continue exploration. Then N(δ) ≥ γN(γ) = δ/4N(δ/4). Since N(1) ≥ 1, we have
N(d) ≥ dΩ(log d) and hence the edge leaving node v is traversed dΩ(log d) times.

3. An algorithm for graphs with deficiency d.

3.1. The Balance algorithm. We present an algorithm that explores an un-
known, strongly connected graph with deficiency d, without knowing d in advance.
First we give some definitions. At the start of the algorithm, all edges are unvisited
or new. An edge becomes visited whenever the robot traverses it. A node is finished
whenever all its outgoing edges are visited. The robot is stuck at a node y if the robot
enters a finished node y on an unvisited edge. A sink is discovered whenever the robot
gets stuck at the sink for the first time. We assume that whenever the robot discovers
a new sink, the subgraph of explored edges is strongly connected. This does not hold
in general, but by properly restarting the algorithm, the problem can be reduced to
the case described here. Details are given in section 3.2.

Assume the algorithm knew the d missing edges (s1, t1), (s2, t2), . . . , (sd, td) and
a path from each si to ti. Then a modified version of the Eulerian algorithm could
be executed: Whenever the original Eulerian algorithm traverses an edge (si, ti), the

1172 SUSANNE ALBERS AND MONIKA R. HENZINGER

modified Eulerian algorithm traverses the corresponding path from si to ti. Obviously,
the modified algorithm traverses each edge at most 2d+ 2 times. Thus, the problem
is to find the missing edges and corresponding paths.

Our algorithm tries to find the missing edges by maintaining d edge-disjoint
chains, such that the endnode of chain i is si and the startnode of chain i is our
current guess of ti. As the algorithm progresses, paths can be appended at the start
of each chain. At termination, the startnode of chain i is indeed ti. To mark chain i
all edges on chain i are colored with color i.

The algorithm consists of two phases.

Phase 1. Run the algorithm of [12] for Eulerian graphs. Since G is not Eulerian,
the robot will get stuck at a sink s. At this point stop the Eulerian graph algorithm
and goto Phase 2. The part of the graph explored so far contains a cycle C0 containing
s [12]. We assume that at the end of Phase 1 all visited nodes and edges not belonging
to C0 are marked again as unvisited.

Phase 2. Phase 2 consists of subphases. During each subphase the robot visits a
current node x of a current chain C and makes progress towards finishing the nodes
of C. The current node of the first subphase is s, its current chain is C0. The current
node and current chain of subphase j depend on the outcome of subphase j − 1.

A chain can be in one of three states: fresh, in progress, or finished. A chain C
is finished when all its nodes are finished; C is in progress in subphase j if C was a
current chain in a subphase j′ ≤ j and C is not yet finished; C is fresh if it is not
finished and not yet in progress.

Up to d+1 chains in progress and up to d fresh chains can exist at the same time.
The invariant that there are always at most d+ 1 chains in progress is convenient but
not essential in the analysis of the algorithm. The invariant that there exist always
at most d fresh chains is crucial. Every startnode of a fresh chain has more visited
outgoing than visited incoming edges and, thus, the robot can get stuck there. In the
analysis we require that there always exist at most d such nodes.

The algorithm marks the current guess for ti with a token τi, for 1 ≤ i ≤ d.
In fact, every startnode of a fresh chain represents the current guess for some ti,
1 ≤ i ≤ d, and thus has a token τi. To simplify the description of the relocation
process, each token is also assigned an owner which is a chain that contains the node
on which the token is placed. More specifically, the owner of τi is the chain that
was the current chain when the path from the current guess of ti to si was extended
last. Note that the owner is not the chain from the current guess of ti to si. A node
can be the current guess for more than one node ti and, thus, have more than one
token.

From a high-level point of view, at any time, the subgraph explored so far can be
partitioned into chains, namely C0 and the chains generated in Phase 2. During the
actual exploration in the subphases, the robot travels between chains. While doing
so, it generates or extends fresh chains, which will be taken into progress later, and
finishes the chains currently in progress.

We give the details of a subphase. First, the algorithm tests if x has an unvisited
outgoing edge.

1. If x does not have an unvisited outgoing edge and x is not the endnode of
C, then the next node of C becomes the current node and a new subphase is
started.

2. If x has no unvisited outgoing edge and x is the endnode of C, procedure
Relocate is called to decide which chain becomes the current chain and to

EXPLORING UNKNOWN ENVIRONMENTS 1173

x x x

P

P

=⇒
C C

Fig. 5. Case 1.

C C′
x

P
D

y

Fig. 6. Case 2.

move the robot to the startnode z of this chain. Node z becomes the current
node.

3. If x has unvisited outgoing edges, the robot repeatedly explores unvisited
edges until it gets stuck at a node y. Let P be the path traversed.
We distinguish four cases.

Case 1. y = x. Cut C at x and add P to C (see Figure 5). The robot returns to
x and the next phase has the same current node and current chain.

Case 2. y 6= x, y has a token τi and is the startnode of a fresh chain D (see
Figure 6). Append P at D to create a longer fresh chain, and move the token from
y to x. The current chain C becomes the owner of the token, the previous owner
becomes the current chain, and y becomes the current node.

Case 3. y 6= x, y has a token τi but is not the startnode of a fresh chain. This
is the same as Case 2 except that no fresh chain starts at y. The algorithm creates
a new fresh chain of color i consisting of P . It moves the token from y to x and C
becomes the owner of the token. The previous owner of the token becomes the current
chain and y becomes the current node.

Case 4. y 6= x and y does not own a token. In this case bal(y) < 0. If bal(y) = −k,
then this case occurs k times for y. Let i be the number of existing tokens. The
algorithm puts a new token τi+1 on x with owner C, creates a fresh chain of color
i+ 1 consisting of P (the first chain with color i+ 1), and moves the robot back to s.
The initial chain C0 becomes the current chain and s becomes the current node.

This leads to the algorithm given in Figure 7. We use x to denote the current node,
C to denote the current chain, k the number of tokens used, and j the highest index of
a chain. Lines 4–17 of the code correspond to item 3 above. Lines 6 and 7 correspond
to Case 1, lines 8–13 correspond to Cases 2 and 3, and lines 14–16 correspond to
Case 4. Lines 18 and 19 implement items 1 and 2, respectively. In line 13, C ′ is the
chain that was the previous owner of τi and becomes the new current chain.

Additionally, the algorithm maintains a tree T , such that each chain C corre-
sponds to a node v(C) of T and v(C ′) is a child of v(C) if the last subpath appended
to C ′ was explored while C was the current chain. Conversely, we use C(v) to denote
the chain represented by node v. For each chain there is exactly one node in the
tree. Note that the tree changes dynamically. If in line 10 of the algorithm a path
P is appended at a chain D, then the node representing the resulting chain becomes
a child of v(C), i.e., a child of the node representing the current chain C. The node
v(D) is removed. Since only fresh chains are reassigned, each added or removed node

1174 SUSANNE ALBERS AND MONIKA R. HENZINGER

Algorithm Balance
1. j := 0, k := 0, x := s, C := C0.
2. repeat
3. while C is unfinished do
4. while ∃ new outgoing edge at x do
5. Traverse new edges starting at x until stuck at a node y.

Call this path P .
6. if y = x then
7. Insert P into C;
8. else if y has a token τi then
9. if ∃ chain D of color i starting in y and D is fresh then

10. Concatenate P with D;
11. else
12. j := j + 1; Cj := chain that consists of P ;
13. C ′ := owner(τi); Place τi on x; owner(τi) := C; x := y;

C := C ′;
14. else (∗ y 6= x and y has no token ∗)
15. j := j + 1; Cj := chain that consists of P ;
16. k := k + 1; Place token τk on x; owner(τk) := C; x := s;

C := C0;
17. Move robot to x;
18. Move robot to first unfinished node z that appears on C after its

startnode; x := z;
19. C := Relocate(C); x := startnode of C;
20. until C = empty chain.

Fig. 7. The Balance algorithm.

is a leaf. This process ensures that the structure of nodes is indeed a tree.

We use Tv to denote the subtree of T rooted at v and say C is contained in Tv
if v(C) lies in Tv. We also say a token τ or an edge e is contained in Tv if owner(τ),
respectively, the chain of e is contained in Tv. If all chains in Tv are finished, we say
that Tv is finished. To represent T , the algorithm assigns a parent to each chain.

To relocate, the robot needs to be able to move on explored edges from the
endpoint of a chain C to its startnode. This is always possible, since at the beginning
of each subphase the explored edges form a strongly connected graph. To avoid an edge
being traversed often for this purpose, we define for each chain C a path closure(C)
connecting the endnode of C with the startnode of C such that an edge belongs to
closure(C) for at most dO(log d) chains C. Finally, we will show that closure(C) is
traversed at most O(d2) times.

A path Q is called a C-completion if it connects the endnode of a chain C with
the startnode of C. A path Q in the graph is called i-uniform if it is a concatenation
of chains of color i. Let u be a node of T . A path Q in the graph is Tu-homogeneous
if any maximal subpath R of Q that does not belong to Tu is (a) i-uniform for some
color i; (b) the edge of Q preceding R is the last edge of a chain of color i; and (c)
the edge of Q after R is the first edge of a chain of color i. Intuitively, if a maximal
subpath R of Q that does not belong to Tu is preceded by an edge of color i, then R
is just the path of color i that leads to the previous chain of color i in Tu. In Figure 8
solid, dashed, and dotted lines denote different colors. In the corresponding tree,

EXPLORING UNKNOWN ENVIRONMENTS 1175

C0

v

x
C3

C4

C5

C2
u

w
C1

Fig. 8. The path from x to u via v and w is Tv(C1)-homogenous.

the root v(C0) has two children, namely v(C1) and v(C5). Consider the path Q that
starts at x, follows the solid chains to v and w, and then follows the dashed edges to u.
(Path Q is shown in bold.) Path Q is a C2-completion. It is also Tv(C1)-homogenous
because the two chains C3 and C4 not belonging to Tv(C1) have the same color as C1

and C2.

We try to choose closure(C) to be “as local to C” as possible: Let S(C) be the set
of explored edges when C becomes the current chain for the first time. Given S(C),
a(C) is the lowest ancestor of v(C) in T such that a Ta(C)-homogeneous completion
of C exists in S(C). Note that a(C) is well defined since each chain has a Tv(C0)-
homogeneous completion. The path closure(C) is an arbitrary Ta(C)-homogeneous
completion of C using only edges of S(C). The algorithm can compute closure(C)
whenever C becomes the current chain for the first time without moving the robot.

We describe the Relocation procedure; see Figure 9. In the relocation step, the
robot repeatedly moves from the current chain to its parent until it reaches a chain
C such that Tv(C) is unfinished. To move from a chain X to its parent X ′, the robot
proceeds along X to the endnode of X and traverses closure(X) to the startnode
of X, which belongs to X ′. When reaching C, the robot repeatedly moves from the
startnode of the current chain X to the startnode of one of its children until it reaches
the startnode of an unfinished chain. It chooses the child X ′ of X such that among
all subtrees rooted at children of X and containing unfinished chains, Tv(X′) has the
minimum number of tokens.

3.2. The analysis of the algorithm.

3.2.1. Correctness. Since the graph is strongly connected, all nodes of the
graph must be visited during the execution of the algorithm. When the algorithm
terminates, all visited nodes are finished. Thus, all edges must be explored. We show
next that each operation and each move of the robot are well defined. Proposition 1
shows that if a chain of color i is fresh, then τi lies at the startnode of the chain. Thus,
in line 10, token τi lies on y. By assumption, there exists a path from any finished
node to s. Thus, the move in line 17 is well defined. In line 18, the robot moves to
the next unfinished node of the current chain C. It would be possible to walk along
closure(C), but Propositon 1, part 4, shows later that closure(C) is not needed.

3.2.2. Fundamental properties of the algorithm.

Lemma 1. At most d tokens are introduced during the execution of the Balance
algorithm.

1176 SUSANNE ALBERS AND MONIKA R. HENZINGER

Procedure Relocate(C)
1. if all chains are finished then return(empty chain).
2. else Move robot to the startnode of C along closure(C);
3. while C 6= C0 and Tv(C) is finished do
4. Move robot to the startnode of parent(C) along closure(parent(C));
5. C := parent(C);
6. while C is finished do
7. Let C1, C2, . . . , Cl be the chains with parent(Ck) = C, 1 ≤ k ≤ l.

Let Ck be the chain such that Tv(Ck) contains the smallest number
of tokens among all Tv(C1), . . . , Tv(Cl) having unfinished chains;

8. C := Ck; x := startnode of C;
9. Move robot to x;

10. if C is not in progress then
11. Compute closure(C);
12. return(C)

Fig. 9. The Relocation procedure.

Proof. We say that the algorithm first introduces the token τk at y in line 16.

Let inv(v) and outv(v) denote the number of visited incoming and visited outgoing
edges of v, respectively. Let t(v) be the total number of tokens introduced on node
v in line 16. We show inductively that max{inv(v) − outv(v), 0} = t(v). Since at
termination inv(v) = in(v) and outv(v) = out(v), it follows that −bal(v) ≥ t(v) if
bal(v) < 0 and t(v) = 0, otherwise. Thus, d = −∑v,with bal(v)<0 bal(v) ≥∑v t(v).

The claim max{inv(v) − outv(v), 0} = t(v) holds initially. Let P be the newly
explored path when the first token is introduced on v, i.e., when the algorithm for
the first time gets stuck at v and there is no token at v. Before P enters v, inv(v) =
outv(v). Traversing P increments inv(v) by 1 and sets inv(v)−outv(v) = 1. Thus, the
claim holds. Let P be the newly explored path when the ith new token is introduced
on v. It follows inductively that inv(v) − outv(v) = i − 1 before P enters v and
traversing P increments the value by 1 as before.

We prove next some invariants.

Proposition 1.

1. For every chain C that is in progress or that was in progress and is finished,
parent(C) is finished.

2. Let C be a chain of color i, 1 ≤ i ≤ d. (a) If C is fresh, C does not own
a token, τi is located at the startnode of C, and parent(C) = owner(τi). (b)
If C is in progress and not the current chain, then C is the owner of some
token τ .

3. Every chain C is the parent of at most d chains.
4. If the Balance algorithm gets stuck at a node y of a chain C and y holds a

token with C being the owner, then the startnode of C and all nodes of C
lying between the startnode and y are finished.

Proof (Part 1). Procedure Relocate ensures that parent(C) is finished before C is
taken into progress.

Part 2a. When C is first created in line 12 or 15 of Balance, τi is placed on the
startnode of C. Whenever the robot gets stuck at the current startnode of C and
removes τi, chain C is extended by a path P because C is not in progress. Token τi
is placed on the new startnode of C. Lines 13 and 16 ensure that the parent of C is

EXPLORING UNKNOWN ENVIRONMENTS 1177

always the owner of τi.

Part 2b. We show that whenever C is the current chain and Balance leaves C
to continue work on another chain, C becomes the owner of a token. This suffices to
prove part 2b because the children of a chain, and thus the corresponding tokens, can
only be taken over by the current chain; see lines 13 and 16 of the algorithm.

Chain C is unfinished. Thus, if C is the current chain, Balance can only leave C to
continue work on another chain during lines 5–17 of the algorithm. In this situation,
Balance places a token on a node of C and C becomes the owner of that token.

Part 3. Chain C can become the parent of other chains while C is in progress and
unfinished. During this time, every chain C ′ with parent(C ′) = C is not in progress,
see Part 1. By Part 2a, the startnode of such a chain C ′ holds a token and C is the
owner of that token. Since there are only d tokens, the proposition follows.

Part 4. Since y holds a token, with C being the owner, y must have been the
current node in a subphase when C was current chain. The node selection rule in
line 18 of Balance ensures that the startnode of C and every node on C between
the startnode and y are finished since, otherwise, the robot would have moved to an
unfinished node z before y.

The next lemma shows that our algorithm always balances the number of tokens
contained in neighboring subtrees of T . For a subtree Tv of T , let the weight w(Tv)
be the number of tokens contained in Tv. Let active(Tv) = 1 if the current chain is in
Tv; otherwise let active(Tv) = 0.

Lemma 2. Let u, v ∈ T be siblings in T such that Tu and Tv contain unfinished
chains. Then |w(Tu) + active(Tu)− w(Tv)− active(Tv)| ≤ 1.

Proof. Let active(C) = 1 iff C is the current chain, and let active(C) = 0
otherwise. Let token(C) be the number of tokens owned by C and let g(C) =
token(C) + active(C). Finally, let g(v) =

∑
C,v(C)∈Tv g(C) = w(Tv) + active(Tv).

We show by induction on the steps of the algorithm that |g(u)− g(v)| ≤ 1.

The claim holds initially. For a subtree Tv of T , the values w(Tv) and active(Tv)
only change in lines 13, 16, and 19 of Balance and in lines 4 and 9 of procedure
Relocate. Additionally, T changes in lines 10, 12, and 15.

Note first that changes in T do not affect the invariant: Whenever T changes,
v(C) receives a new child and C is not yet finished (or the algorithm has not yet
determined that C is finished). Thus, the children of C are not yet in progress, i.e.,
they do not own any tokens by Proposition 1. Thus, the claim holds for any pair of
children of v(C).

We consider next all changes to w(Tv) and active(Tv).

Line 13: Let C be the current chain before the execution of line 13. Note
that token(C) increases by 1, active(C) becomes 0, token(C ′) decreases by 1, and
active(C ′) becomes 1. Thus, g(C) and g(C ′), and, hence, g(v) is unchanged for every
node v ∈ T .

Line 16: Note that (i) g(C) is unchanged by the same argument as for line 13; (ii)
g(C ′) is unchanged, since token(C ′) and active(C ′) are unchanged; and (iii) g(C0) is
increased by 1. Since C0 only contributes to g(v(C0)) and v(C0) is the root of T , the
claim holds.

Line 19 of Balance/line 4 and 9 of Relocate: Let C̄ be the current chain before
the execution of line 3 or 7 and let C be the current chain afterwards. In line 3, the

1178 SUSANNE ALBERS AND MONIKA R. HENZINGER

claim does not apply to Tv(C), since Tv(C) is finished. Thus, we are left with line 7.
Note that active(C̄) drops to 0 and active(C) increases to 1. Thus, for every node
v such that Tv contains either both the parent and its child or neither the parent
nor its child, g(v) is unchanged. The only remaining subtree is Tv(C). Before the
execution of line 7, for any sibling C ′ of C, w(Tv(C)) ≤ w(Tv(C′)) ≤ w(Tv(C)) + 1.
Since active(C ′) = 0, |w(Tv(C))− w(Tv(C′)) + active(C)− active(C ′)| ≤ 1.

Lemma 3. Let C be a chain of color i, 1 ≤ i ≤ d, and, at the time when C is
taken in progress, let u ∈ T be the closest ancestor of v(C) that satisfies the following
condition. The path from u to v(C) in T contains d nodes u1, u2, . . . , ud such that
each uj with 1 ≤ j ≤ d has a child vj, (a) Tvj contains a node of color i; and (b)
v(C) /∈ Tvj . If there is no such ancestor u, then let u be v(C0). Then there exists a
Tu-homogeneous C-completion.

Proof. By assumption, the graph of explored edges is strongly connected, which
implies that there exists a Tv(C0)-homogeneous C-completion. Suppose that there
are d nodes u1, . . . , ud satisfying (a) and (b). For j = 1, . . . , d, let Cuj be the chain
corresponding to uj . If one of the nodes u1, . . . , ud, say uk, is of color i, then there is
the following Tuk -homogeneous C-completion: Follow edges of color i until you reach
the startnode of Cuk , then walk “down” in Tuk along ancestors of C to the startnode
of C.

Thus, we are left with the case that none of the nodes u1, . . . , ud has color i.
For j = 1, . . . , d, let Cj,1 ∈ Tvj be a chain of color i such that no ancestor of Cj,1
contained in Tvj has color i. Let Cj,2, . . . , Cj,l(j) be the ancestors of Cj,1 in Tuj . More
precisely, for k = 1, . . . , l(j)− 1, Cj,k+1 = parent(Cj,k) and Cj,l(j) = Cuj is the chain
corresponding to uj .

Following the edges of color i gives a Tu-homogeneous path from C to every chain
Cj,1 for 1 ≤ j ≤ d. We want to show that there exists a Tu-homogenous path to
a chain Cj,l(j). We consider the following game on a d × maxj l(j) grid, where for
1 ≤ j ≤ d, square (j, k) has the color of Cj,k for 1 ≤ k ≤ l(j) and no color for k > l(j).
Thus, all squares (j, 1) have color i and no other squares have color i. Initially all
squares (j, 1) are checked; all other squares are unchecked. A square is checked if
the robot can move to the startnode of the corresponding chain on a Tu-homogeneous
path. The rules of the game are as follows (note that the startnode of Cj′,k′−1 belongs
to Cj′,k′):

• A square (j, k) of color i′ gets checked whenever there exists a square (j′, k′)
of color i′ such that square (j′, k′ − 1) is checked and there exists a path of
color-i′ edges from the endnode of Cj′,k′ to the startnode of Cj,k.

• The game terminates when one of the squares (j, l(j)) is checked or when no
more squares can be checked.

We will show that one of the squares (j, l(j)) can be checked. This shows that
there is a Tu-homogeneous path from C to Cj,l(j). Since uj is an ancestor of v(C), the
same argument as above shows that there exists a Tu-homogeneous C-completion.

We employ the pigeonhole principle: Initially, there are d checked squares (j, 1)
for 1 ≤ j ≤ d and each square (j, 2) has a color i′ 6= i. Since there are at most d− 1
other colors, there must be two squares (s, 2) and (t, 2) with the same color i′. Since
the edges of color i′ form a chain, there is either a path from Cs,2 to Ct,2 or vice versa.
Thus, one of the two squares can be checked. Inductively, there are d checked squares
(j, k(j)) such that (j, k(j) + 1) is unchecked. None of the squares (j, k(j) + 1) has
color i and thus, there must be two squares (j, k(j) + 1) with the same color, which
leads to checking one of the two squares. The game continues until one of the squares

EXPLORING UNKNOWN ENVIRONMENTS 1179

(j, l(j)) has been checked.

3.2.3. Counting the number of edge traversals.
Lemma 4. Each edge is traversed at most d times during executions of line 17

and at most d+ 1 times during executions of line 18 of the Balance algorithm.
Proof. Let e be an arbitrary edge and let C be the chain e belongs to. Every

time e is traversed during an execution of line 17, a new token is placed on the graph.
Since a total of d tokens are placed, the first statement of the lemma follows.

Next we analyze executions of line 18. Let x and y be the tail and the head of
e, i.e., e = (x, y). Let C1 be the portion of C that consists of the path from the
startnode of C to x. Similarly, let C2 be the path from y to the endnode of C.

By Proposition 1, part 4, e is traversed in line 18 when all nodes on C1 are finished
and the robot moves to the next unfinished node on C2. Thus, e is traversed (a) if the
robot gets stuck at a node on C1 and moves to the next unfinished node of C, or (b)
if the robot traverses C from its startnode, since procedure Relocate returned chain
C. Every time case (a) occurs, a token is removed from C1, and this token cannot
be placed again on C1. Whenever the robot interrupts the work on C2, another
token is placed on some node of C2. Every time case (b) occurs, token(C) + active(C)
increases by 1, while no other step of the algorithm can decrease this value as long as
C is unfinished. Note that a token is placed on a node of C2. Since there are only d
tokens, cases (a) and (b) occur a total of at most d+ 1 times.

Thus, it only remains to bound how often an edge is traversed in Relocate. A
chain C ′ is dependent on a chain C, C 6= C ′, if C ′ ∈ Tv(C) and closure(C ′) is not
Tu-homogeneous for any true descendant u of v(C).

Lemma 5. For every chain C, there exist at most d2 log d+1 chains C ′ ∈ Tv(C)

that are dependent on C.
Proof. Let ni(C) be the total number of chains of color i dependent on C. For a

color i, 1 ≤ i ≤ d, and an integer δ, 1 ≤ δ ≤ d, let

Ni(δ) = max
C
{ni(C);Tv(C) contains at most δ of the d tokens whenever

active (Tv(C)) = 1}.

We will show that for any δ, 1 ≤ δ ≤ d, and any color i, (a) Ni(δ) ≤ d2Ni(bδ/2c)
and (b) Ni(1) = 1. This implies Ni(d) ≤ d2 log d. Since

∑d
i=1Ni(d) ≤ d · d2 log d, the

lemma follows.
To prove (1), fix a color i and an integer δ. Consider a subtree Tv(C) that contains

at most δ tokens when active(Tv(C)) = 1. Out of all chains of color i dependent on C,
let C ′ be the chain whose closure is computed last. We show that when the algorithm
computes closure(C ′), then the number of chains of color i that are already dependent
on C is at most d(d−1)Ni(bδ/2c). Thus, ni(C) ≤ d(d−1)Ni(bδ/2c)+1 ≤ d2Ni(bδ/2c).

Let u1, u2, . . . , ul be the sequence of nodes (from lowest to highest) on the path
from v(C ′) to v(C) such that every node uj , j = 1, 2, . . . , l, has a child vj with (a) Tvj
containing a node of color i, and (b) v(C′) /∈ Tvj . By Lemma 3, l ≤ d. Suppose that
node uj , 1 ≤ j ≤ l, has c(j) children, vj,1, vj,2, . . . , vj,c(j) with v ∈ Tvj,1 . By condition
(b), 2 ≤ c(j) ≤ d.

For fixed j and k ≥ 2, we have to show that up to the time when closure(C ′) is
computed, whenever active(Tvj,k) = 1, then w(Tvj,k) ≤ bδ/2c. Consider the point in
time when closure(C ′) is computed. Since Tvj,1 contains C ′, Tvj,1 is unfinished. By
Lemma 2, Balance distributes the tokens contained in Tuj evenly among the subtrees
Tvj,1 , Tvj,2 , . . . , Tvj,c(j) that contain unfinished chains. Thus, for each unfinished Tvj,k

1180 SUSANNE ALBERS AND MONIKA R. HENZINGER

with k ≥ 2, w(Tvj,k) was up to now at most bδ/2c whenever active(Tvj,k) = 1. For
each finished Tvj,k , consider the last point of time when an unfinished chain of Tvj,k
becomes the current chain. Since vj,1 exists, Tvj,1 is unfinished and, by Lemma 2,
w(Tvj,k) is up to this point in time at most bδ/2c whenever active(Tvj,k) = 1. We
conclude that up to the time when closure(C ′) is computed, Tvj,k contains at most
Ni(bδ/2c) chains of color i that can be dependent on the chain corresponding to vj,k,
and, thus, can be dependent on C. Summing up, we obtain that Tv(C) contains at
most

d∑
j=1

c(j)∑
k=2

Ni(bδ/2c) ≤ d(d− 1)Ni(bδ/2c)

chains of color i that can be dependent on C.
Finally we show that Ni(1) = 1. If a subtree Tv(C) contains at most one token

whenever active(Tv(C)) = 1, then each node in Tv(C) has only one child, by Proposi-
tion 1. Since Tv(C) never branches, it can contain at most one chain of color i that is
dependent on C.

Lemma 6. For every chain C, there exist at most d2 log d+1 chains C ′ ∈ Tv(C)

such that closure(C ′) uses edges of C.
Proof. Let C be an arbitrary chain and let v ∈ T be the node corresponding to

C. We show that if a chain C ′ ∈ Tv(C) is not dependent on C, then closure(C ′) does
not use edges of C. Lemma 6 follows immediately from Lemma 5.

If a chain C ′ ∈ Tv(C) is not dependent on C, then the path closure(C ′) is Tu-
homogeneous for a descendant u of v. Suppose that a Tu-homogeneous path P would
use edges of C. Let i be the color of C. Chain C does not belong to Tu. Thus, after
P has visited C, it may only traverse chains of color i until it reaches again a chain
of color i that belongs to Tu. Note that all chains of color i that are reachable from
C via edges of color i must have been generated earlier than C. However, all chains
in Tu were generated later than C. We conclude that a Tu-homogeneous path cannot
use edges of C.

Lemma 7. For every chain C, there exist at most (d + 2)d2 log d+2 chains C ′ /∈
Tv(C) such that closure(C ′) uses edges of C.

Proof. A chain C ′ needs a chain C if closure(C ′) uses edges of C and C ′ is u-
hard if closure(C ′) is Tu-homogeneous, but not Tv-homogeneous for any child v of u.
For each chain C ′ there exists a unique node u of T such that C ′ is u-hard. If C ′ is
dependent on chain C, then C ′ is v(C)-hard of u-hard for a true ancestor u of v(C). If
C ′ is u-hard and v is a descendant of u and an ancestor of v(C ′), then C ′ is dependent
on C(v). To prove the lemma, it suffices to show the following two claims.

Claim 1. There are at most d2 log d+2 chains C ′ 6∈ Tv(C) such that C ′ needs C
and C ′ is u-hard for some ancestor u of v(C).

Claim 2. There are at most (d+1)d2 log d+2 chains C ′ 6∈ Tv(C) such that C ′ needs
C and C ′ is u-hard for some node u that is not an ancestor of v(C).

Proof of Claim 1. If C ′ needs C, then C ′ either does not yet exist or is unfinished
when C is taken into progress. Consider the point in time when C is taken into
progress. Let u1, u2, . . . , ul be the ancestors of v(C) in T that fulfill the following
conditions: Each node uj has a child vj such that (a) Tvj contains unfinished chains,
and (b) v(C) /∈ Tvj . Thus, every chain that needs C lies in one of the subtrees Tvj .
Note that l ≤ d, since by Proposition 1, every subtree that contains an unfinished chain
not equal to the current chain must own a token. Assume C ′ belongs to Tvj . Since
uj is the least common ancestor of v(C) and v(C ′), and C ′ is u-hard for an ancestor

EXPLORING UNKNOWN ENVIRONMENTS 1181

u of v(C), C ′ is dependent on C(uj). Since by Lemma 5 there are at most d2 log d+1

chains that are dependent on C(uj), there can be at most l · d2 log d+1 ≤ d2 log d+2

chains C ′ /∈ Tv(C) that need C and are u-hard for an ancestor of v(C).

Proof of Claim 2. Let i be the color of C. Let us denote the concatenation of
all chains of color i as the path of color i. Note that the path of color i introduces a
linear order on the chains of color i. We say a chain C lies between two other chains
on the path of color i if C is not equal to one of the chains and lies between them
in the linear order. We define first the nearest predecessor of a chain. Then we show
(1) that for each chain C ′ 6∈ Tv(C) that needs C and is u-hard for some node u that
is not an ancestor of v(C), there exists a chain C1 of color i such that

• C lies on the path of color i between C1 and its nearest predecessor, and
• C1 fulfills the conditions of Claim 1, i.e., C ′ needs C1 and u is an ancestor of
v(C1).

We show next (2) that there exist at most d chains C1 of color i for which C lies on
the path of color i between C1 and its nearest predecessor. By Claim 1 and Lemma 6,
for each C1 there exist at most (d+ 1)d2 log d+1 closures that are hard for an ancestor
of v(C1). It follows that there are at most d(d+ 1) · d2 log d+1 chains C ′ that need C
and are u-hard for some node u that is not an ancestor of v(C).

Consider the point in time when C is taken into progress. Let a(C) be the closest
ancestor of v(C) such that Ta(C) contains a node of color i that is not equal to v(C).
The nearest predecessor of C is the chain C ′ 6= C of color i that was taken into progress
most recently in Ta(C).

(1) The closure of C ′ introduces an order on the chains belonging to it. Let C1 be
the last chain of Tu before C on closure(C ′) and let C2 be the first chain of Tu after C
on closure(C ′), i.e., C lies on the path of color i edges between C1 and C2. We show
below that the path of color i edges between C1 and C2 is contained in the path of
color i edges between C1 and its nearest predecessor. This implies that C lies on the
path of color i edges between C1 and its nearest predecessor and completes the proof
of (1).

Since Tu is a subtree that contains C1 and C2, i.e., C1 and another chain of color
i that was taken into progress before C1, Tu also must contain the nearest predecessor
of C1. Following the path of color i edges from C1, C2 is the first chain of Tu that
is encountered. Thus, the color i path between C1 and C2 is contained in the color i
path between C1 and its nearest predecessor.

(2) We want to bound the number of color i chains C1 such that C lies on the path
of color i between C1 and its nearest predecessor. Obviously, C1 was created after
C was taken in progress (otherwise, C1 would have been appended to C). Consider
the point in time when C is taken into progress. Let C1, . . . , Cl be the chains that
are parents of fresh chains. All chains created afterwards must belong to Tv(C) or to
Tv(C1), . . . , Tv(Cl)

. Note (a) that for no color i chain in Tv(C), C can lie on the color

i path between the chain and its nearest predecessor. Note (b) that for k = 1, . . . , l,
only for the color i chain C(k) in Tv(Ck) created first after C was taken into progress,

C can lie between C(k) and its nearest predecessor. The nearest predecessor of every
color i chain D created later belongs to Tv(Ck) and was created after C. Thus, C does

not lie on the color i path between D and its predecessor. Thus, at most l chains
exist such that C lies on the color i path between the chain and its predecessor. By
Proposition 1, l ≤ d.

Theorem 3. Using the Balance algorithm and assuming that when a new sink
is discovered the subgraph of explored edges is strongly connected, the robot explores

1182 SUSANNE ALBERS AND MONIKA R. HENZINGER

an unknown graph with deficiency d and traverses each edge at most (d + 1)5d2 log d

times.
Proof. Let e be an arbitrary edge of chain C. Edge e is traversed for the first

time when it is explored during an execution of line 5 of the Balance algorithm. By
Lemma 4, it can be traversed 2d + 1 times during executions of lines 17 and 18. By
Lemmas 6 and 7, e belongs to at most d2 log d+1 + (d+ 2)d2 log d+2 paths closure(C ′).
We show that each path closure(C ′) is traversed at most d(d + 1) times. The path
closure(C ′) is used at most d times during an execution of line 2 of Relocate because
each time a token is removed from the finished chain C ′. The path closure(C ′) can also
be used at most d2 times in line 4 of Relocate because each time a token is removed
from the finished subtree Tv(C′′) of a child C ′′ of C ′.

Finally, the edge e might be traversed d(d+1) times in line 9 of Relocate. When e
is traversed in line 9, then (i) either the robot had moved to C0 after the introduction
of a new token (line 16) or (ii) there exists an ancestor u of v(C) with a child x
such that the robot was stuck at a node in Tx and Tx is finished. Thus, by going
“up” the tree T in lines 3–5, the robot reached u. Case (i) occurs at most d times.
When C becomes the current chain for the first time, let u1, . . . , ul be the ancestors
of v(C) such that each uj has a child vj with (a) Tvj containing unfinished chains,
and (b) v /∈ Tvj . By Proposition 1, the nodes u1, . . . , ul can have a total of d children
satisfying (a) and (b). Since each subtree rooted at one of these children can contain
at most d tokens, case (ii) occurs at most d2 times.

Thus, edge e is traversed at most

1 + 2d+ 1 + d(d+ 1)(d2 log d+1 + (d+ 2)d2 log d+2) + d(d+ 1) ≤ (d+ 1)5d2 log d(1)

times.

3.3. The Complete algorithm. In subsections 3.1 and 3.2 we assumed that
the subgraph of explored edges is strongly connected. We used this assumption only
in line 16 of algorithm Balance. However, all that is needed in line 16 is that the
algorithm “knows” a path from y to s, i.e., the robot can reach s from y. To achieve
this we define a parametrized algorithm P-Balance(P, s, C0) as follows: in addition to
s and C0, it receives as input a set P of paths between various nodes in the graph. It
executes algorithm Balance as before except when the robot gets stuck at y in line 16
and there is no path of explored edges from y to s. If there exists a path X from y
to s consisting of (i) a (possibly empty) subpath of explored edges, followed by (ii) a
path in P, followed by (iii) another (possibly empty) subpath of explored edges, then
a fake edge from y to s is added to the graph and traversed to reach s. Since the fake
edge does not exist in the orginial graph the robot “simulates” traversing the fake
edge by traversing X. The fake edge continues to exist (and might be traversed) in
the graph until the end of algorithm P-Balance. We show below that at most d − 1
fake edges are added during algorithm P-Balance.

We execute algorithm P-Balance repeatedly to construct an algorithm Complete
that assumes only that the original graph is strongly connected and makes no as-
sumption about the subgraph of explored edges. We call the edges traversed during
execution i ≤ k of algorithm P-Balance(P, s, C0) k-visited.

We describe algorithm Complete in detail: initially P is empty and Phase 1
(see subsection 3.1) is executed to determine s and C0. Algorithm Complete then
repeatedly executes algorithm P-Balance(P, s, C0) on the graph until P-Balance
terminates or until while traversing path P the robot gets stuck at a node y in line 16
and cannot reach s. In the former case algorithm Complete terminates, in the latter

EXPLORING UNKNOWN ENVIRONMENTS 1183

case it adds to P a path of k-visited edges to y from each node in the subgraph
traversed during the current or an earlier execution of algorithm P-Balance. Next all
fake edges are discarded, all edges are marked as unvisited and unexplored, and all
nodes are marked as unexplored and unfinished. Then s is set to y, the cycle C0 is
set to be the path between the first and the last occurrence of y on P , and algorithm
P-Balance(P, s, C0) is called.

Consider execution k of algorithm P-Balance. A k-path is a concatenation of three
paths A1, A2, and A3 such that A1 and A3 are possibly empty subpaths of edges
explored during execution k and A2 is a path of P. Note that the concatenation of
a k-path with edges explored during execution k (either at the beginning or at the
end of the k-path) results again in a k-path. Note further that each k-path consists
of k-visited edges.

Lemma 8 shows that if P-Balance gets stuck at a node y in line 16 and cannot
reach s, then there exists a path of k-visited edges to y from each node in the subgraph
traversed during the current or an earlier execution of algorithm P-Balance and that
y appears at least twice on P . This proves that algorithm Complete is well defined.

Lemma 8. If while traversing path P during an execution of P-Balance(P, s, C0)
the robot gets stuck in line 16 at a node y and cannot reach s then

1. each node in the subgraph traversed during an earlier execution of algorithm
P-Balance(P, s, C0) can reach y on a path of k-visited edges;

2. each node in the subgraph traversed during the current execution of algorithm
P-Balance(P, s, C0) can reach y on a k-path;

3. y is a newly discovered sink;
4. y appears at least twice on P .

Proof. Parts 1, 2, and 3: We use induction on the number k of calls to algorithm
P-Balance to show the claim. Obviously the claim holds for k = 0. Consider next
k > 0. Let sk be the sink newly discovered by execution k of algorithm P-Balance.
We show first that each node in the subgraph traversed during an earlier execution
of algorithm P-Balance can reach y on a path of k-visited edges. There exists a path
of k-visited edges from sk−1 to y, since execution k started at sk−1. Inductively
each node in the subgraph traversed during an earlier execution can reach sk−1 on a
path of (k − 1)-visited edges. Thus, by transitivity of the reachability relation and
since all (k − 1)-visited edges are also k-visited, each node in the subgraph traversed
during an earlier execution of algorithm P-Balance can reach y on a path of k-visited
edges.

We show next that each node in the subgraph traversed during the current exe-
cution of algorithm P-Balance(P, s, C0) can reach y on a k-path. Since y is the last
node on chain P every node on P can reach y following P . Each other node in the
subgraph explored during algorithm P-Balance(P, s, C0) belongs to a chain Q 6= P .
We show by induction on the number of such chains Q created during the current
execution that all nodes on such a chain Q can reach s by a k-path. Since execution
k started at s, s can reach y on edges explored during execution k. It follows that
each node in the subgraph traversed during algorithm P-Balance(P, s, C0) can reach
y on a k-path.

It remains to be shown that all nodes on a chain Q 6= P created during the current
execution can reach s by a k-path. This holds trivially before any chain is created.
Consider a path P ′ that is part of Q. Then the endpoint y′ of P ′ either belongs to an
already existing chain or not. If y′ belongs to a chain created earlier, then inductively
y′ and, thus, all nodes on P ′ can reach s by a k-path. If y′ does not belong to a chain

1184 SUSANNE ALBERS AND MONIKA R. HENZINGER

created earlier, then there exists a path in P from y′ to s since P ′ 6= P . Thus there
is a k-path from y′ to s. It follows that every node on P ′ can reach s by a k-path.

We are left with showing that y = sk, i.e., that y is a newly discovered sink. By
the above proof, (a) if y was visited by an earlier execution of algorithm P-Balance,
then there would exist a path from y to s in P, and (b) if y belonged to a chain Q 6= P
in the current execution of algorithm P-Balance, then there would exist a k-path from
y to s. Thus, algorithm P-Balance(P, s, C0) would have been able to reach s from y.
It follows that y was not visited before, i.e., that y is a newly discovered sink.

Part 4. Each node has outdegree at least 1. By the proof of part 1, y does not
belong to a chain Q 6= P . Thus all of y’s outedges must belong to P , i.e., y appeared
at least twice on P .

Since there are only d sinks in the graph, part 3 of the above lemma shows that
at most d executions of P-Balance(P, s, C0) are made. Thus it follows that algorithm
Complete terminates.

Now let us analyze the number of edge traversals. Algorithm P-Balance traverses
the same path that algorithm Balance would have traversed on the graph consisting
of the original graph and all fake edges. Since each fake edge connects two sinks, it
does not change the deficiency of the graph. Thus, the previous analysis shows that
each edge, including each fake edge, is traversed at most (d + 1)5d2 log d times. The
traversal of a fake edge corresponds to at most one traversal of every nonfake edge.
We show below that there are at most d − 1 fake edges. Thus the total number of
traversals per edge is at most (d − 1)(d + 1)5d2 log d for each execution of algorithm
P-Balance. Since there are at most d such executions, each edge is traversed at most
(d− 1)d(d+ 1)5d2 log d times during algorithm Complete.

It remains to show that there are at most d − 1 fake edges. Each fake edge in
execution k increases the number inv(si) of visited incoming edges for a sink si with
i < k without increasing the number outv(si) of visited outgoing edges. Since over all
sinks si, i < k, there are at most d− 1 more incoming than outgoing edges into these
sinks, there are at most d− 1 fake edges created during execution k.

We summarize our main result in the following theorem.

Theorem 4. Using the Complete algorithm, the robot explores an unknown graph
with deficiency d and traverses each edge at most (d+ 1)7d2 log d times.

The total number of edge traversals used by our algorithm is alsoO(min{mn, dn2+
m}), where n is the number of nodes in the graph. It is not hard to show that an
upper bound of O(min{mn, dn2 +m}) is achieved by any exploration algorithm sat-
isfying the following two properties: (1) When the robot gets stuck, it moves on a
cycle-free path to some arbitrary node with new outgoing edges. (2) When the robot
is not relocating, it always traverses new edges whenever possible.

We show that any exploration algorithm satisfying (1) and (2) gets stuck at
most min{m, dn} times. The bound follows because, by property (1), at most n
edges are traversed during each relocation. Obviously, a robot gets stuck at most
m times. For the proof of the second bound, let inu(v) and outu(v) be the number
of unvisited incoming and unvisited outgoing edges of v, respectively. Let def(v) =
max{0, inu(v) − outu(v)}. We show inductively that

∑
v∈G def(v) ≤ d. This implies

that, for every node v, whenever the robot explores the last unvisited edge out of v,
there are at most d unvisited incoming edges at v. Thus the robot gets stuck at most
d times at any node v. Summing over all nodes in G gives the desired bound of dn.

The inequality
∑
v∈G def(v) ≤ d holds intitially. The invariant is maintained

whenever the robot relocates from a node y, where it got stuck, to some node z with

EXPLORING UNKNOWN ENVIRONMENTS 1185

C0

Dγ
1

Qγ1

Dγ
2

Qγ2

Dγ
γ−1

Qγγ−1

Dγ
γ

P γγ

Cγ1,1, . . . , C
γ
1,3γ

3γ chains

Fig. 10. The graph G.

new outgoing edges, because only visited edges are traversed. Whenever the robot
starts a new exploration at a node z, visits a sequence of new edges, and gets stuck
at a node x, def(z) increases by at most 1, def(x) decreases by 1 while at no other
node, and the def-value changes.

4. A tight lower bound for the Balance algorithm and modifications.
In this section we give first a lower bound for the Balance algorithm and we give
afterwards lower bounds for modifications of Balance.

Theorem 5. For every d ≥ 1, there exists a graph G of deficiency d that is
explored by Balance using dΩ(log d)m edge traversals.

Proof. We show that there exists a graph G = (V,E) and an edge e ∈ E that is
traversed dΩ(log n) times while Balance explores G. The theorem follows by replacing
e by a path of Θ(m) edges. We show the bound for d being a power of 5. The bound
for all values of d follows by “rounding” down to the largest power of 5 smaller than
d.

The graph is a union of chains C, each of which consists of three edges, a startnode,
an endnode, and two interior nodes v1(C) and v2(C). The interior nodes belong to
exactly one chain and have up to one additional outgoing edge. We describe G; see
also Figure 10. Graph G contains (a) a cycle C0 that starts and ends in a node v
(Balance is started at v and finds C0 during Phase 1) and (b) a recursively defined
problem P d attached to C0.

In the following let δ, 1 ≤ δ ≤ d, be a power of 5. A problem P δ, for any integer
δ ≥ 5, is a subgraph that has two incoming edges whose startnodes do not belong to
P δ but whose endnodes do, and δ + 1 outgoing edges whose startnodes belong to P δ

but whose endnodes do not. A problem P 1 has one incoming and one outgoing edge.
In the case of P d, the two incoming edges start at v1(C0) and v2(C0), respectively; d

1186 SUSANNE ALBERS AND MONIKA R. HENZINGER

outgoing edges point to v and one outgoing edge points to v1(C0).

For the definition of P δ we also need problems Qδ. These problems are identical
to P δ except that, for δ > 1, Qδ has exactly δ + 1 incoming edges.

A problem P 1 consists of a single chain; the first edge of the chain represents an
incoming edge and the last edge represents an outgoing edge. The interior nodes have
no additional outgoing edges. A problem Q1 is identical to P 1.

For δ ≥ 5, let γ = δ/5. Problem P δ consists of 3γ2 chains Cγi,k, 1 ≤ i ≤ γ,

1 ≤ k ≤ 3γ, as well as γ chains Dγ
i and γ recursive subproblems Qγi , 1 ≤ i ≤ γ − 1,

and P γγ .

These components are assembled as follows. One of the incoming edges of P δ

is the first edge of Cγ1,1. We assume that v1(C0) is the startnode of C
d/5
1,1 . Node

v1(Cγi,k) is the startnode of Cγi,k+1, 1 ≤ i ≤ γ, 1 ≤ k ≤ 3γ − 1. Node v1(Cγi,3γ) is the

startnode of Cγi+1,1, 1 ≤ i ≤ γ − 1. The last edge of Cγ1,k, 1 ≤ k ≤ 3γ is an outgoing

edge of P δ. The endnode of Cγi,k is equal to the startnode of Cγi−1,k, 2 ≤ i ≤ γ and

1 ≤ k ≤ 3γ. Note that the last edge of Cγ2,1 is thus an outgoing edge of P δ. Nodes

v2(Cγi,k), 1 ≤ i ≤ γ, 1 ≤ k ≤ 3γ − 1 have no additional outgoing edge but nodes

v2(Cγi,3γ), 1 ≤ i ≤ γ − 1 do. Chain Cγγ,3γ has no additional outgoing edges.

The second incoming edge of P δ is the first edge of a chain Dγ
1 and, for 2 ≤ i ≤ γ,

the edge leaving v2(Cγi−1,3γ) is the first edge of Dγ
i . For 1 ≤ i ≤ γ the last edge

of Dγ
i is an outgoing edge of P δ. If δ = 5, then the first interior node of the chain

Dγ
i = Dγ

1 has an additional outgoing edge pointing into a problem P 1. If δ > 5, then
the two interior nodes of Dγ

i , 1 ≤ i ≤ γ each have an additional outgoing edge. For
1 ≤ i ≤ γ − 1, these two edges point into Qγi and, for i = γ, they point into P γγ .

If δ = 5, then the outgoing edge of the only subproblem P 1 is an outgoing edge of
P δ = P 5. If δ > 5, the problems Qγi , 1 ≤ i ≤ γ − 1, and P γγ each have γ + 1 outgoing

edges. For Qγ1 , γ of these edges are also outgoing edges of P δ and one edge points to
the interior node of Dγ

1 that is the startnode of Cγ1,1. For 2 ≤ i ≤ γ − 1, exactly γ − 1
edges leaving Qγi point into Qγi−1 such that every node that has l more outgoing than
incoming edges, for l > 0, receives l edges. One outgoing edge points to the interior
nodes of Dδ

i−1 that does not get an edge from Qγi−1 and the remaining edge points
to the interior node of Dγ

i that is the startnode of Cγ1,1. In the same way, the edges
leaving P γγ are connected with Qγγ−1, Dγ

γ−1 and Dγ
γ .

We identify the sources of P δ, i.e., the nodes having higher outdegree than inde-
gree. At each source, outdegree and indegree differ by 1. The startnodes of the chains
Dγ
i , 2 ≤ i ≤ γ, and Cγγ,k, 1 ≤ k ≤ 3γ, represent a total of 4γ− 1 sources. One interior

node of Dγ
γ represents a source. Finally, the subproblem P γγ contains γ − 1 sources.

A problem Qδ, δ ≥ 5 is the same as P δ, except that the subproblem P γγ is replaced

by a problem Qγγ . As mentioned before, a problem Qδ receives δ − 1 additional

incoming edges. These edges point to the nodes that represent sources in P δ.

We analyze the number of edge traversals used by Balance on G. Consider a
problem P δ, δ ≥ 5, and let γ = δ/5. When Balance generates the strand of chains
Cγi,1, . . . , C

γ
i,3γ , for some 1 ≤ i ≤ γ, this strand contains 3γ > γ + 1 tokens. Since

Dγ
i and the subproblem attached to it contain γ tokens Balance does not explore the

unvisited edges out of Cγi,3γ before the subproblem attached to Dγ
i is finished. In the

same way we can argue for a problem Qδ.

Let N(δ) be the number of times the following event happens while Balance works
on a problem P δ or Qδ: Balance generates a new chain, gets stuck, and cannot reach

EXPLORING UNKNOWN ENVIRONMENTS 1187

a node with new outgoing edges by using only edges in P δ, respectively, Qδ. Problem
P δ contains γ subproblems Qγ1 , . . . , Q

γ
γ−1 and P γγ . Every time Balance gets stuck in

one of these subproblems and has to leave it in order to resume exploration, it also
has to leave P δ. This is because of the following facts: (1) When Balance explores
Qγi , 1 ≤ i ≤ γ − 1, or P γγ , the subproblems Qγ1 , . . . , Q

γ
i−1 respectively Qγ1 , . . . , Q

γ
γ−1

are already finished. (2) The chains Dγ
1 , . . . , D

γ
γ ensure that Balance cannot reach

any chain Cγi,k, 1 ≤ i ≤ γ, 1 ≤ k ≤ 3γ, from where the unfinished chains in P δ can be

reached. Again the same holds for a problem Qδ. Thus, for δ ≥ 5, N(δ) ≥ γN(γ) =
(δ/5)N(δ/5). Since N(δ) = 1, for δ = 1, we obtain N(d) = dΩ(log d). Finally, consider
the edge e on C0 that leaves v. Balance must traverse e at least N(d) = dΩ(log d)

times.

We also modified the Balance algorithm by relocating to other nodes with new
outgoing edges. Replace the choice of Ck in line 7 according to one of the following
rules.

Round Robin. Let Ck be the chain among C1, . . . , Cl that was selected least often
in any execution of line 7.

Cheapest Subtree. Let Ck be the chain among C1, . . . , Cl, such that Tv(Ck) contains
the fewest number of dependent chains with respect to the current chain.

Theorem 6. For Round Robin and Cheapest Subtree and for all d ≥ 1, there
exist graphs of deficiency d that require dΩ(log d)m edge traversals.

Proof. The proof is identical to that of Generalized-Greedy in Theorem 2.

Acknowledgments. We thank Prabhakar Raghavan for bringing to our atten-
tion the literature on the s–t connectivity problem. We also thank an anonymous
referee for many helpful comments which improved the presentation of the paper.

REFERENCES

[1] B. Awerbuch, M. Betke, R. Rivest, and M. Singh, Piecemeal graph learning by a mobile
robot, in Proceedings of the 8th Conference on Comput. Learning Theory, Academic Press,
New York, San Diego, CA, 1995, pp. 321–328.

[2] E. Bar-Eli, P. Berman, A. Fiat, and R. Yan, On-line navigation in a room, J. Algorithms,
17 (1994), pp. 319–341.

[3] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s–t connectivity, in Proceedings of the 7th Annual Conference on
Structure in Complexity Theory, IEEE Computer Society, Los Alamitos, CA, 1992, pp. 27–
33.

[4] G. Barnes and J. Edmonds, Time-space lower bounds for directed s–t connectivity on graph
automata models, SIAM J. Comput., 27 (1998), pp. 1190–1202.

[5] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosén, and M. Saks, Randomized robot
navigation algorithms, in Proceedings of the 7th ACM-SIAM Symposium on Discrete Al-
gorithms, ACM, New York, SIAM, Philadelphia, PA, 1996, pp. 74–84.

[6] A. Blum and P. Chalasani, An on-line algorithm for improving performance in navigation, in
Proceedings of the 34th Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 1993, pp. 2–11.

[7] A. Blum, P. Raghavan, and B. Schieber, Navigating in unfamiliar geometric terrain, SIAM
J. Comput., 26 (1997), pp. 110–137.

[8] M. Betke, R. Rivest, and M. Singh, Piecemeal learning of an unknown environment, Machine
Learning, 18 (1995), pp. 231–254.

[9] M. Bender and D. Slonim, The power of team exploration: two robots can learn unlabeled di-
rected graphs, in Proceedings of the 35th Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alanmitos, CA, 1994, pp. 75–85.

[10] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

1188 SUSANNE ALBERS AND MONIKA R. HENZINGER

[11] X. Deng, T. Kameda, and C. H. Papadimitriou, How to learn an unknown environment,
J. ACM, 45 (1998), pp. 215–245.

[12] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, in Proceedings of the 31st
Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos,
CA, 1990, pp. 356–361.

[13] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, revised version of [12].
[14] J. Edmonds and C. K. Poon, A nearly optimal time-space lower bound for directed st-

connectivity on the NNJAG model, in Proceedings of the 27th Symposium on the Theory
of Computing, ACM, New York, 1995, pp. 147–156.

[15] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel, A competitive strategy for learning a
polygon, in Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, SIAM, Philadelphia, PA, 1997, pp. 166–174.

[16] E. Koutsoupias, result reported in [13].
[17] S. Kwek, On a simple depth-first search strategy for exploring unknown graphs, in Proceedings

of the 5th Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci.
1272, Springer-Verlag, New York, 1997, pp. 345–353.

[18] C. H. Papadimitriou and M. Yannakakis, Shortest paths without a map, Theoret. Comput.
Sci., 84 (1991), pp. 127–150.

[19] R. Rivest, problem formulation cited in [12].

