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Abstract

Polygenic risk scores (PRS) are designed to serve as single summary measures that are

easy to construct, condensing information from a large number of genetic variants associ-

ated with a disease. They have been used for stratification and prediction of disease risk.

The primary focus of this paper is to demonstrate how we can combine PRS and electronic

health records data to better understand the shared and unique genetic architecture and eti-

ology of disease subtypes that may be both related and heterogeneous. PRS construction

strategies often depend on the purpose of the study, the available data/summary estimates,

and the underlying genetic architecture of a disease. We consider several choices for con-

structing a PRS using data obtained from various publicly-available sources including the

UK Biobank and evaluate their abilities to predict not just the primary phenotype but also

secondary phenotypes derived from electronic health records (EHR). This study was con-

ducted using data from 30,702 unrelated, genotyped patients of recent European descent

from the Michigan Genomics Initiative (MGI), a longitudinal biorepository effort within Michi-

gan Medicine. We examine the three most common skin cancer subtypes in the USA: basal

cell carcinoma, cutaneous squamous cell carcinoma, and melanoma. Using these PRS for

various skin cancer subtypes, we conduct a phenome-wide association study (PheWAS)

within the MGI data to evaluate PRS associations with secondary traits. PheWAS results

are then replicated using population-based UK Biobank data and compared across various
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PRS construction methods. We develop an accompanying visual catalog called PRSweb

that provides detailed PheWAS results and allows users to directly compare different PRS

construction methods.

Author summary

In the study of genetically complex diseases, polygenic risk scores (PRS) synthesize infor-

mation from multiple genetic risk factors to provide insight into a patient’s inherited risk

of developing a disease based on his/her genetic profile. These risk scores can be explored

in conjunction with health and disease information available in electronic medical rec-

ords. PRS may be associated with diseases that may be related to or precursors of the

underlying disease of interest. In this paper, we demonstrate how PRS can be used in

concert with the medical phenome to better understand the etiology of disease subtypes

nested within a broad disease classification. This is done by examining the shared and dis-

tinct genetic risk factors across the related but heterogeneous disease subtypes and also

through our comparison of the secondary associations across the phenome corresponding

to the subtype specific PRS. We consider several PRS construction methods in our study.

This framework of analysis is enabled by access to electronic health records and genetics

data. Leveraging and harnessing the rich data resources of the Michigan Genomics Initia-

tive, a biorepository effort at Michigan Medicine, and the large population-based UK Bio-

bank study, we investigated the primary and secondary disease associations with PRS

constructed for the three most common types of skin cancer: melanoma, basal cell carci-

noma and cutaneous squamous cell carcinoma.

Introduction

The underlying risk factors of genetically complex diseases are numerous. Genome-wide asso-

ciation studies (GWAS) on thousands of diseases and traits have made great strides in uncov-

ering a vast array of genetic variants that contribute to genetic predispositions to disease [1].

In order to harness the information from a large number of genetic variants, a popular

approach is to summarize their contribution through polygenic risk scores (PRS). While the

performance of PRS to predict disease outcomes at a population level has been modest for

many diseases, including most cancers, PRS have successfully been applied for risk stratifica-

tion of cohorts [2, 3] and recently have been used to screen a multitude of clinical phenotypes

(collectively called the medical phenome) for secondary trait associations [4, 5]. The goal of

these phenome-wide screenings is to uncover phenotypes that share genetic components with

the primary trait that, if pre-symptomatic, could shed biological insights into the disease path-

way and inform early interventions or screening efforts for individuals at risk. Phenome-wide

studies using PRS rely on an easily-calculated single biomarker that combines information

across a spectrum of genetic variants. Additionally, PRS may be routinely available in patients’

electronic health records (EHR) in the near future, making analyses based on PRS a useful

route for agnostic interrogation of the medical phenome. Existing literature has explored how

to construct PRS with respect to a single disease phenotype [6, 7]. In this paper, we demon-

strate how polygenic risk scores can be used in concert with the medical phenome to better

understand the etiology of disease subtypes nested within a broad disease classification.

This is done by examining the shared and distinct genetic risk factors across the related but
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heterogeneous disease subtypes and also through our comparison of the secondary associa-

tions across the phenome corresponding to subtype specific PRS.

In the post-GWAS era and with the availability of large biobank data from multiple sources,

there is great interest in using gene-based biomarkers such as PRS for risk stratification and

exploration of disease etiology. However, it is not always clear how best to construct a PRS for

a particular phenotype. A PRS of the general form
PK

i¼1
b̂iGi requires specification of three

things: a list of markers G1, G2, � � �GK, the depth of the list or the number of markers (K), and

the choice of the weights b̂i . These choices can be based on information extracted from the

latest GWAS or GWAS meta-analysis (when available), the NHGRI-EBI GWAS catalog of

published results [1] (when available), or summary data for GWAS corresponding to each phe-

notype, e.g., from efforts that comprehensively screened the UK Biobank (UKB) phenome [8,

9]. While various methods for constructing PRS have been widely studied for predicting the

primary phenotype collected through population-based sampling [6, 10], it is unknown how

the different PRS will be associated with subtypes and related phenotypes and the associations

PRS can help unravel across the medical phenome. The comparative performance of different

PRS construction methods may depend on the phenotype of interest. For example, diseases

such as depression, which are believed to involve genetic contribution of a large number of

genetic variants, might perform differently than diseases such as cancer, which may involve a

smaller number of causal variants. We provide important empirical results comparing differ-

ent PRS construction methods in terms of their associations with secondary and related phe-

notypes and in terms of the associations they identify across the phenome.

In this paper, we first explore strategies for constructing a PRS using markers and weights

obtained from either the latest GWAS or the NHGRI-EBI GWAS catalog that have reached

genome-wide significance. We compare the PRS in terms of their performance [11] for the

three most common skin cancer subtypes in the USA: basal cell carcinoma (MIM: 614740)

[12], cutaneous squamous cell carcinoma [13] and melanoma (MIM: 155601) [14]. We com-

pare the two strategies using an independent biobank of genetic, demographic, and phenotype

data collected by the Michigan Genomics Initiative (MGI), a longitudinal biorepository effort

within Michigan Medicine (University of Michigan) [4, 15]. Based on these results, we choose

a PRS construction strategy for each skin cancer subtype for further analysis.

For the chosen PRS corresponding to each skin cancer subtype, we perform a phenome-

wide association study (PheWAS) relating the PRS to the EHR-based phenome of MGI. We

call such a study a PRS-PheWAS [4]. PRS-PheWAS results are then replicated using the popu-

lation-based UK Biobank data. In order to identify secondary associations that are not driven

by the primary phenotype, we perform an additional “exclusion” PRS-PheWAS for each skin

cancer subtype in which we exclude subjects with any type of observed skin cancer [4]. These

studies demonstrate similarities and differences in PheWAS results for PRS constructed for

different disease subtypes, suggesting that PRS constructed for various disease subtypes can

provide insight into shared and unique secondary associations. Our results further demon-

strate the ability of such studies to reproduce known associations between secondary pheno-

types and particular disease subtypes through use of PRS.

We then describe an approach for using PRS to more directly evaluate the shared and

unique genetic architecture of disease subtypes and identify shared and unique secondary phe-

notype associations related to this genetic architecture. We define a new PRS for each skin can-

cer subtype using loci unique to that subtype’s chosen PRS. We further construct a composite

PRS for general skin cancer consisting of loci common among all subtypes’ PRS. While merg-

ing distinct clinical entities into a compound PRS may seem counterintuitive in terms of

specificity, such an approach may increase power to identify dermatological features through

Exploring various polygenic risk scores for skin cancer
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PheWAS that are shared by all three subtypes. Such features may help provide insight into the

shared biological etiology and disease development across disease subtypes.

The NHGRI-EBI GWAS catalog and latest GWAS PRS construction methods are based on

published GWAS studies, which only report risk variants that reached genome-wide signifi-

cance (usually defined by a P-value threshold of P< 5x10-8). However, it is likely that there are

additional risk variants below this threshold that could be associated with the trait but have

not reached statistical significance [16]. Incorporating non-significant variants may conceiv-

ably improve the predictive power of a PRS but may also add additional random false positive

signals, which in turn could dilute the discriminatory power of the true risk variants and

diminish any predictive gain [6, 17]. To explore whether a PRS constructed using additional

non-significant loci may perform differently than a PRS using only loci reaching genome-wide

significance, we evaluated PRS constructed using publicly available genome-wide summary

statistics from the UK Biobank at six different p-value thresholds both in terms of associations

with skin cancer phenotypes and in terms of secondary phenotype associations. We further

applied LDpred, a tool that adjusts GWAS summary statistics for the effects of linkage disequi-

librium [7], to explore the performance of PRS incorporating the entire spectrum of available

genetic information across the genome. There is extensive literature on constructing genome-

wide PRS using random effects, shrinkage methods, or thresholding (our focus) [7, 18, 19], but

none of these methods have been evaluated in a PheWAS setting.

In this paper, we focus our attention on skin cancer, but the approaches used in this paper

can be applied to other diseases with well-defined molecular subtypes (for example, breast can-

cer with ER and HER2-defined subtypes). We chose to use skin cancer as a demonstrative

example for a variety of reasons. First, our discovery dataset (MGI) is particularly enriched for

skin cancer cases due to the strong skin cancer clinical program at Michigan Medicine and

due to the high rate of surgery for skin cancer patients. MGI primarily recruits participants

undergoing surgery and is therefore enriched for cancers and other medical comorbidities

when compared to a general population [4]. Additionally, skin cancer has well-defined sub-

types, which allows us to explore performance of subtype-specific PRS. Skin cancer also pro-

vides a setting in which there may be genetic factors uniquely related to particular subtypes as

well as genetic factors that are shared risk factors for all skin cancer subtypes. The various

PRS–phenotype associations identified in this paper demonstrate ways to explore shared and

subtype-specific phenotypes, and this joint framework may provide an enhanced understand-

ing of the genome x phenome landscape.

We introduce an online visual web catalog called PRSweb that provides PRS-PheWAS

results for melanoma, basal cell carcinoma, and squamous cell carcinoma. PheWAS results are

available using four different PRS construction methods explored in this paper: latest GWAS,

NHGRI-EBI GWAS catalog, the UK Biobank GWAS summary statistics using different signif-

icance thresholds, and LDpred. The weights and the marker list for each PRS method can be

downloaded. Furthermore, PheWAS summary statistics can be accessed from PRSweb (see

Web resources), providing future investigators with readily available and useful tools to per-

form further analyses.

Comprehensive phenome-wide and genome-wide analyses of large biobank studies with

publicly available summary statistics can be rich resources for PRS construction, especially if

the trait-of-interest’s prevalence is high in the biobank. Using PRS, we can synthesize complex

genetic information that can then be used to identify these shared genetic components across

phenotypes. Compared to prior and existing literature, our contribution is new in four princi-

pal directions: (1) comparing various PRS construction methods in terms of their relationships

with related EHR-derived phenotypes and subtypes (2) comparing PRS associations with sec-

ondary phenotypes across the phenome of MGI (academic medical center) and UK Biobank

Exploring various polygenic risk scores for skin cancer
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(population-based), (3) developing PRS-based methods for understanding the shared and

unique genetic contribution across disease subtypes both in terms of disease biology and in

terms of secondary phenotype associations, and (4) introducing a publicly accessible online

visual catalog PRSweb to visually represent the PRS x phenome landscape and access summary

data from PheWAS.

Materials andmethods

Discovery and replication cohorts

MGI cohort (discovery cohort). Participants were recruited through the Michigan Medi-

cine health system while awaiting diagnostic or interventional procedures either during a pre-

operative visit prior to the procedure or on the day of the procedure that required anaesthesia.

In addition to coded biosamples and secure protected health information, participants under-

stood that all EHR, claims, and national data sources–linkable to the participant–may be incor-

porated into the MGI databank. Each participant donated a blood sample for genetic analysis,

underwent baseline vital signs and a comprehensive history and physical assessment (also see

Ethics Statement below). In the current study, we report results obtained from 30,702 unre-

lated, genotyped samples of recent European ancestry with available integrated EHR data

(~90% of all MGI participants were inferred to be of recent European ancestry) [4].

UK Biobank cohort (replication cohort). The UK Biobank is a population-based cohort

collected from multiple sites across the United Kingdom and includes over 500,000 partici-

pants aged between 40 and 69 years when recruited in 2006–2010 [20]. The open access UK

Biobank data used in this study included genotypes, the Ninth and Tenth Revision of the Inter-

national Statistical Classification of Diseases (ICD9 and ICD10) codes, inferred sex, inferred

White British ancestry, kinship estimates down to third degree, birthyear, genotype array, and

precomputed principal components of the genotypes.

Genotyping, sample quality control and imputation

MGI. DNA from 37,412 blood samples was genotyped on customized Illumina Infinium

CoreExome-24 bead arrays and subjected to various quality control filters that resulted in a

set of 392,323 polymorphic variants. Principal components and ancestry were estimated by

projecting all genotyped samples into the space of the principal components of the Human

Genome Diversity Project reference panel using PLINK (938 unrelated individuals) [21, 22].

Pairwise kinship was assessed with the software KING [23], and the software fastindep was

used to reduce the data to a maximal subset that contained no pairs of individuals with 3rd-or

closer degree relationship [24]. We also removed patients not of recent European descent from

the analysis, resulting in a final sample of 30,702 unrelated subjects. Additional genotypes were

obtained using the Haplotype Reference Consortium panel of the Michigan Imputation Server

[25] and included over 17 million imputed variants with R2 �0.3 and minor allele frequency

(MAF)�0.1%. Genotyping, quality control and imputation are described in detail elsewhere

[4]. Table 1 provides some descriptive statistics of the MGI and UK Biobank samples.

UK Biobank. The UK Biobank is a population-based cohort collected from multiple sites

across the United Kingdom [20]. After quality control, we phased and imputed the 487,409

UK Biobank genotyped samples against the Trans-Omics for Precision Medicine (TOPMed)

reference panel (seeWeb resources), which is composed of 60,039 multi-ethnic samples and

239,756,147 SNP and indel variants sequenced at high depth (30x). The phasing step was car-

ried out on 81 chromosomal chunks with around 10,000 genotyped variants in each chunk

using the software Eagle (with the “kbpwt” parameter set at 80,000) [26]. The imputation was

carried out in 137 chromosomal chunks of around 20 Mbp in length with Mbp of total overlap

Exploring various polygenic risk scores for skin cancer
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on either side using the imputation tool Minimac4 (seeWeb resources). To increase computa-

tional efficiency, we imputed each of the chunks in batches of 10,000 samples at a time and

then merged them back using BCFtools. Since Minimac4 imputes each sample independently,

analyzing our samples in batches did not change their imputation estimates. However, this

sampling would result in different imputation quality estimates for each batch, and thus we

collapsed the estimates to generate imputation quality estimates across all the study samples.

After imputation, we filtered out variants with estimated imputation accuracy of R2
< 0.1,

which left us with 177,895,992 variants.

Phenome generation

MGI. The MGI phenome was used as the discovery dataset and was based on ICD9 and

ICD10 code data for 30,702 unrelated, genotyped individuals of recent European ancestry.

These ICD9 and ICD10 codes were aggregated to form up to 1,857 PheWAS traits using the

PheWAS R package (as described in detail elsewhere [4, 27]). For each trait, we identified case

Table 1. Demographics and clinical characteristics of the analytic datasets.

Characteristic MGI UK Biobanka

n 30,702 408,961

Females, n (%) 16,297 (53.1%) 221,052 (54.1%)

Mean age, years (S.D.) 54.2 (15.9) 57.7 (8.1)

Median number of visits per participant 27 not available

Median days between first and last visit 1,469 not available

Total number of ICD9 code days 3,459,331 49,085

Number of unique ICD9 codes 10,323 3,126

Median ICD9 code days per participant 58 2

Total number of ICD10 code days 1,311,264 2,764,868

Number of unique ICD10 codes 14,997 11,059

Median ICD10 code days per participant 27 6

Total number of PheWAS code days 6,367,117 3,679,624

Number of unique PheWAS codes 1,856 1,680

Median PheWAS code days per participant 94 8

n samples without skin cancer diagnosis
Mean age, years (S.D.)
Females, n (%)

26,199
52.6 (15.8)

14,320 (54.7%)

395,179
57.7 (8.0)

214,237 (54.2%)

n cases with skin cancer
Mean age, years (S.D.)
Females, n (%)

4,503
63.6 (13.3)

1,977 (43.9%)

13,782 (13,624c)
62.0 (6.7)

6,815 (49.4%)

n cases with melanomas of skin 1,772 2,724 (2,718c)

n cases with epithelial skin cancer and othersb 3,220 11,152 (11,030c)

n cases with basal cell carcinoma 1,303 not available

n cases with squamous cell carcinoma 836 not available

a The provided characteristics are based a subset of White British subjects of the UK Biobank Study for which

phenotype data and imputed data was available. To retain as many unrelated cases as possible for each trait, a

maximal set of unrelated cases was identified before choosing controls from the pool of subjects unrelated to these

cases or to each other.
b Original PheWAS code “172.2” description "Other non-epithelial cancer of skin".
c Unrelated cases

ICD9 and ICD10: International Statistical Classification of Diseases codes (9th and 10th revision), MGI based on code

systemts with clinical modiciations ICD9-CM and ICD10-CM; S.D. standard deviation

https://doi.org/10.1371/journal.pgen.1008202.t001
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and control samples. To minimize differences in age and sex distributions or extreme case-

control ratios as well as to reduce computational burden, we matched up to 10 controls to each

case using the R package “MatchIt” [28]. Nearest neighbor matching was applied for age and

PC1-4 (using Mahalanobis-metric matching; matching window caliper/width of 0.25 standard

deviations) and exact matching was applied for sex and genotyping array. A total of 1,578 case-

control studies with>50 cases were used for our analyses of the MGI phenome.

UK Biobank. The UK Biobank phenome was used as a replication dataset and was based

on ICD9 and ICD10 code data of 408,961 White British [15], genotyped individuals that were

aggregated to PheWAS traits in a similar fashion (as described elsewhere [9]). To remove

related individuals and to retain larger sample sizes, we first selected a maximal set of unrelated

cases for each phenotype (defined as no pairwise relationship of 3rd degree or closer [24, 29])

before selecting a maximal set of unrelated controls unrelated to these cases. Similar to MGI,

we matched up to 10 controls to each case using the R package “MatchIt” [28]. Nearest neigh-

bor matching was applied for birthyear and PC1-4 (using Mahalanobis-metric matching;

matching window caliper/width of 0.25 standard deviations) and exact matching was applied

for sex and genotyping array. A total of 1,366 case-control studies with>50 cases each were

used for our analyses of the UK Biobank phenome.

On average, we were able to match 9.3 controls per case in the MGI phenome and 9.9 con-

trols per case in the UKB phenome. Additional phenotype information for MGI and UK Bio-

bank is included in Fig B in S1 Text and Tables F-H in S1 File.

Risk SNP selection

For each skin cancer subtype (melanoma, basal cell carcinoma, and squamous cell carcinoma),

we generated four different sets of PRS: (1) based on merged summary statistics published in

the NHGRI EBI GWAS catalog [1], (2) based on the latest available GWAS meta-analysis [30–

32], (3) based on linkage disequilibrium (LD) clumping and p-value thresholding on publicly

available GWAS summary statistics from the UK Biobank data [9], and (4) based on reweight-

ing effect sizes of GWAS summary statistics by modeling LD with LDpred [7].

GWAS catalog SNP selection. We downloaded previously reported GWAS variants from

the NHGRI-EBI GWAS catalog (file date: February 28, 2018) [1, 33]. None of the currently

available skin cancer discovery studies included in the catalog used any subset of the MGI

cohort or data from the UK Biobank. Single nucleotide polymorphism (SNP) positions were

converted to GRCh37 using variant IDs from dbSNP: build 150 (UCSC Genome Browser)

after updating outdated dbSNP IDs to their merged dbSNP IDs. Entries with missing risk

alleles, risk allele frequencies, or odds ratios were excluded. If a reported risk allele did not

match any of the reported forward strand alleles of a non-ambiguous SNP (not A/T or C/G) in

the imputed genotype data (which correspond to the alleles of the imputation reference panel),

we assumed minus strand designation and corrected the effect allele to its complementary base

of the forward strand. Entries with a reported risk allele that did not match any of the alleles of

an ambiguous SNP (A/T and C/G) in our data were excluded at this step. We only included

entries with broad European ancestry (as reported by the NHGRI-EBI GWAS catalog). As a

quality control check, we compared the reported risk allele frequencies (RAF) in controls with

the RAF of 14,770 MGI individuals who had no cancer diagnosis (for chromosome X variants,

we calculated RAF in females only). We then excluded entries whose RAF deviated more than

15%. This chosen threshold is subjective and was based on clear differentiation between cor-

rect and likely flipped alleles on the two diagonals (see Fig A in S1 Text) as noted frequently in

GWAS meta-analyses quality control procedures [34]. No p-value threshold was applied to

accommodate GWAS entries that used discovery/replication-based approaches to define
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statistical significance. For each analyzed cancer type, we extracted risk variants that were

also present in our genotype data and estimated pairwise LD (correlation r2) using the allele

dosages of the corresponding controls. For pairwise correlated SNPs (r2>0.1) or SNPs with

multiple entries, we kept the SNP with the most recent publication date (and smaller P value, if

necessary) and excluded the other (Table I in S1 File).

Selection of risk SNPs from latest GWAS. In a similar fashion, we extracted and filtered

reported association signals from large GWAS meta-analyses on basal cell carcinoma [31],

cutaneous squamous cell carcinoma [30] and melanoma [32] and further restricted our atten-

tion to GWAS associations with p-values< 5x10-8 (Table I in S1 File).

Genome-wide SNP selection of UK-Biobank-based GWAS. We obtained GWAS sum-

mary statistics for the ICD9- and ICD10-based PheWAS codes “172” (skin cancer; 13,752

cases versus 395,071 controls), “172.11” (melanoma; 2,691 cases versus 395,071 controls),

and “172.2” (non-epithelial skin cancer; 11,149 cases versus 395,071 controls) from a public

download [9] (seeWeb resources). These GWAS analyzed up to 408,961 White British

European-ancestry samples with generalized mixed model association tests that used the

saddlepoint approximation to calibrate the distribution of score test statistics and thus

could control for unbalanced case-control ratios and sample relatedness [9]. For each

trait, we reduced these summary statistics to SNPs that were reported with minor allele

frequencies > 0.5% and were also available for the MGI data. Next, we performed LD

clumping of all variants with p-values < 5x10-4 using the imputed allele dosages to obtain

independent risk SNPs (LD threshold of r2 > 0.1 and a maximal SNP distance of 1 Mb). We

limited the LD calculations to 10,000 randomly selected, unrelated, White British individu-

als to reduce the computational burden. Finally, we created subsets of these independent

SNPs with p-values <5x10-9,<5x10-8,<5 x10-7,<5x10-6,<5x10-5, and<5x10-4 (Table J in

S1 File).

As an alternative to the above LD clumping and p-value-thresholding approach of genome-

wide PRS, we used the software package LDpred [7] to reweight the effect size of each variant

of GWAS summary statistics by using a prior on effect sizes and LD information from a refer-

ence panel. We randomly selected 5,000 unrelated, White British samples of the imputed UK

Biobank genotype data as the LD reference panel. We used the summary statistics of the UK

Biobank-based GWAS on skin cancer (PheWAS code “172”) and melanoma (PheWAS code

“172.11) and applied LDpred’s default filters (SNPs only; overlap between summary statistics,

LD reference panel and target panel; MAF> 1%; non-ambiguous allele combinations), which

resulted in 6.4 million variants for each GWAS. For each of the GWAS summary statistics, we

ran LDpred with an LD radius of 2,800 SNPs, which corresponds to an average 1 Mb window,

and modelled six proportions of causal SNPs in the prior (100%, 10%, 1%, 0.1%, 0.01%, and

0.001%) to obtain six genome-wide SNP sets with LDpred-reweighted effect sizes.

Construction of the polygenic risk scores

For each of the obtained SNP sets for each trait, we constructed a PRS as the sum of the

allele dosages of risk increasing alleles of the SNPs weighted by their reported or reweighted log

odds ratios. Restated, the PRS for subject j in MGI was of the form PRSj = SiβiGijwhere i indexes
the included loci for that trait, βi is the log odds ratios retrieved from the external GWAS sum-

mary statistics for locus i, and Gij is a continuous version of the measured dosage data for the

risk allele on locus i in subject j. The PRS variable was created for each MGI and UKB partici-

pant. For comparability of effect sizes corresponding to the continuous PRS across cancer traits

and PRS construction methods, we transformed each PRS of the corresponding analytical data

set to the standard Normal distribution using “ztransform” in the R package “GenABEL” [35].
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Statistical analysis

In this study, we first constructed PRS for skin cancer subtypes using either the latest GWAS

or the corresponding entries of the GWAS catalog. To compare the association between PRS

and skin cancer phenotypes across different PRS construction methods, we fit the following

model for each PRS and skin cancer phenotype:

logitðPðPhenotype is presentjPRS;Age; Sex;Array;PCÞÞ

¼ b
0
þ bPRSPRSþ bAgeAgeþ bSexSexþ bArrayArray þ β PC;

where the PCs were the first four principal components obtained from the principal compo-

nent analysis of the genotyped GWAS markers and where “Array” represents the genotyping

array. Our primary interest is βPRS, while the other factors (Age, Sex and PC) were included to

address potential residual confounding and do not provide interpretable estimates due to the

preceding application of case-control matching. Firth’s bias reduction method was used to

resolve the problem of separation in logistic regression (Logistf in R package “EHR”) [36–38],

a common problem for binary or categorical outcome models when a certain part of the covar-

iate space has only one observed value of the outcome, which often leads to very large parame-

ter estimates and standard errors.

We then evaluated each PRS’s (1) ability to discriminate between cases and controls by

determining the area under the receiver-operator characteristics (ROC) curve (AUC) using R

package “pROC” [39]; (2) calibration using Hosmer-Lemeshow Goodness of Fit test in the R

package “ResourceSelection” [40, 41]; and (3) accuracy with the Brier Score in the R package

“DescTools” [42]. These evaluations did not adjust for additional covariates. These metrics

were estimated using roughly 2/3 of the matched data as a test set after fitting the above model

on the remaining 1/3 of matched data, which we will refer to as the training data. We used

these metrics and the logistic regression results to choose a PRS construction method to use

for each skin cancer subtype moving forward. We compare these measures for various PRS-

phenotype relationships for each phenotype separately, so the comparative performance of

these measures is not biased by the different case-control sampling. To explore the impact of

incorporating non-significant loci into the PRS construction, we further performed the above

analyses with PRS constructed using UK Biobank GWAS summary statistics with different p-

value thresholds. Similarly, we compared the LDpred-based PRS that assumed six different

fractions of causal variants (non-zero effects) in the prior: 100%, 10%, 1%, 0.1%, 0.01%, and

0.001%. For LDpred comparisons we also report Nagelkerke’s pseudo-R2 to be consistent with

the LDpred workflow [7].

Using the chosen PRS for each subtype, we conducted two PheWAS to identify other phe-

notypes associated with the PRS first for the 1,578 phenotypes in MGI and then for the 1,366

phenotypes from UK Biobank. To evaluate PRS-phenotype associations, we conducted Firth

bias-corrected logistic regression by fitting a model of the above form for each phenotype and

data source. Age represents the birth year in UK Biobank. To adjust for multiple testing, we

applied the conservative phenome-wide Bonferroni correction according to the analyzed Phe-

WAS codes (nMGI = 1,578 or nUK Biobank = 1,366). In Manhattan plots, we present–log10 (p-

value) corresponding to tests ofH0: βPRS = 0. Directional triangles on the PheWAS plot indi-

cate whether a phenome-wide significant trait was positively (pointing up) or negatively

(pointing down) associated with the PRS.

To investigate the possibility of the secondary trait associations with PRS being completely

driven by the primary trait association, we performed a second set of PheWAS after excluding

individuals affected with the primary or related cancer traits for which the PRS was con-

structed, referred to as “exclusion PRS PheWAS” as described previously [4]. We then
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constructed new PRS scores representing shared and subsite-unique genetic components and

performed a PheWAS for each.

To evaluate the impact of the matching in the PRS PheWAS and exclusion PRS PheWAS

analyses in more concrete terms, we performed sensitivity analyses in which we conducted the

PheWAS analyses using the unmatched data.

To evaluate how well prior presence of a secondary diagnosis can identify subjects with

increased risk of developing skin cancer, we created a binary variable taking the value 1 if a

given subject (1) was diagnosed with the secondary diagnosis and then diagnosed with skin

cancer at least 365 days after or (2) was diagnosed with the secondary diagnosis and never

diagnosed with skin cancer. We then fit a Firth bias-corrected logistic regression of the follow-

ing form:

logitðPðPrimary phenotype is presentjPredictor;Age; Sex;Array;PCÞÞ

¼ b
0
þ bPRSIðSecondary non skin cancer traitÞ þ bAgeAgeþ bSexSexþ bArrayArray þ β PC

where Array and PC were defined as before. Unless otherwise stated, analyses were performed

using R 3.4.4 [43].

Development of an online visual catalog: PRSweb

The online open access visual catalog PRSweb available at http://statgen.github.io/PRSweb was

implemented using “Pandas”, a Data Analysis Library, which offers high level performance for

large data structures and data analysis in the Python3 environment [44]. In combination with

“Jinja2”, a templating language for Python, and “Bootstrap”, a Cascading Style Sheets (CSS)

framework (see Web resources), static HTML files were compiled and allow easy and fast host-

ing of all PRS-PheWAS results. The interactive plots are drawn with the JavaScript library

“LocusZoom.js” (see Web resources) which offers dynamic plotting, automatic plot sizing and

label positioning.

Ethics statement

Data were collected according to Declaration of Helsinki principles. MGI study participants’

consent forms and protocols were reviewed and approved by the University of Michigan Med-

ical School Institutional Review Board (IRB ID HUM00099605 and HUM00155849). Opt-in

written informed consent was obtained.

Results

Assessing various PRS construction methods

We first explored the comparative performance of various PRS construction strategies in

terms of the resulting PRS associations with related phenotypes in the skin cancer setting.

Table 2 provides the results.

PRS performance across related phenotypes. Using both the GWAS catalog and latest

GWAS construction methods, the melanoma PRS was most strongly associated with the mela-

noma phenotype compared to the other phenotypes (based on the odds ratio). In particular,

both melanoma PRS are more strongly related to the melanoma phenotype than the overall

skin cancer phenotype, indicating that the reduced sample size associated with a more granular

phenotype definition did not negatively impact the PRS specificity. Similarly, the two basal cell

carcinoma PRS were most strongly associated with the basal cell carcinoma skin cancer sub-

type. Unlike the other cancer subtypes, the squamous cell carcinoma PRS did not appear to be
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most strongly associated with the squamous cell carcinoma phenotype. Instead, it was most

strongly associated with basal cell carcinoma phenotype.

Comparisons across PRS construction methods. For each skin cancer phenotype, we

compared the PRS-phenotype associations for various PRS.Overall Skin Cancer: PRS defined

using different skin cancer subtypes had similar performance in terms of association with

and discrimination for the overall skin cancer phenotype. By “discrimination,” we refer to the

ability of the PRS to distinguish cases and controls, which is measured by AUC.Melanoma:

For the melanoma PRS, the GWAS catalog method and the latest GWAS method produced

similar performance in terms of AUC, OR, Hosmer-Lemeshow goodness of fit, and Brier

score. For example, the AUC for melanoma for the GWAS catalog melanoma PRS was 0.61

(95% CI, [0.59, 0.62]). The corresponding AUC for the latest GWAS method was 0.60 (95%

Table 2. Associations of constructed PRS with skin cancer traits in MGI.

PRS
(Number of SNPs)

Skin cancer
n = 4,503

(1,501 / 3,002)d

Melanoma
n = 1,896

(617 / 1,279)d

Basal cell carcinoma
n = 1,303

(419 / 884)d

Squamous cell carcinoma
n = 836

(273 / 563)d

PRS based on GWAS catalog

Melanoma
(29)

PRS ORa

P-valuea

AUCb

HL χ2, P-value c

Brier Score

1.3 (1.26,1.34)
2.7x10-53

0.57 (0.56,0.58)
6.8, 0.56
0.14

1.48 (1.41,1.56)
1.3x10-56

0.61 (0.59,0.62)
7.6, 0.47
0.093

1.3 (1.23,1.38)
7.3x10-19

0.58 (0.56,0.6)
12, 0.13
0.093

1.23 (1.14,1.32)
4.3x10-8

0.55 (0.53,0.58)
2.2, 0.97
0.091

Basal cell carcinoma
(32)

PRS ORa

P-valuea

AUCb

HL χ2, P-value c

Brier Score

1.32 (1.27,1.36)
8x10-60

0.58 (0.56,0.59)
9.7, 0.29
0.14

1.31 (1.25,1.37)
7.2x10-28

0.58 (0.56,0.59)
13, 0.1
0.093

1.65 (1.56,1.75)
3.6x10-65

0.64 (0.62,0.66)
15, 0.066
0.091

1.32 (1.23,1.42)
1.4x10-14

0.58 (0.55,0.6)
12, 0.17
0.091

Squamous cell carcinoma
(18)

PRS ORa

P-valuea

AUCb

HL χ2, P-value c

Brier Score

1.25 (1.21,1.3)
4.8x10-42

0.56 (0.55,0.57)
8.1, 0.42
0.14

1.32 (1.26,1.39)
5.1x10-31

0.58 (0.56,0.59)
6.2, 0.63
0.093

1.35 (1.28,1.43)
7.9x10-26

0.58 (0.56,0.6)
5.9, 0.66
0.093

1.26 (1.17,1.35)
1.8x10-10

0.55 (0.53,0.58)
18, 0.025
0.091

PRS based on latest GWAS

Melanoma
(20)

PRS ORa

P-valuea

AUCb

HL χ2, P-value c

Brier Score

1.31 (1.27,1.36)
3.5x10-55

0.57 (0.56,0.58)
4.9, 0.76
0.14

1.49 (1.42,1.57)
1.2x10-55

0.6 (0.59,0.62)
13, 0.13
0.093

1.39 (1.3,1.47)
7.9x10-27

0.59 (0.58,0.61)
16, 0.04
0.092

1.25 (1.16,1.34)
4x10-9

0.55 (0.53,0.58)
7.6, 0.47
0.091

Basal cell carcinoma
(28)

PRS ORa

P-valuea

AUCb

HL χ2, P-value c

Brier Score

1.32 (1.28,1.37)
5.8x10-61

0.58 (0.57,0.59)
5.9, 0.66
0.14

1.33 (1.27,1.4)
5.7x10-32

0.58 (0.57,0.6)
20, 0.012
0.093

1.62 (1.53,1.71)
2.8x10-60

0.63 (0.61,0.65)
6.5, 0.59
0.091

1.34 (1.25,1.44)
1.2x10-15

0.58 (0.55,0.6)
15, 0.052
0.091

Squamous cell carcinoma
(10)

PRS ORa

P-valuea

AUCb

HL χ2, P-value c

Brier Score

1.34 (1.3,1.38)
1.1x10-70

0.58 (0.57,0.6)
13, 0.12
0.14

1.42 (1.36,1.49)
6.1x10-51

0.59 (0.58,0.61)
14, 0.082
0.093

1.47 (1.4,1.56)
1.8x10-43

0.61 (0.59,0.63)
7.1, 0.53
0.092

1.4 (1.31,1.5)
2.1x10-21

0.59 (0.56,0.61)
6.4, 0.61
0.091

a Association of each cancer with continuous PRS that were transformed to standard normal distribution. Point estimates, 95% confidence intervals and P- values are

obtained by fitting Firth’s bias-corrected logistic regression adjusted for age, sex, batch and PC1-4 to the full data.
b Area under the curve of the receiver operating characteristic (ROC) curve with 95% confidence intervals calculated using the test data after fitting a model with the

training data.
c Hosmer-Lemeshow Goodness-of-Fit test for the test data after fitting a model with the training data
d Number of cases in training / test set

https://doi.org/10.1371/journal.pgen.1008202.t002
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CI, [0.59, 0.62]). The two melanoma PRS out-performed PRS for the other skin cancer sub-

types in terms of association with and discrimination for the melanoma phenotype. Fig C in

S1 Text compares PRS weights to corresponding SNP-melanoma associations in MGI and UK

Biobank. Basal Cell Carcinoma: As with melanoma, the basal cell carcinoma PRS produced

similar results under the GWAS catalog and latest GWAS construction methods. The basal cell

carcinoma AUC under both the GWAS catalog and latest GWAS methods were 0.64 (95% CI,

[0.62, 0.66]) and 0.63 (95% CI, [0.61, 0.65]), respectively. The OR values and Brier score values

were nearly identical, and neither approach produced evidence of lack of fit based on the Hos-

mer-Lemeshow statistic. Squamous Cell Carcinoma: The squamous cell carcinoma latest

GWAS-based PRS was more strongly associated with the basal cell carcinoma phenotype than

the squamous cell carcinoma GWAS catalog PRS, with an odds ratio of 1.4 (95% CI, [1.31,

1.5]). The squamous cell carcinoma phenotype using the GWAS catalog method produced a

lower AUC (0.55, 95% CI [0.53, 0.58]) compared to the latest GWAS method (0.59, 95% CI

[0.56, 0.61]). While a difference of 0.04 may not seem like a large difference in AUC in other

applications, any improvement in AUC for PRS associations with observed phenotypes may

be considered appreciable [45]. These two methods produced similar Brier scores.

Using the above comparisons between the various PRS, we chose a single PRS construction

method for each skin cancer subtype to use in subsequent analyses. For melanoma and basal

cell carcinoma, we chose the GWAS catalog method. While the GWAS catalog and latest

GWAS methods were very similar for these two subtypes, we chose to pursue the GWAS

catalog PRS for future analysis due to the larger number of loci for these PRS (29 vs 20 for mel-

anoma and 32 vs 28 for basal cell carcinoma). We choose the latest GWAS method for squa-

mous cell carcinoma due to its improved AUC and stronger OR compared to the GWAS

catalog method. We will denote the chosen PRS for melanoma, basal cell carcinoma, and squa-

mous cell carcinoma as mPRS, bPRS, and sPRS respectively.

PheWAS using the chosen PRS in MGI

Using each of the chosen PRS described above (mPRS, bPRS, and sPRS), we tested the associ-

ation between each PRS and each of the 1,578 constructed phenotypes in MGI. For each

PRS, the strongest associations were observed with dermatologic neoplasms that included

overall skin cancer, melanoma, “other non-epithelial cancer of skin” (the PheWAS parent

category of basal and squamous cell carcinoma), and carcinoma in situ of skin. In addition,

secondary dermatologic traits such as actinic keratosis (with parent category “degenerative

skin conditions and other dermatoses”), chronic dermatitis due to solar radiation (with par-

ent category “dermatitis due to solar radiation”), and seborrheic keratosis were found to be

associated with all three PRS (Fig 1 and Table K in S1 File). “Diseases of sebaceous glands”,

“sebaceous cyst”, and “scar conditions and fibrosis of skin” were associated with bPRS.

mPRS was most strongly associated with the melanoma phenotype (OR 1.48, 95% CI [1.41,

1.56]), while bPRS was most strongly associated with basal cell carcinoma (OR 1.65, 95% CI

[1.56, 1.75]) followed closely by “other non-epithelial cancer of the skin” (OR 1.39, 95% CI

[1.34, 1.44]). sPRS was most strongly associated with overall skin cancer (OR 1.34, 95% CI

[1.3, 1.38]). The OR of all these phenotypes indicated an increased risk for primary and sec-

ondary traits with increasing PRS.

Validation of PRS-PheWAS in UK Biobank

To substantiate the detected dermatologic associations, we reiterated the association screen of

the three PRS in the matched phenome of the population-based UK Biobank data set (Fig 1).

In general, stronger evidence for association was found in UKB compared to MGI. This may
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be driven by the larger sample sizes, e.g. a total of 13,623 skin cancer cases versus 4,503 in

MGI. In the UK Biobank phenome, the large majority of the previous associations with der-

matologic neoplasms were validated with the exception of the trait “dermatitis due to solar

radiation”, which had substantially fewer cases in UKB compared to MGI (390 versus 2,959

Fig 1. PRS-PheWAS in MGI and UKB phenomes. The horizontal line indicates phenome-wide significance. Phenome-wide significant traits
are indicated by PheCodes with their description listed below. Directional triangles indicate whether a phenome-wide significant trait was
positively (pointing up) or negatively (pointing down) associated with the PRS.

https://doi.org/10.1371/journal.pgen.1008202.g001
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cases). Unlike MGI, all three PRS were significantly associated (at the phenome-wide level)

with “cancer, suspected or other” and “malignant neoplasm, other.” bPRS and sPRS were both

associated with “diseases of the sebaceous glands” and “sebaceous cyst.”

Exclusion PheWAS using the chosen PRS in MGI

In order to explore whether the identified PRS-phenotype associations were driven by the pri-

mary trait used to define the PRS (for example, as a side effect of treatment given after diagno-

sis with the primary trait), we performed a PheWAS for each PRS in which we excluded

subjects who were cases for the primary trait or other skin cancer subtypes [4]. Results are

shown in Table K in S1 File and Fig D in S1 Text. Actinic keratosis, a skin condition believed

to be a precursor to non-melanoma skin cancers, remained significantly associated with the

squamous cell carcinoma PRS in MGI and all three PRS in UK Biobank [46–48]. No other

phenotypes were significant for MGI. “Sebaceous cyst” and its parent category “diseases of the

sebaceous gland” were significant in the main UK Biobank PheWAS and remained signifi-

cantly associated with basal cell carcinoma PRS and squamous cell carcinoma PRS in UK Bio-

bank in the Exclusion PheWAS. Appendix 1 in S1 Text provides additional information on a

sub-analysis of actinic keratosis as a predictor for future skin cancer.

PRS-PheWAS for shared and unique loci across skin cancer subtypes

In the PRS-PheWAS analyses, we note a striking overlap in the secondary dermatological traits

significantly associated with each of the three PRS (mPRS, bPRS, sPRS). One potential expla-

nation for this is that subjects may have more screening after an initial skin cancer diagnosis.

Indeed, many subjects have multiple skin cancer diagnoses (Fig F in S1 Text). Fig 2 shows the

number of risk loci shared by different PRS. Six risk loci are shared between the mPRS, bPRS,

and sPRS.

This observation inspired a follow-up exploration in which we defined a PRS for each can-

cer subtype using the loci unique to that subtype’s chosen PRS. We call these new PRS scores

mPRS-u, bPRS-u, and sPRS-u, which reflect the unique loci in the PRS for melanoma, basal

cell carcinoma, and squamous cell carcinoma respectively. We also define a PRS consisting of

all loci shared across the three skin cancer subtypes, which we call the shared PRS.

Table C in S1 Text shows the association between the various constructed PRS and the skin

cancer phenotypes. As with mPRS, mPRS-u was most strongly associated with the melanoma

phenotype. The bPRS-u score was similarly most strongly associated with basal cell carcinoma.

We note that the melanoma AUC for the mPRS score was 0.61 (95% CI, [0.59, 0.62]) and is

only 0.54 (95% CI, [0.52, 0.56]) for the mPRS-u score. Similarly, the basal cell carcinoma AUC

for the bPRS score was 0.64 (95% CI, [0.62, 0.66]) and is only 0.57 (95% CI, [0.55, 0.59]) for the

bPRS-u score. The sPRS-u score is not more strongly associated with the squamous cell carci-

noma phenotype than the other skin cancer subtypes. For this reason, we do not include this

PRS in further analyses. The shared PRS constructed as the unweighted sum of risk alleles of

loci present in all three PRS scores (mPRS, bPRS, and sPRS) is more strongly associated with

all three subtype phenotypes than the overall skin cancer phenotype.

Fig H in S1 Text shows PRS-PheWAS results using mPRS-u and bPRS-u. The scores

again reveal their subtype specificity, while no notable secondary associations were observed.

Although not shown here, additional exploration into the loci identified uniquely for each sub-

type, e.g. via pathway enrichment analyses, may provide some insight into subtype-specific

biological mechanisms. Fig I in S1 Text shows PRS-PheWAS results for the shared PRS. Most

strikingly, the shared skin cancer PRS was associated with the top skin cancer and dermato-

logic traits that were previously found to be associated with the three partially overlapping PRS

Exploring various polygenic risk scores for skin cancer
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constructs, suggesting that a shared genetic risk may be driving many of these secondary asso-

ciations. These six underlying loci (HERC2 [MIM 605837] /OCA2 [MIM 611409], IRF4 [MIM

601900],MC1R [MIM 155555], RALY [MIM 614663], SLC45A2 [MIM 606202] and TYR

[MIM 606933]) were previously found to be associated not only with skin cancer traits, but

also with pigmentation traits of skin, eyes and hair (Fig 2; MIM 266300) [31, 49–68].

One of these pigmentation traits, skin tanning ability, the tendency of skin to sunburn

rather than to suntan, is a well-known risk factor for all skin cancer traits [68, 69]. A PRS

based on the independent risk variants of a recent GWAS meta-analysis on skin tanning ability

[69] was strongly associated with overall skin cancer, melanoma, basal cell carcinoma, and

squamous cell carcinoma and even outperformed the constructed PRS in some cases (Table C

in S1 Text). Furthermore, the skin tanning ability PRS PheWAS identified a very similar set

of traits as the shared skin cancer PRS, but in general displayed stronger associations (Fig I in

S1 Text).

PRS construction based on UK Biobank summary statistics at different
depths

To explore whether a PRS incorporating non-significant loci will outperform a PRS incorpo-

rating only significant loci, we constructed PRS using loci related to the phenotype at six differ-

ent p-value thresholds based on publicly available GWAS summary statistics from the UK

Fig 2. Overlap between the three skin cancer trait loci. Reported risk SNPs within 1 Mb were merged into the same locus. Loci that
were also reported to be associated with skin tanning ability are highlighted in bold. Loci were named according to the closest RefSeq
genes (exceptM1CR a 385 kb locus with 16 RefSeq genes andHV745896 named after a nearby, uncurated mRNA sequence).

https://doi.org/10.1371/journal.pgen.1008202.g002
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Biobank. Larger p-values indicate greater SNP depth (with more SNPs being incorporated into

the PRS).

The ICD-code-based collection of UK Biobank GWAS results did not include basal cell car-

cinoma or squamous cell carcinoma subtypes; rather, it included only the merged trait ‘non-

epithelial cancer of skin’ (Fig B in S1 Text). Thus, we limited our assessment of the summary

statistics to the overall skin cancer GWAS and the melanoma GWAS (Table J in S1 File).

Table D in S1 Text provides the results. As with the other PRS construction methods, the

melanoma PRS was most strongly associated with the melanoma phenotype for all p-value cut-

offs except 5x10-4. For this p-value cutoff, the melanoma PRS had similar AUC and OR for the

melanoma and basal cell carcinoma phenotypes. This p-value cutoff represents the least con-

servative inclusion cutoff with 1,193 included loci, and its results indicated that inclusion of

too many suggestive SNPs at lower thresholds may reduce PRS performance. However, we

also note that the most conservative cutoff (5x10-9) produced a PRS that was based on only six

loci, which had a weaker OR and AUC compared to other PRS created with less stringent cut-

offs. The best performance in terms of AUC and OR relating to the melanoma phenotype were

observed for p-value thresholds 5x10-7 and 5x10-8, which included 13 and 9 loci respectively.

The small number of loci identified by this method at more conservative p-value cutoffs may

be driven by the lower sample size for melanoma in the UK Biobank compared to the pub-

lished melanoma GWAS meta-analyses (n cases = 2,691 and n cases = 6,628 respectively). We

note that the melanoma PRS constructed using the UK Biobank summary statistics produced

lower AUC across all p-value thresholds than was seen for the latest GWAS and GWAS catalog

PRS construction methods.

Among the skin cancer subtypes, the PRS constructed for overall skin cancer was most

strongly associated with basal cell carcinoma across all p-value thresholds, with odds ratios

ranging from 1.4 (95% CI [1.32, 1.48]) to 1.64 (95% CI [1.55, 1.74]). Among the PRS, the over-

all skin cancer PRS had the greatest discrimination for the overall skin cancer phenotype.

Overall skin cancer and melanoma PRS had similar performance in terms of discrimination

for the melanoma phenotype across various depths. The overall skin cancer PRS tended to be

more strongly associated with and have similar or slightly better discrimination for the overall

skin cancer phenotype compared to the melanoma PRS, indicating that the overall skin cancer

PRS was more accurate at predicting the overall skin cancer phenotype than the melanoma

PRS. The overall skin cancer PRS had very similar association with and discrimination abilities

for the overall skin cancer phenotype across all p-value thresholds except the least conservative

(p = 5x10-4), for which the AUC and odds ratio were smaller. Overall, the highest AUCs and

strongest OR signals for both PRS and all skin cancer phenotypes were found at depths of

5x10-7 and 5x10-8.

In addition to associations with the primary and related phenotypes, we explored associa-

tions between PRS constructed at various UK Biobank summary statistic depths and secondary

phenotypes. Fig J (overall skin cancer) and Fig K (melanoma) in S1 Text show PRS-PheWAS

results in MGI using PRS constructed at different depths. Depths of 5x10-7 and 5x10-8 pro-

duced very similar results, and other depths tended to identify fewer phenotypes associated

with the corresponding PRS. Phenotypes that were associated with the PRS at other depths

had weaker associations. PRS-PheWAS using the melanoma PRS and the overall skin cancer

PRS produced somewhat different results. For example, the melanoma PRS at different depths

did not identify strong associations with “diseases of sebaceous glands”, which is similar to pre-

vious PRS-PheWAS results for mPRS in MGI and UKB. In contrast, the overall skin cancer

PRS did identify associations with “diseases of sebaceous glands” or its subcategories for all

depths except 5x10-5 and 5x10-4. Fig L in S1 Text provides some additional information about

the impact of depth on p-values for selected secondary associations.
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PRS construction using LDpred

We evaluated the performance of PRS constructed using the LDpred algorithm, which incor-

porates millions of SNPs into the PRS definition. Table E in S1 Text provides results. For the

overall skin cancer PRS, a modelled 1% proportion of causal variants produced the best results

in terms of AUC and OR with respect to the overall skin cancer phenotype (OR 1.30, 95% CI

[1.26, 1.35]) and AUC 0.58, 95% CI [0.56, 0.60]). For the melanoma PRS, a modelled 0.001%

proportion of causal variants produced the best results with respect to melanoma (OR 1.42,

95% CI [1.36, 1.49]) and AUC 0.60, 95% CI [0.58, 0.62]). This LDpred melanoma PRS per-

formed slightly better compared to the melanoma PRS constructed using UK Biobank sum-

mary statistics at a 5x10-8 depth in terms of associations with the primary phenotype. Using

the PRS with a percentage of assumed causal variants producing the best pseudo R2 statistic

from Table E in S1 Text, we performed a PRS-PheWAS as shown in Figure M in S1 Text.

Table 3 summarizes the secondary phenotypes significantly associated with various PRS at

the phenome-wide level. Many general skin cancer phenotypes are strongly associated with

nearly all PRS. In particular, actinic keratosis and dermatitis due to solar radiation are associ-

ated with PRS for all three disease. In contrast, sebaceous cysts and “diseases of sebaceous

glands” are strongly associated with PRS for basal cell carcinoma and squamous cell carcinoma

but not with PRS for melanoma.

Online visual catalog: PRSweb

For comparison of the aforementioned PRS-PheWAS results and to provide researchers with

resources for future PRS-based analyses, we developed an open access, online visual catalog

PRSweb available at https://statgen.github.io/PRSweb that enables interactive exploration of

the PheWAS results for each of the skin cancer subtypes and different PRS construction meth-

ods explored in this paper, for both the MGI and UK Biobank phenomes. PRSweb shows

PRS-PheWAS plots with various choices of PRS in the drop-down menu (example screenshot

in Fig 3) and offers downloadable PRS constructs (list of independent risk variants with corre-

sponding weights). Mouse-over boxes offer detailed information about top results if needed,

without impeding the overall user experience (grey box in Fig 3). Enrichment of cases in the

upper quartiles of the PRS distribution are presented in forest plots.

Discussion

Polygenic risk scores combine information from a large number of genetic variants to stratify

subjects in terms of their risk of developing a particular disease. In the first aim of this paper,

we demonstrate that PRS can also be used to explore shared and unique genetic risk profiles

and secondary phenotype associations for related disease subtypes. We focus our attention on

the setting of skin cancer, but the statistical approach can be applied to study other diseases

with well-defined molecular subtypes.

For each skin cancer subtype, we constructed PRS using various PRS construction methods

and evaluated their associations to the overall skin cancer phenotype and the three most com-

mon skin cancer subtypes: melanoma, basal cell carcinoma, and squamous cell carcinoma. We

demonstrated that PRS constructed using EHR-derived phenotypes can sometimes (but not

always) have good performance in terms of specificity for the primary phenotype. All PRS

were positively associated with all skin cancer phenotypes under consideration. This suggests

that each individual PRS may capture some shared genetic contributions for disease develop-

ment across skin cancer subtypes.

For each skin cancer subtype, we performed a PRS-PheWAS to identify secondary pheno-

types that are associated with the corresponding PRS. We identified many dermatological
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features in addition to the primary phenotype, indicating the ability of PRS to reproduce

associations with the primary phenotype even after multiple testing corrections and covariate

adjustment. The majority of these associations were replicated in a PRS-PheWAS performed

for the UK Biobank phenome. Our analyses identified actinic keratosis, which is believed to be

Table 3. Phenome-wide significant phenotypes in MGI identified using various PRS construction strategiesa.

Melanoma Basal cell
carcinoma

Squamous
cell

carcinoma

Method PRS Constructed Using UK Biobank Summary
Statisticsb

LDpred mPRS mPRS bPRS bPRS sPRS sPRS

Data Source MGI MGI MGI UKB MGI UKB MGI UKB

Phenotype PheCode 5x10-9 5x10-8 5x10-7 5x10-6 5x10-5 5x10-4 0.001%c

Melanomas of skin 172.11 � � � � � � � � � � � � �

Melanomas of skin, dx or hx 172.1 � � � � � � � � � � � �

Skin cancer 172 � � � � � � � � � � � �

Other non-epithelial cancer of skin 172.2 � � � � � � � � � � � �

Carcinoma in situ of skin 172.3 � � � � � � � � � � � �

Basal cell carcinoma 172.21 � � � � � � � n/a � n/a � n/a

Actinic keratosis 702.1 � � � � � � � � � � �

Benign neoplasm of skin 216 � � � � � � � �

Squamous cell carcinoma 172.22 � � � � � � n/a � n/a � n/a

Secondary malignant neoplasm of skin 198.7 � � � � � � �

Disorder of skin and subcutaneous tissue NOS 689 � � � � � � � � � �

Benign neoplasm of lymph nodes 229.1 � � � � �

Neoplasm of uncertain behavior of skin 173 � � � � � � �

Degenerative skin conditions & other
dermatoses

702 � � � � � � � � �

Secondary malignancy of lymph nodes 198.1 � � � �

Dermatitis due to solar radiation 938 � � � � � � �

Chronic dermatitis due to solar radiation 938.2 � � � � � � �

Benign neoplasm of unspecified sites 229 � � � �

Secondary malignant neoplasm 198 � � � �

Scar conditions and fibrosis of skin 701.2 � � � � �

Seborrheic keratosis 702.2 � � � � �

Sebaceous cyst 706.2 � � �

Malignant neoplasm, other 195.1 � � �

Cancer, suspected or other 195 � � �

Other hypertrophic and atrophic conditions of
skin

701 � � �

Diseases of sebaceous glands 706 � �

Diseases of hair and hair follicles 704 � �

Diaphragmatic hernia 550.2 � �

# SNPs: 6 9 13 27 156 1193 6.4x106 29 29 32 32 18 18

� Indicates phenotype that reached phenome-wide significance in the corresponding PRS-PheWAS
a Including only diseases identified in at least two PRS-PheWAS
b Evaluated at different depths (p-value thresholds indicated below)
c Modelled proportion of causal variants

Notes: mPRS, bPRS, and sPRS: chosen PRS for melanoma, basal cell carcinoma, and squamous cell carcinoma. mPRS and bPRS are based on GWAS catalog entries

while sPRS is based on the single, latest GWAS results [30]; n/a: not available in ICD-based phenome of the UK Biobank.

https://doi.org/10.1371/journal.pgen.1008202.t003
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a precursor to squamous cell and basal cell carcinoma, as an independent predictor of basal

cell and squamous cell carcinoma, and we demonstrated that incorporating the PRS in addi-

tion to clinical information improved discrimination for future skin cancer diagnoses (Appen-

dix 1 in S1 Text) [46–48]. Additionally, some secondary phenotypes (for example, diseases of

the sebaceous glands and sebaceous cysts) were identified in PRS-PheWAS only for the non-

melanoma subtypes, which may provide some insight into some differentiating features of

these subtypes.

In an additional analysis, we identified loci that were shared among all three skin cancer

subtypes’ PRS. Loci overlap between the PRS for the three subtypes may indicate factors

related to common biology between the subtypes. We noted that all shared loci (HERC2/

OCA2, IRF4,MC1R, RALY, SLC45A2 and TYR) were also loci that had been associated

with human pigmentation traits and/or harbor key genes of the biochemical pathway of

Fig 3. Example view from PRSweb (see web resources).A selection menu on top allows selection of PRS constructs and phenome while
interactive plots with “PheWAS results” and “Exclusion PheWAS results” are generated after selection. “Associations between PRS and Selected
Phenotype” plots are generated after clicking on a triangle in the PheWAS plots. Detailed summary statistics for each trait association are
provided in mouseover elements (shown in grey). Underlying weights of a selected PRS can be downloaded via bottons below the plots (blue).

https://doi.org/10.1371/journal.pgen.1008202.g003
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melanogenesis [49, 53–61, 63, 66–70]. To more directly explore secondary associations com-

mon to all skin cancers, we constructed PRS using SNPs shared by all three skin cancer sub-

types and a PRS for skin tanning ability using results from a recent GWAS meta-analysis.[69]

The skin tanning ability PRS PheWAS identified a very similar set of traits to the shared PRS

PheWAS, suggesting that the shared genetic component may in part represent genetic factors

influencing the skin pigmentation and the skin reaction to sun exposure. In an attempt to

more directly identify secondary associations unique to each subtype, we also constructed PRS

using SNPs unique to each subtype’s PRS. This analysis did not identify any strong subtype-

specific associations, perhaps suggesting that the main genetic drivers of skin cancer are shared

across subtypes.

In this paper, we explore strategies for constructing a PRS using markers and weights

obtained from various publicly-available sources. We compare three general strategies for

PRS construction. In the first strategy, we consider PRS constructed using a small number of

markers and weights identified from either the latest GWAS or GWAS meta-analysis or the

NHGRI-EBI GWAS catalog. We first compare these two PRS construction methods in terms

of their associations with related and unrelated EHR-derived phenotypes. A priori, we may

have some belief that the latest (and often the largest) GWAS may provide a better source of

evidence to use for PRS construction due to larger sample sizes and (potentially) more care-

fully curated data. The latest GWAS and GWAS catalog methods produced PRS with similar

performance in terms of their associations with and discrimination for the primary phenotype

used to construct the PRS for both basal cell carcinoma and melanoma. The latest GWAS

method produced better results for squamous cell carcinoma.

In the second PRS construction strategy, we use UK Biobank summary statistics at differ-

ent p-value depths to construct PRS. We found that incorporating additional loci that did

not reach genome-wide significance did improve the PRS’ ability to discriminate cases from

controls for the primary phenotype up to a point. In particular, PRS constructed using SNPs

with p-values less than 5x10-8 or 5x10-7 resulted in the best performance, but further increas-

ing the p-value threshold resulted in reduced performance. Crucially, we also observed

stronger associations between the PRS and secondary phenotypes for PRS constructed using

depths of 5x10-8 and 5x10-7. These results suggest that some benefit may be observed by

incorporating loci that do not reach significance into the PRS construction but incorporating

too many loci with larger p-values may not improve the predictive ability of the PRS (for

both primary and secondary phenotypes). However, this gain or reduction in PRS perfor-

mance may depend on the phenotype of interest and on the prevalence of the phenotype in

the analytical sample.

In the third PRS construction strategy, we use the LDpred method to construct PRS using

the whole spectrum of observed genetic information. For melanoma, the LDpred PRS which

modelled smaller fractions of causal variants were favored over the ones modelling larger

fractions. While the PRS construction with LDpred performed similarly to the various depth

approach in our particular study, its computational cost was substantially higher. However,

recent work indicated that LDpred might outperform pruning and thresholding approaches

when larger training data sets are available [71].

In our study, PRS associations with the primary phenotype were generally stronger using

the latest GWAS and GWAS catalog-based PRS than for the PRS constructed using LDpred or

using UK Biobank summary statistics at different depths. Since the underlying case numbers

in the discovery GWAS for the former were substantially larger than the case numbers in the

UK Biobank GWAS, no direct comparison between approaches was possible, and also because

the required full summary statistics of the contributing and larger skin cancer case-control

studies of the latest GWAS and GWAS catalog entries were not made available. Additionally,
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these simpler PRS construction strategies appeared to more clearly differentiate between

related subtypes than the genome-wide PRS construction methods. All three PRS construction

strategies produced many similar secondary associations from PRS-PheWAS, as shown in

Table 3. Overall, these simpler PRS construction methods worked well in our particular skin

cancer setting, and we did not see any improvements to using a much larger number of SNPs

in the PRS construction. Future releases of full summary statistics from large skin cancer

GWASmeta-analyses will enable more liberal thresholds and consequently may result in better

performing PRS [3, 72, 73].

As a product of this study, we provide an online visual catalog PRSweb (seeWeb resources)

that provides PRS-PheWAS results for the various skin cancer phenotypes for PRS constructed

using the different methods explored in this paper. PRSweb will provide a routine way to com-

pare different PRS construction methods and to explore PRS-PheWAS results in detail. Addi-

tionally, PRSweb provides the PRS construction details, which researchers can download and

use in their own analyses. In the future, we plan to extend this online platform to include Phe-

WAS for many other cancer phenotypes, which will make this online platform a general tool

for identifying phenotypes related to particular types of cancer.

One limitation of the generalizability of this study comes from the homogeneous race pro-

file of MGI and UK Biobank. UK Biobank consists of subjects of primarily European descent,

and we restricted our analyses to subjects of European descent in MGI (excluding about 10%

of the subjects in MGI) in order to ensure greater comparability between the two datasets.

Additionally, many of the existing GWAS were conducted on European populations, and we

wanted to consider similar samples when comparing the performance of PRS constructed

using summary statistics from European populations. Unlike UK Biobank, MGI is not a popu-

lation-based sample; rather, it is a sample of patients recruited from a large academic medical

center. Patients were recruited prior to surgery through the anesthesiology department, and

therefore they may present a potential for selection bias. PRS-PheWAS results are susceptible

to collider bias caused by PRS relationships with both skin cancer diagnosis and other diseases

related to sampling. The exclusion PheWAS strategy attempts to overcome this obstacle by

evaluating PRS associations with secondary phenotypes only in the subjects without a skin

cancer diagnosis. This approach does not remove the possibility of sampling bias, but it may

help reduce the impact of sampling on the estimated PRS-phenotype associations. The chosen

design of matched case-control studies can reduce bias and detection of false positives com-

pared to the unmatched analysis, but it is typically less powerful than the unmatched analysis

(Fig N in S1 Text).

An additional limitation for all EHR-based phenome-wide studies is the potential for bias

due to phenotype misclassification. In S1 Section 1, we discuss this issue in more detail, and

we provide a sensitivity analysis exploring the impact of misclassification on study results in

Fig O in S1 Text. In spite of these limitations, a principled comparison of the various methods

explored in this paper may provide researchers with a sense of the robustness of their PheWAS

inference to the PRS construction method and an analytical framework for the exploration of

shared genetic architecture of related traits.

Web resources

PRSweb; https://statgen.github.io/PRSweb University of Michigan Medical School Central

Biorepository; https://research.medicine.umich.edu/our-units/central-biorepository UK Bio-

bank; http://www.ukbiobank.ac.uk/ UK Biobank GWAS summary statistics; https://tinyurl.

com/UKB-SAIGE TOPMed variant browser, https://bravo.sph.umich.edu/freeze5/hg38/
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TOPMed program, https://www.nhlbi.nih.gov/science/trans-omics-precision-medicine-

topmed-programMinimac4; https://genome.sph.umich.edu/wiki/Minimac4 BCFtools;

https://samtools.github.io/bcftools/bcftools.html KING; http://people.virginia.edu/~wc9c/

KING/ FASTINDEP; https://github.com/endrebak/fastindep PLINK; https://www.cog-

genomics.org/plink2/ Eagle; https://data.broadinstitute.org/alkesgroup/Eagle/ UCSC Genome

Browser; http://genome.ucsc.edu/ R; https://cran.r-project.org/ NHGRI-EBI GWAS Catalog;

https://www.ebi.ac.uk/gwas/ dbSNP; https://www.ncbi.nlm.nih.gov/projects/SNP/ Imputation

server; https://imputationserver.sph.umich.edu/ Jinja, https://github.com/pallets/jinja Locus-

zoom, https://github.com/statgen/locuszoom.
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S1 Text. Supporting material. This file contains supporting Appendices 1–2, Figures A-O

and Tables A-E.
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S1 File. Supporting tables. This Excel file contains the following tables: Sheet 1: Table F,

ICD9 codes to PheWAS code mapping tables for skin cancer; Sheet 2: Table G, ICD10 codes

to PheWAS code mapping tables for skin cancer; Sheet 3: Table H, MGI and UK Biobank

phenome summary; Sheet 4: Table I, GWAS Catalog and latest GWAS risk SNP selection;

Sheet 5: Table J, UKB GWAS risk SNP selection; Sheet 6: Table K, Omnibus table of signifi-

cant results.
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